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FOREWORD AND BACKGROUND

The problem of evaluating the performance and the efficiency of the type of de-
tection receiver known as a clipper crosscorrelator has been studied by a number of people
in the acoustics and engineering fields. The majority of these studies determine the signal-
to-noise ratio at the output of the receiver. By the very nature of the problems considered
in these studies a great many approximations are usually made.

In this report Dr. Patil studies a specific detection situation and treats the per-
formance of the receiver in detail, rigorously, and without approximations (beyond the
assumption that the input samples are independent). The correlator studied crosscorrelates
against a local reference signal.

Four versions of operation of the clipper crosscorrelator are considered. The
standard operation of a detection device, integrating the receiver input over a fixed time, is
studied under the title of "'binomial strategy.' A variation of this called the "inverse binomial
strategy' operates the receiver accumulator until a fixed threshold is exceeded. Since both
of these operations involve observing the output of an accumulator which has a nonnegative in-
put, modifications are in order which quicken the time of decision when the decision is a fore-
gone conclusion. Such quickening, or decreasing the time necessary to reach a decision, is
done without effect on the primary measures, the error probabilities, and leads to an in-
creased measure of efficiency.

The results of these studies are presented in both tabular form and graphs.
These were calculated by Mr. Cota, who has also added a final section for comparison, which
Jreats the output of the clipper crosscorrelator with a double threshold comparator, following
the techniques of Wald's sequential analysis. This section has been added to show the follow-
ing comparison: in the binomial strategy, inverse binomial strategy, and their modifications
the error limits were considered as primary objectives, and the time necessary to reach a
satisfactory decision was considered a secondary objective; that is, time was minimized only
if its minimization did not affect the error probabilities anticipated on an observation-by-ob-
servation basis. In sequential analysis the three variables are considered as primary vari-
ables, though not of equal weight, and the average time is minimized subject to the over-all

or average error probabilities.

T. G. Birdsall



ABSTRACT

We consider in this report the problem of signal detection using
clipper crosscorrelator when the signal of single size and the
Gaussian noise are known exactly. We develop strategies in or-
der to meet the requirements dictated by the gravity of the "false
alarm" and of the "miss." Four such strategies are suggested
which arise in a véry natural way, and their interrelations are
studied. Efficiency of the clipper crosscorrelator in relation to
the usual crosscorrelator is defined and investigated in the set-

up as described. Associated tables and charts are given.
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1. INTRODUCTION

‘As'mentioned ‘in the foreword and background, we consider in this report'the
problem of ‘signal detection using clipper crosscorrelator ‘when the signal of single ‘size is
known exactly. Without loss of generality let the signal size s be positive. The general
problem of signal detection is to decide the absence or presence of a possible signal on:the
basis of a certain number of observations made with, possibly, some noise in the background.
Let the rapdom sample of size n of independent observations be Xl’ XZ’ .. Xi’ .. Xn' Under
usual assumptions, -and under noise alone, let X‘. ~ n(0,1); i.e., Xi is normal with zero mean
and unit standard deviation when noise alone is operating. Further let it be assumed that un-
der signal plus-noise Xi ~ (s, 1);1i.e., Xi is normal with mean value “s and stdndard devia-
tion one when signal of positive size ‘s is:present in addition to noise. 1

Now, the clipper crosscorrelator is a device which, ‘instead of recording the
magnitude of each observation Xi’ records for purposes of simplicity only the count C(Xi) of

the observation Xi' To be specific,

e(X.) = 1 if X, >0
1 1

0 if X, < 0

Using these unit and zero counts as basic sample data, strategies can be developed for signal
detection purposes. ‘As is well known, the solution to-a dichotomous statistical decision prob-
lem traditionally involves the recognition‘and reconciliation to the two types of ‘érrorsknown
‘as ‘a~érror and B-error. In the problem urder consideration:a-error takes the form of "false
alarm' :and the S-error means '""'miss." The sizes ¢ and 3 of the a-~error and B-error in
making decisions based on a strategy are measured by the chances of committing such errors
under such a strategy. Different strategies can imply different sizes of the a-error and the

B-error, thus bringing out more effective or less effective roles of the different strategies.

1The physical interpretation is that s? is the signal-to-noise ratio at the input to the clipper.



Depending on the gravity of the situation for the problem at hand one may specify the sizes of
"false alarm' and "mistaken miss.' On the basis of the observable counts c(X’), C(XZ) -

C(Xi) ... recorded by the clipper crosscorrelator we suggest in this report certain strategies
of signal detection which can meet the "false alarm' and "mistaken miss'" requirements, and

further consider the interrelations between such strategies.



2. .BINOMIAL STRATEGY OF SIGNAL DETECTION (BS)

As an example, one can think of the following strategy, which makes use of the
n
total count C = _21 C(Xi) obtained from a sample of size n. The strategy requires specifica-
1=
tion of a "detection count'" d to make the following decisions:

(i) if the total count C > d, conclude that the signal is present;

(ii) if the total count C < d, conclude that the signal is absent.

We propose to call such a strategy a binomial strategy of signal detection (BS) for reasons
which will be apparent in the course of the following discussion.

The main problem involved in the BS is the problem of choosing suitable sample
size n anq the corresponding detection count d. As has been stated before, n'and d are chosen
so as to meet the o and B requirements.

Note that under noise alone for whatever n may be

0
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o
2
g
I
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\__Y_J
1

Prob { Xi > 0 under noise alone}
% i=1, 2, ..., n
Also X .. Xn are independent. Therefore under noise alone

1’ 2! *

C ~ B, 3)

i.e., the total count C based on-a random sample of size n is a binomial random variable with

DO =

parameters nand p =5 . To be specific,
Prob {C =r b = MSH'S™ r=01,2...,n
25 G ,1,2...,n.

Further, under signal plus noise with a positive signal of size s,

Prob{c(Xi) = 1}

p{Xi > 0 under signal plus noise}

®(s) = p (1)

{1



1 2
where: d(s) = e dt.
Vo2 '_[00
Also, Xl’ X2 v Xn are independent as before. Therefore under signal plus noise
C ~ B(n,p)

i.e., the total count C is now a binomial random variable with parameters n and p. To be

specific,

Note that p > é— under signal plus noise whereas p = % under noise alone.

Further let

N n-k :
Prob<C > r = X (k)p (1-p) r=0,1,2, ..., n
k=r

i]

B(n,r,p) : (2)

As a consequence of BS one can see that the size of false alarm

Q
It

Prob {C > d under noise alone}

B(n, d, ). (3)

Similarly the size of a miss is obtainable as

™
il

Prob {C < d under signal plus noise}

1- B(n,d,p) (4)

where p is given by (1).

Thus, one has the following two equations:

(5)

!
Q

1
B(n, d; ‘2‘) -

il

B(n, d, p) = 1-8 (6)



to be solved for sample size n and detection count d for specified false alarm of size ¢ and
miss of size 8. The solution of (5) and (6) is the pair of n and d required for BS corresponding

to specified a and 8. Table I for n and d for different sets of triples of a, 5 and p = &(s) ex-

7 2

tends over the range of detection interest; .01 < < .90, 107" < a< 107°.



3. INVERSE BINOMIAL STRATEGY OF SIGNAL DETECTION (IBS)

It is possible to think of some "tolerance count §,' and to go on recording the in-
dividual counts C(Xi) on the clipper crosscorrelator until the observed over-all count Zi)c(Xi)
accumulates to 5. Let the number of individual counts (sample size) required to accumulate
the tolerance count 6 be denoted by R. As might be expected, one can think of the following

strategy for signal detection. Specifying some "'tolerance sample size' by 1, one makes the

following decisions:

(i) if the required sample size R < 7, conclude that the signal
is present;
(ii) if the required sample size R > 7, conclude that the signal

is absent.

We propose to call such a strategy an Inverse Binomial Strategy of Signal De-
tection (IBS) for reasons which will be apparent in the course of the following discussion.

The main problem involved in the IBS is the problem of choosing a suitable toler-
ance count 6 and the corresponding tolerance sample size 7. As has been stated in the intro-
duction, & and n are chosen so as to meet the @ and 8 requirements.

Note that as before the probability of a unit count is p = p(s) under signal plus
noise and p = 1 under noise alone. Individual counts are independent. Therefore under signal

2

plus noise

R ~d B(é,p)

i. e., the sample size required to accumulate the over-all count to 6 is an inverse binomial

random variable with parameters 6 and p. To be specific,
- d -0
Prob {R = r} = (g_})p (1-p)" r=0506+1, ...

where: p = ®(s).



Similarly, one has under noise alone
1
R ~ dB(S, 5)

Further let

r -1 -
Prob{R < r} z (}g_}) p°(1-p)*"°
x=0 :

(5, r,p) (7)

As a consequence of IBS one can see that the size of false alarm

Q
11

Prob{ R < 7 under noise alone}

1
1(5’ m, E)

and the size of mistaken miss

es)
1

Prob {R > 7 under signal plus noise}

1- 1(5,"7,13)

where: p = ®(s).
Thus, one has the following two equations

1
I(G; 7, E)

1l
Q

(8)

1(6, n, p) 1- B (9)

to be solved for & and n for specified false alarm of size ¢ and miss of size 8. The solution

of (8) and (9) is the pair of 6 and 1 required for IBS corresponding to specified @ and 3.



4. EQUIVALENCE OF BS AND IBS

As is apparent, BS and IBS are quite different in approach and character. The
following observation, however, brings out the connection between the parameters n and d of
BS and the parameters 6 and n of IBS and, later, the equivalence of the two strategies. Note

that the event E, of requiring more than n counts to accumulate the over-all count of 0 is

1
equivalent with the event E2 of obtaining a total count of less than 0 in n counts. Therefore
Prob(El) = Prob(Ez)
i.e.,
1-1(6,n,p) =1 - B(n, d,p)
therefore
1(%,n,p) = B(n, d,p) (10)
where: I and B are defined by (7) and (2), respectively.

Equation 10 is a very interesting identity and was established by Patil (1960) in a slightly

different form. Using this identity it can very easily be seen that

6 =d and 7 =n (11)
where BS and IBS are derived to meet the same « and B8 requirements. This follows immedi-
ately on comparing the pair of equations (5) and (6) with the pair (8) and (9). This shows that

tabulation for the parameters of either BS or IBS is enough; there is no need of two separate

tables for BS and IBS.

In fact a much stronger relation can be established between BS and IBS. We can
show that they are equivalent; i. e., for every possible sample data on the clipper crosscor-
relator both BS and IBS come to an identical conclusion regarding presence or absence of the
signal. It is very curious to observe that, though totally different in outlook and character,

BS and IBS turn out to be equivalent strategies. That they are equivalent easily follows from
the equivalence of the events E_ and E2 mentioned in this section, together with the established

1
result that 6=d and n = n.

Although equivalent, the BS and IBS differ from one another in one major aspect

in practice. BS requires that a fixed number n of counts be taken, whereas the number of

counts to be made in order to apply IBS is a random quantity.



5. EFFICIENCY OF THE CLIPPER CROSSCORRELATOR

It is evident that the clipper crosscorrelator does not utilize the entire informa-
tion on an individual observation. It makes either a zero or a unit count on it, depending on
whether the observation is positive or nonpositive, and ignores the magnitude of the observa-
tion. Naturally we expect that it be less "efficient' than the crosscorrelator which does take
into account the magnitude of each observation. In other words, in order to neet the same «
and 8 requirements, the sample size n required for the clipper crosscorrelator is expected
to be larger than the sample size N required for the crosscorrelator. We define the efficiency
of the clipper crosscorrelator by the ratio of N to n.

From the discussion in Section 2, we know how to obtain the value of n for some
o and B requirement. But how do we obtain the value of N? Following the usual analysis with
the crosscorrelator we derive here an expression for N. Table I lists N, and the efficiency of
the clipper crosscorrelator for different sets of values of the triple ¢ , 8 and p.

Now, on the basis of the sample Xl’ XZ’ ceey XN of size N, the crosscorrelator
uses the sample mean XN as the statistic. Choosing a "detection point" D, the crosscorrela-

tor has the following strategy for signal detection:

(i) if the sample mean XN

(ii) if the sample mean XN < D, conclude that the signal is absent.

> D, conclude that the signal is present;

The sample size N and the detection point D are chosen so as to meet the @ and 8 requirement.

e 1 .
Note that X, ~ n(0, —=) under noise alone
N~ 07
= 1 . .
whereas XN ~ n(s, TN) under signal plus noise
where: s is taken to be positive without loss of generality.

As a consequence, the size of the false alarm



a = Prob{-XN > D under noise alone}

= 1-&0D vN)

and the size of the miss

B = Prob {XN < D under signal plus noise}

= CID[(D- s) /ﬁ]
t2
, 1 2Ty
where:  &(w) = /_2_7;f e dat.
-0

Thus one has the following two equations

&(DV/N)

1t
—

)
IS

@[(D-s)m]= B

These are the parametric equations of the normal ROC curve. They can be solved for sample
size N and detection point D for specified ¢ and . Writing Fe for the solution of ®(x) = ¢,

the equations become

and

(D-s) VN

i
=
—
—
w
Nos

Subtracting (13) from (12), we have

SYN =F _, -F 4
therefore
F -F,\? F +F,\?
] s
because Fl_€ = _Fe . One may note that F6 is nothing but the € -point of the standard normal

distribution for which extensive tables are available.

Incidentally, D can be obtained as

!

2)



6. MODIFIED BINOMIAL STRATEGY OF SIGNAL DETECTION (MBS)

The following discussion will bring out that there is scope for improvement in the
BS by taking in practice only as many counts on the clipper crosscorrelator as are essential
for the purpose of making the decision on presence or absence of the signal. For example, if
one finds that the first d counts are all unit counts, the conclusion under BS of the presence of
the signal is clear and certain, and there is no need to observe any more counts, although
such an observation would be demanded by sample size n under BS. For that matter, one can
stop taking sample data as soon as one has secured an over-all count of d and conclude the
presence of the signal as under BS, even if one has not yet exhausted all the required n counts
demanded by BS.

Similarly, if one finds that the first n - d+1 counts are all zero counfs, the con-
clusion under BS of the absence of the signal is clear and inevitable. There is no need to ob-
serve any more counts because there is no possibility that the over-all count will become ‘even
d, as is required for the contrary conclusion, even if the n counts required under BS were
completed. For that matter, one can stop taking sample data as soon as one has secured
n - d+1 counts, and conclude the absence of the signal, even if one has not yet exhausted all

the n counts.

In view of the above discussion we propose the following strategy, to be called
the Modified Binomial Strategy of Signal Detection (MBS).
(i) Choose n and d as required by the BS to meet a and 8 re-
quirement.
(ii) Conclude that the signal is present as soon as the number
of unit counts is d, and stop taking sample data.
(iii) Conclude that the signal is absent as soon as the number

of zero counts is n-d+1, and stop taking sample data.

The advantage of MBS over BS lies in the curtailment effected in the total num-

ber of counts required to make a conclusive decision regarding presence or absence of the

1



signal; Whereas sample size for BS is a fixed quantity n, sample size required for MBS is a

random quantity. The Average Sample Number (ASN) can be seen to be

n -1, d -d n -1 -
AsN = oy G- v 2oy ) (a-p e (16)
y=d y=c ¢

where: ¢ = n-d+1 and p is the probability of a count to be unit.

Note that

n d+1 -d
z )™ (1-p7"

y=d

I(d+1, n+1, p)

I
=a¥="

= = B(n+i, d+i, p) (17)

!

where I and B are defined by (7) and (2) respectively.

Similarly,
-1 c y-c
Ty Q" = 5 Blotl, evl, 1-p) (18)

Therefore, as a consequence of MBS,

n-d+1
1-p

ASN = gB(n+1, d+1, p) + B(n+1, n-d+a, 1-p) (19)

Substituting p = 1 and p = p(s) gives the value of ASN under noise alone and under signal plus
2

noise, respectively.

12



7. MODIFIED INVERSE BINOMIAL STRATEGY OF SIGNAL DETECTION (MIBS)

One may discover that IBS can be improved on the same lines as BS has been
improved to MBS. We propose the following strategy and call it the Modified Inverse Binomial
Strategy of Signal Detection (MIBS).

(i) Choose i and § as required by IBS to meet the o and 8 requirement.
(ii) Conclude that the signal is present as soon as the tolerance
count 5 accumulates, and stop taking sample data.
(iii) Conclude that the signal is absent as soon as the number of

zero counts is n-06+1, and stop taking sample data.

The advantage of MIBS over IBS lies in the curtailment effected in the number of
counts required in all to make a conclusive decision regarding presence or absence of the sig-

nal. It is easy to see that the sample size for both IBS and MIBS is a random quantity. It can

be seen that

0 ¢] - -
ASNunderIBS = = r- (% 1,) p5 (1-p)* o _ 20 (20)
r=9 6-1 p
where: p is the probability that a count will be one.
One can show also that under MIBS
n r-1, 6 r-6 D -1 -
ASN = 3 ore (D% 0 2 ox e (1) (1wt (21)
r=0 r=¢
where: E =n-06+1
Proceeding on the same lines as in the previous section, we have under MIBS
7=0+1 (22)

ASN = = B(n+1, 5+1, p) + 15 B(n+1, n-6+2, 1-p)

Tl

Substituting p = % and p = p(s) gives the value of ASN under noise alone and under signal plus

noise, respectively.

13



- 8. EQUIVALENCE OF MBS AND MIBS

When we recall from Section 4 that

6 =d and N =n

and compare equations (19) and (22), giving ASN under MBS and MIBS, it becomes clear that
both MBS and MIBS have the same ASN.

In fact a much stronger relation between MBS and MIBS comes out immediately
when we compare the descriptions of the MBS and MIBS as given in Sections 6 and 7. It is
very clear, though very curious, to see that MBS and MIBS are equivalent. It may further be
said that unlike BS and IBS, MBS and MIBS are identical in practice. The only place they

differ in is the starting viewpoint.

14



9. TABLES

The following tables are calculated for:

a (false alarm probability) = 10—7, 10-6, 10_5, .., 1079

B (miss probability) = .9, .5, .1, .01;

p = .52, .54, .56, .59, .62, .67, .76, .84, .92, .98.

The triples (@, B8, p) are chosen so that 10 < n < 1000.

Two sets of tables were consulted, both of which yield @ and g for given values of
p, n, d.

"Tables of the Binomial Probability Distribution" (Ref. 4), is a set of 7-place

tables tabulated for
n = 2(1) 49; d = 1()n.

This set of tables was used for & = 10", 10, 10_7 whenever possible (i. e., whenever
n < 50). Notice that these tables given only one-place accuracy for a = 10"7.

"Tables of the Cumulative Binomial Probability Distribution" (Ref. 5), is a set

of five-place tables tabulated for

n = 1(1) 50(2) 100(10) 200(20) 500(50) 1000, d = 0(1) n.
'3, 10’4, and, when n > 50, for o = 107°.

Notice that these tables give only one-digit accuracy for a = 10-5.

No values were computed for a = 10-6, 10-7 when n > 50.

This set of tables was used for a = 10-2, 10

Table I. n, d, andn of C.C.C.(B.S.)for given a, B, p.

This table is calculated in the following manner. The desired values of p are all
available in the tables. For a given ¢, j pair there are several values of n for which two
values of d yield a, 6 pairs that '"straddle" the given a, 8 pair. For example, if p = .67,

a =.01, B =.5, the consulted table gives:

15



[i=]
=1
IR
I

46 31 . 01295 . 45307
32 . 00568 . 57754
47 31 . 01999 . 37349
32 . 00931 . 49415

For each value of n, gand d are calculated (by linear interpolation) for ¢ =.01. In this case,
for n =46, 5(.01) = B =.50357, d(.01) =d=231.406. Forn =47, g(.01) = B =.48635,
d(.01) =d = 31.935. Since the desired value of 8is 8 = .5, we conclude that 46 < n < 417,
d1 = 31. 406, d2 = 31.935. For the purposes of calculating n = g, we calculate (by linear in-
terpolation) n for 8 = .5 and denote it by n.

Linear interpolation is not used, however, for values where the consulted tables
give only one-place accuracy, or where An > 10 (An being the difference between tabulated

values of n). In these cases the values of n are given which yield the closest (straddling) a, 6

pairs.
TableI. n, d, andn of C.C.C. (B.S.) for given a, B, p.
p B a 2 norn n or dy d,
(E?S)
.52 .9 1072 684 650 .635 355 356
, 700 .636 381 382
.54 .9 1074 925 500 . 630 506 507
' 950 . 638 532 533
.9 1073 510 500 . 634 285
550 .634 311 312
9 1072 170 170 . 630 100 101
180 .633 106 107
.5 1072 84l 800 . 635 433 434
850 .635 459 460
.56 .9 107 615 (600) (. 618) (353)
. (650) (. 623) (380)
.9 107 410 400 . 632 237 238
420 .633 248 249
9 1073 226 220 133 134

16



17

P B a A norn n or d d,
n
(BS)
240 . 629 144 145
9 1072 75 77.0 .621 48.7 49.
.5 1074 950 950 . 635 532 533
1000 632 550 560
.5 1073 659 650 .633 364 365
700 633 391 392
.5 1072 374 360 202 203
380 633 213 214
1 1072 900 900 .634 485 486
950 511 512
.59 .9 107° 270 (260) (. 664) (164)
| (260) (. 608) (165)
.9 1074 180 180 .618 115 116
190 121
9 1073 99 100 . 620 65 66
110 71 72
9 1072 33 34.6 . 608 24.3 24,
5 107° 551 (550) (. 640) (325)
.5 1074 418 420 630 248 249
440 259 260
.5 1073 290 280 166 167
300 . 629 177 178
.5 1072 164 160 95 96
170 628 24.3 24.
1 107° 931 (950) (.619) (542)
1 1074 758 750 . 627 426 421
800 453
1 1073 579 500 311 312
600 . 631 338 339
1 1072 394 380 213 214
400 632 223 224
.01 1073 888 850 470 411
900 . 633 496 497
.01 1072 655 650 634 355 356
700 381 382
.62 9 307° 150 (140) (95) (96)
(150) (. 642) (101)
(150) (. 517) (102)
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B a 2 norn n or dy d,
(B9)
(160) (107) (108)
.9 1074 100 100 614 68 69
110 74 75
.9 1073 55 57.7 . 607 39.9 a1.
.9 1072 19 20. 2 .58 15.7 16.
.5 1072 306 (320) (. 640) (198)
(320) (. 607) (199)
.5 1074 232 920 138
240 . 624 149 150
.5 1073 161 160 . 624 99 100
170 105 106
5 1072 91 92.3 . 628 57.7 58.
1 107° 517 (550) (. 616) (326)
1 107% 420 420 . 628 248 249
440 259 260
1 1073 322 320 . 628 188 189
340 198 199
1 1072 219 220 . 628 127 128
240 138 139
.01 1075 730 (750) (. 626) (434)
.01 1074 615 600 . 629 346
650 372 373
.01 1078 493 480 274 275
500 . 631 285
.01 1072 364 360 . 630 202 203
380 213 214
.67 .9 107° 72 (76) (57)
(78) (. 594) (58)
.9 107 48 52. 4 . 586 39.7 40.
1073 21 29.3 57T 23.2 23,
.5 1072 148 (150) (. 630) (101)
(150) (. 579) (102)
5 107 112 110 74 75
120 . 607 80 81
5 1073 78 81.4 . 606 54. 3 55.
5 1072 44 46.2 .605 31.4 31,
1 107° 250 (260) (. 639) (164)
(260) (. 610) (165)
.1 1074 203 200 .618 126 1217
220 138
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p B a K norn n or d d,
(lgs)
. 1073 155 150 94 95
160 . 620 99 100
1 1072 106 100 62. 1
110 . 589 67.1
.01 107° 352 (360) (. 579) (221)
.01 1074 296 300 . 622 182 183
320 193 194
.01 1073 238 240 . 622 144 145
260 155 156
.01 1072 175 170 100 101
180 . 626 106 107
.16 .9 1078 38 45.4 532 38. 5 39.0
.9 107° 28 (33.9)  (.526) (29) (29. 5)
.9 1074 19 23.4 . 509 20.17 21.3
.9 1073 11 13.3 . 493 12.4 13.0
.5 1070 57 (63.1)  (.578) (48) (49)
.5 1074 44 48.8 . 568 37.1 37.8
.5 1073 30 34.1 . 562 26. 6 2.
.5 1072 17 18.8 . 576 14.5 15.0
5 107° 97 (100) (72)
(110) (. 574) (78)
.1 1074 79 85. 6 . 586 59. 4 60.7
1 1073 60 64.1 593 44.8 45.9
1 1072 41 43.9 . 595 29. 6 30. 2
.01 107° 137 (150) (. 580) (102)
.01 1074 116 120 597 80 81
130 86 87
.01 1073 92 97.9 . 601 63.6 64.17
.01 1072 68 71.9 603 45.2 46. 4
.84 .9 1077 25 (32) (. 477) (30)
(33) (31)
.9 1078 20 27. 4 445 25.7 26. 4
.9 107° 15 20. 4 . 442 19.5 20.0
5 1078 36 45.2 . 506 38. 5 39.0
5 107° 29 36. 3 . 507 30.9 31.6
5 1074 22 27.5 . 509 23. 4 24.0
5 1072 16 19. 4 . 498 16.7 17.3
1 107° 49 (54) (42)
(56) (. 553) (44)
1 107 40 46. 3 547 35.9 36. 6
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p B a norn n;r d, d,,
(BS)
1 1073 31 34.8 . 556 26. 4 27.0
.1 1072 21 23.7 . 556 17.6 18. 2
.01 107° 69 76 57
78 . 566 58
.01 1074 58 65. 6 563 4.1 48. 4
.01 1073 a7 52. 4 . 566 37.6 38. 8
.01 1072 36 37.9 578 26.0 26.7
.99 9 1077 12 (23) (23)
(24) (. 354) (24)
.5 107" 22 (33) (. 416) (31)
.5 1078 18 2.9 411 26. 4 25.7
.5 1070 15 94.4 317 28. 8 29. 6
.5 1074 11 17.1 410 16. 3 16.9
1 1077 33 (47) (41)
(48) (. 455) (42)
1 1078 29 39.5 . 467 34.2 34.9
1 1070 24 33.7 . 446 28. 8 29. 6
1 107% 20 27.1 . 467 23. 4 24.0
1 1073 15 20. 3 478 17.3 17.9
1 1072 10 13.3 497 11.1 16.8
.01 107° 35 44.4 . 496 36. 3 36.9
.01 1074 29 36.6 . 505 29. 5 30
.01 1073 23 29.0 512 23.2 23.9
.01 1072 17 21.2 517 16. 3 16.9
.98 .5 1077 10 (22) (22) (23)
(23) (23) (24)
(24) (. 297) (24)
.1 1077 16 (28) (. 350) (27)
(29) (28)
1 1078 14 24.1 . 356 23.4 24.0
1 107° 11 20.8 349 19. 5 20.0
.01 1077 21 (36) (33)
(37) (. 378) (34)
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Fig. 1. Values of efficiency for C.C. C.
(Based on Table I, using n.)

Table II. Efficiency of C.C.C. (BS and MBS) corresponding to a, B, p triples.
In this table, for each @, S, p triple, the value of n is selected which yields the
a, [ pair closest to the given pair. Then ASN is calculated from the tables by (19). The

efficiencies are calculated according to the formulae:

_ N . _N

Roughly speaking, n(BS) depends primarily upon g (inversely) and secondarily
upon a¢. No such dependence was observed for nSN(MBS), but for very small n, corresponding

to the largest values of a and 8, n(MBS) is very high. For nN(MBS), ASNN = 2(n+1-d), to

three-place accuracy (except for an occasional error of 1 in the third place).
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Table II.
corresponding to o, B, p triples.

Efficiency of C.C. C. (BS and MBS)

22

P B o, n n d p 8 ASNG (BS) (MBS) (MBS)
52 .9 1072 684 650 355  .01020  .90249 614 .636  .674  .694
54 .9 10°% 925 950 533  .00009  .89796 906  .640  .671  .727
107 510 500 285 .00100  .90355 468  .634  .678  .730

102 170 180 106 .01030  .89301 162 .633  .704  .758

5 1072 841 850 459  .01075  .48591 828  .636  .653 687
.56 .9 1070 615 600 352 107% 89901 564  .653  .695  .787
1004 410 420 249 .00008 90473 389 .635  .686  .775

107° 226 220 133 .00117  .89708 199 .630  .697  .1785

102 75 78 50 .00843  .90861 65.1 .629  .754  .846

5 107 950 950 533  .00003  .51251 926  .637  .654  .724
1073 659 700 392  .00084 . 48421 680  .634  .653  .718

1072 374 380 213 .01043  .48681 366  .634  .658  .717

.1 102 900 900 486  .00895  .10718 865 .635  .661  .689

5 .9 107° 270 260 164 107° . 89906 235  .664  .735  .890
100% 180 190 121  .00010  .89284 169 .624  .701  .847

1073 99 100 66 .00089  .90777 84.5 .625  .739  .893

002 33 35 25 .00834  .90888 26.3 .620  .825  .986

5 107° 551 550 325 107% 49896 532 .640  .661  .779
107 418 440 260 .00008  .49497 424  .630  .654  .766

1073 200 300 177  .00108  .47521 287  .631 .65  .763

1072 164 160 95 .01079  .50448 151 .631  .669  .765

1 107° 931 950 542 107° 10523 916  .619  .642  .7T19
1074 758 750 426 .00011 . 10367 720 .633  .659  .730

107 579 600 339  .00082  .09938 573 .633  .663  .725

1072 394 400 224 .00933  .10221 318 .633  .670  .715

.01 1073 888 900 497  .00096  .00990 842 .633  .677  .705
1072 655 650 355 .01029  .01062 602 .634  .685  .696

62 .9 1072 150 150 101 107° . 89728 130 .642  .741  .963
10°% 100 110 75  .00009  .89296 93.6 .611  .718  .933

10° 55 56 40 .00092  .90760 44.1 .612  .778  1.008

1072 19 20 16 .00591  .92739 12.8 .603  .941 1.206

5 1070 306 320 199 107° . 50275 307 .607  .633  .796
100 232 240 149 .00011 . 48197 229  .625  .655  .815

1073 161 160 100 .00098  .51688 151  .624  .662  .818

102 91 94 59  .00860  .47524 87.0 .681  .736 889
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P B, a n n d a B ASNSN (];78) (MnBS) (MT;BS)
1 100° 517 550 326 107° 08709 524 .616  .647  .753
1074 420 420 248  .00012  .09778 398 .620  .664  .763

10° 322 320 188 .00103  .10511 302 .629  .666  .756

1072 219 220 128  .00904 . 10867 205  .630  .677  .741

01 107° 730 750 434 107% 00921 700 .626  .671  .740
10°% 615 600 346 107 o133t 558 .620  .677  .739

107 493 500 285 107 . 00977 460  .631  .686  .727
1072 364 380 214 .00790  .01018 345 .32  .696  .718

67 .5 100° 72 78 58 107° 89822 62.7 .594  .739  1.103
100% 48 54 41 .00009  .89647 41.6 .590  .766 1.138

1073 27 20 23 .00116  .88996 21.4 .590  .800 1.222

5 1070 148 150 101 107% . 49606 141 .630  .670  .945
10°% 112 120 81 .00008  .50333 il2 .61l  .655  .916

10 1073 78 80 54 .001i6  .485i2 73.6 .614  .667  .910
102 44 47 32 .00931  .49415 42.3 .616  .685  .906

L 107% 250 260 165 107° . 10114 245  .610 . 647 .826
1004 203 220 138  .000i0  .07896 205 .618  .664  .819

1073 155 i60 100 .00098  .09871 148 .621  .671  .814

1072 106 110 68 .00837  .10538 01 .624  .679  .795

.01 107° 352 360 221 107° . 01085 330 .618  .674  .1795
0% 206 300 183 .00008  .0i235 273 .624  .686  .793

1073 238 240 144 00017  .00954 2i5  .625  .698  .T72

102 175 180 106 .01030  .00918 158 .621  .714 751

16 .9 10% 38 46 39 .0000009 .8927683  32.4 .544  .773  1.564
107° 28 35 30 107° 87754 24.1 .551  .800  L.607
10°% 19 24 21 00014  .86233 15.7 .540  .825 1620

107 11 14 i3 .o00092  .88373 7.73 .528  .957 1.849

5 107° 57 64 49 107° 47351 58.0 .588 . 648  1.176
10°% 44 48 37 .o00011  .49086 42.8 577  .647 1154
107 30 35 27 .00094  .47040 39.9 .580  .657 1.015
1072 17 19 15  .00961  .49363 6.1 .586  .692 L 117

1 100° 97 110 78 107° 08881 102 .574  .619  .957
104 0.79 8 61  .00007  .11160 79.2 .589  .639  .974

10°° 60 66 46 .00093  .09229 59.8 .598  .661  .940
1002 41 44 30 .0113L  .08558 38.9 .606  .686  .890

01 107° 137 150 102 107° . 01005 134 .580  .649  .888
10°% 116 130 87 .00007  .00720 114 .565 .645  .834

1073 92 98 65 .00080  .01116 85.4 .606  .695  .873
1072 68 70 45 .01123  .00959 59.2 .612  .724  .825



d p 8 ASNg (BS) (MBS) (MBS)
30 1077 9052782  17.9 .477  .853 2. 544
26 .0000015 .8479863  17.4 .479  .T71 2.235
20 .0000105 .8715202  11.5 .469  .856  2.462
39 .0000009 .4592471  40.6 .523  .592  1.504
30 .0000112 .4969924  30.1 .521  .606  1.520
24 .00009  .47195 24.0 .526  .614 1.473
17 .00129 40100 17.3 .539  .623 1348
44 107° . 10206 51.5 .553  .601 1.191
36 .00008  .10685 42.0 .553  .606 1.156
27 .00094  .09542 3.5 .564  .626  1.007
19 .00732  .09204 22.1 .575  .650 1.029
58 107° . 00965 69.0 .566  .639  1.051
47 .00011  .00996 55.9 .573  .656 1.019
39 .00075  .00868 46.4 .578  .672  .974
26 .01004  .01022 30.9 .589  .705  .910
24 1077 .8648214  10.8 .354  .787 4. 248
31 107 .4981990  27.0 .416  .508  2.288
26 .0000015 .3905792  24.0 .443  .517  2.067
23 .0000097 .5911838  22.0 .331  .376 1.379
17 .00007 42812 14.8 .448  .545 2.017
49 1077 .0850854  44.8 .455  .487  1.560
35 .0000007 .0967268  37.2 .475  .511 1.583
28 .0000097 .1084891  29.6 .480  .519  1.536
24 .00009  .06861 25.6 .495  .542  1.386
8 .00074  .08193 19.1 .504  .554 1.323
12 .00647  .09583 12.6 .520 .578  1.217
37 .0000077 .0084345  40.2 .507  .568  1.267
30 .00010  .00788 32.6 .515 .584 1.191
24 .00072  .00825 26.0 .527  .608 L 129
17 .00845 00637 18.5 .548  .652  1.007
24 1077 3842197  19.2 .297  .371 3.564
27 1077 .1074660  26.4 .350  .371  2.450
24 .0000008 .0886451  23.6 .357  .378 2.231
20  .0000105 .0653488  19.9 .374  .394  1.964
34 1077 .0062433  34.6 .378  .404 1,748
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Efficiency of C.C.C. (MBS) using actuai

a, B, n, under signal plus noise.
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In Ref. 6 a simple expression was developed to be used as an approximation for
the clipper crosscorrelator efficiency when g =.50. It was simply (2p-1/s)?. Table III

lists this value, and the range n(BS) at By =- 50 from Table IL

p s (2p-1/s)* (Bs) * Fo
=.5from II

very small % =, 6366 -—-

. 54 . 1004 . 6349 . 636
. 56 . 1510 . 6315 . 634-. 637
. 59 . 22175 . 6260 . 619-. 640
.62 . 3055 L6172 . 602-. 681
.67 . 4399 . 5974 .611-.630
.76 . 7063 . 5420 .577-. 588
.84 .9945 . 4675 . 521-. 539
.92 1. 405 . 3574 .331-, 448

.98 2. 054 .2184 . 297

Table III. Comparison of Ref. 6 and some values of Table II.
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10. A SEQUENTIAL STRATEGY

The preceding strategies all consist of choosing, before taking any observations,
a sample size n (and a cut-point d) necessary to obtain a given o, B, p triple.

In the case of MBS and MIBS, however, we notice that it may sometimes be
possible to make a decision before n observations have been taken. The MBS (as well as the
MIBS) is a form of sequential test. That is, after each observation, we make one of the
following three decisions: (1) accept hypothesis A (signal is present), (2) accept hypothesis
B (signal is not present), (3) take an additional observation. We use two cut-points to make

our decision. In the case of MBS, we have

1) if C (no. of ones) = d, accept A;
2) if z(no. of zeros) = n-d+1, accept B;

3) otherwise, take another observation.

10. 1 Sequential Probability Ratio Test

A much more efficient sequential test is the sequential probability ratio test
(see Ref. 3). This is an optimum test when the cut-points are chosen correctly. The test is
defined as follows. Denote by 0i the probability that X > 0. Testing hypothesis SN against
hypothesis N is equivalent to testing the hypothesis 8 =p = ®(s) against the hypothesis 9 = %
The probability of obtaining a sample [c(xl), c(xz), ceey c(xm)] with Z zeros and

C ones is given by
C Z
P(C,z) = 67°(1-6)7, where C +z = m. (23)
Under hypothesis SN the above probability is given by
C z
PSN(C}Z) =P (l—p) ) (24)

and under hypothesis N by



The likelihood ratio for a sample with the same number of zeros and ones as the given sample
is given by

P_..(C,2)
(c,z) = SN 9C2 Oy )2, (26)

PN(C, z)

The likelihood ratio for the given sample can therefore be computed from (26), and depends on
the number of zeros, Z, and ones, C, in the sample.

The test is carried out in the following manner: two positive constants y and
6(y < 0) are chosen. After each trial, (C,z) is computed. If £ > 5, judge SN to be true.
This is denoted by "A." If £ <y, judge N to be true. This is denoted by "B." If y < £ < §,
take another observation. The values of a and § are fixed by the values of p, v, 6.

For practical purposes, it is easier to calculate log £(C,z), after the mth ob-

servation, than to calculate £(C,z). The log-likelihood ratio, log £(C,z), is given by

log £(C,z) = log [ZC pC 2Z(1-p)z]
= Clog 2p + z log 2(1-p) . (27)
The test now takes the form:

If log £C,z) > log 6, A occurs; (28)
if log #(C,z) < log y, B occurs; (29)
if log y < log #C,z) < log §, take another observation. (30)

Equation 27 can be written in the form
7 = log {m)  log 2p c. (31)

" log 2(1-p)  log 2(1-p)

If we define

_ log b __log 2p
ZA ~ log 2(1-p) log 2(1-p) C, and (32)
7 = log ¥ log 2p (33)

B = Tog 2(i-p) ~ Tog 2(i-p) &’

28



we can write the sequential test as follows: For a given (C, Z),

¥z < ZA(C), accept A, (34)
if Z > ZB(C), accept B, (35)
if ZA(C) < Z < ZB(C), take another observation. (36)

Graphically, BS, IBS, MBS, MIBS, and the sequential probability ratio test

(SPRT) can be summed up as shown in Fig. 3 (for given a, 5, p).

10.2 SPRT when y, 0 are Determined by Wald's Approximation

Let ., Bo be the design values of false alarm and miss probabilities, respec-

tively. Pick the values of y and 6 using Wald's approximation:

1-BO
6 = a (37)
0
and
B
o
L (38)
o

The actual values of @, B are not, in general, equal to the values of . Bo’ be-
cause the test does not necessarily terminate with specific likelihood ratios £ =dor £ = .
The fact that m must take on integral values makes possible a '"spill-over" in likelihood ratio
at the boundaries (6 and ¥). For all observations terminating in an A decision, the expected

value of the likelihood ratio is -

E,[e(C,2)] = ljtﬁ (39)

similarly for B decisions
E [£(C,2)] = -2 (40)
B ’ 1l-a

It is evident that there is also a possible "spill-over" in the values of @, 8. We shall now
calculate these "spil\l—overs. "

Suppose that after n observations an A decision is reached; i.e.,

2Z+C

2C,2) = (1-p)% p€ > 5, with C+Z = n. (41)

On the (n-1) observation, the likelihood ratio satisfied the inequality
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y < 2(c-1,2) = 22°C 112t < 5.
There will be a real number x (C-1 < x < C) such that
2 (1-p)" p" = 6. (42)
Dividing (41) by (42) we have
g_(_Cé_,Z_) _ 2C-x pC-x , (43)
and since p > % ,
6 <4(C,Z) < 2pb. (44)
Similarly, if a B decision is reached at C+Z =n, we have
0c,z) = 2% ap)? ¢ <y
and
y < 2(c,z-1) = 22 1C 121 ,C 5,
and so there is an x (Z-1 < x < z) such that
9% (1p)% ¢ = .
Therefore we have
2(C,2Z) _ gz-x (1-p)2~%
Y
and
2(1-p)y < £(C,Z2) < v. (45)

Equations 44 and 45 set bounds on the likelihood ratio at termination, and these

two equations, with Egs. 37, 38, 39, and 40, can be used to set bounds on ¢ and §:

0 1-5 o
2 < 2 < 2p (46)
o o
and
0 ﬁo
2(1-p) 1-a < 1-a < 1-a (47)
o o}



These relationships can be seen graphically on the ROC curve (Fig. 4). The range of a, 8 is

indicated by the hatched region.

10. 3 ASN for the SPRT

On page 53 of Ref. 3 the following formula is derived:

Eg(log Ly +... +log ﬁn)

Eé)(n) - Ee(log 2) (48)
where: EG(Y) is the expected value of y for a given value of 9,
n is the number of observations necessary for termination,
log ¢. = log IDS—N[_CEin ,
i PN [C(Xi)]
and
. - PSN[c(X)]
PN [e(X)]
The numerator is the expected value of log ¢(m) at termination:
Eg(log £1 +... +log ﬁn) = Eg[log 2(C,Z)], where C+Z = n
~ PG(A) log6+Pe(B) log v . (49)
The denominator is given by
E,(log £) = 6 log 2p +(1-6) log 2 (1-p)
The average sample number can thus be written as
~ _(1-B)log b+ B logy
Egn(n) = p log 2p + (1-p) log 2(1-p) (50)
and
~ _alogd+(1-a)logy
Ex() = 179Tog 2p + 1/2 Tog 2(1-D) (51)

Since Eq. 4Y is based on Wald's approximation (Eqs. 39 and 40), there is no loss of accuracy

in writing (50) and (51) in the form
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(1-p) log %ﬁ + B log %
ESN(n) ~ plog 2p + (1-p) log 2(1-p)
a log 1—;[3 + (1-a) log 1—530[—

Ex() % {7370g 2p + 1/2 Tog 3(1-D)

10. 4 Comparison of SPRT with MBS

(53)

In Fig. 5, the termination boundaries of SPRT are compared with those of MBS

for the triple p =.67, a =.00098, B =.09871.

65
B (MBS)
60 j
SOL
a0l
N\
N @’\
<Q
! >
304 ° 4 —_
< 1723
L [+1]
& 2
» <
201
10
) i 1 1 1 - 1 A 1 1
[¢] 10 20 30 40 50 €0 70 80 90 100 105
— C
Fig. 5. Termination boundaries for p = 0, 67,

a =0.00098, and 3 =0.09871.
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11. CONCLUDING COMMENTS AND REMARKS ABOUT FURTHER WORK

We have considered in this report the problem of signal detection using a clipper-
crosscorrelator when the signal of known single size is possibly present and with Gaussian
noise in the background.

As is well known, the solution to a dichotomous statistical decision problem al-
ways involves the recognition and reconciliation to the two types of errors known as a -error
and B-error. Inthe signal detection problem the a-error takes the form of "false alarm"
and the S-error means '""miss."

We have suggested five such strategies which arise in a very natural way and
have studied their interrelations. We have also defined and investigated the efficiency of the
clipper-crosscorrelator in relation to the usual crosscorrelator.

In this report the investigations and results have been all theoretical in nature

and yet have been intuitively very meaningful. Associated tables and charts may be useful for

application.
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