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Introduction

HE well-established method for computing

the wvibrations produced in mechanical
systems by impressed vibratory forces or by
initial displacements or shocks, consists in
writing down the differential equations applicable
to the case, solving these equations, and de-
termining the constants of integration by sub-
stituting the initial conditions. This procedure
yields general equations for the motions of the
different parts of the system and the slide rule
can then be applied in computing the numerical
values. While this method is applicable to a
great variety of mechanical problems, differential
equations is a fairly abstruse branch of mathe-
matics, requiring continual practice for effective
use, and the amount of time involved in solving
moderately complicated problems is often
prohibitive.

An alternative method of computing vibra-
tions, which has been tried by some, is the
method of electrical analogy, wherein one draws
the electrical circuit which is analogous to the
mechanical problem to be solved, then solves
the analogous electrical problem, and finally
converts the electrical answer back into me-
chanical terms. While there are a few meticulous
souls who can arrive at correct answers by this
method, most of those who have attempted it
have become confused and have arrived at
preposterous answers. I will show below that
this blundering has not necessarily been due to

* Paper presented at the Symposium on Physics in the
Automotive Industry at Ann Arbor, Michigan, March 14
and 15, 1938.
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lack of ability on the part of the computers, but
is rather the result of imperfections in the
mechanical-electrical analogy itself as taught in
all the books dealing with this subject.

Furthermore, it can be shown that there is
another analogy which is free of the imperfections
of the old analogy, in fact, the new analogy is so
close that it is no longer necessary to transfer
the mechanical problem into electrical terms in
order to arrive at the desired answer; the
methods which the electrical engineer has de-
veloped for solving electrical circuit problems
are taken over into mechanics and applied to
the mechanical problem in purely mechanical
terms. It is not necessary to make any reference
to electricity. :

The mobility method of computing vibration
is the result of applying the electrical engineers’
methods of computation to mechanical prob-
lems. The electrical engineer has developed the
following distinctive tools:

1. A set of conventionalized symbols with
which the essential characteristics of a circuit
can be set forth in the form of a circuit diagram.

2. The concept of the potential difference
across elements in the circuit as contrasted with
the potential of points in the circuit relative to
ground ; the advantage here is that the relation-
ship between the potential difference across an
element and the current through it, depends
only on the characteristics of the element itself
and not on the characteristics of the rest of
the system.

3. The use of complex numbers to represent
simple harmonic voltages and currents, both the
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magnitude and phase of these quantities being
represented by the absolute value and angle of
the complex numbers.

Fi1c. 1. The old and the new analogs of the mass and
the spring.

4. The concept of the ‘“impedance” of an
element, which is defined as the complex ratio of
the voltage across the element to the current
through the element; rules are developed for
computing the impedance of series or parallel
combinations of elements and the current can
then be found simply as the voltage divided by
the impedance.

The mobility method provides a similar set of
distinctive tools, of form suitable for application
to mechanical vibration problems, as follows:

1. A set of conventionalized symbols with
which the essential characteristics of a me-
chanical system can be set forth in the form of
a schematic diagram.

2. The concept of the velocity across me-
chanical elements (velocity of one end of the
element relative to the other end) as contrasted
with the velocity of points in the system relative
to ground; the advantage here is that the rela-
tionship between the velocity across an element
and the force through it, depends only on the
characteristics of the element itself and not on
the characteristics of the rest of the system.

3. The use of complex numbers to represent
simple harmonic velocities and forces, both the
magnitude and phase of these quantities being
represented by the absolute value and angle of
the complex numbers.

374

4. The concept of the “mobility” of an
element (ease of motion), which is defined as the
complex ratio of the velocity across an element
to the force through the element; simple rules
are developed for computing the mobility of
series or parallel combinations of elements and
the force can then be found simply as the
velocity divided by the mobility, or the velocity
can be found as the force multiplied by the
mobility.

Thus by the mobility method we can compute
the velocity across each element in the system
and the velocity of each point in the system,
due to the action of an impressed vibratory
force or velocity. Not only can the forced
vibration be computed, but the natural fre-
quencies of the free vibration of systems having
but small damping, can be found. While the
method is most easily applied to those systems
in which the vibrations of all parts are parallel
to a single line, it can be easily extended to
cover many more complicated cases. Torsional
vibrations may be computed as easily as linear
vibrations. The presence of friction or damping
adds no appreciable complication as long as it is
of the type in which the force is proportional to
the velocity.

Imperfections of the Old Mechanical-Electrical
Analogy

Before explaining the mobility method of
vibration computation, let us point out the
imperfections of the old mechanical-electrical
analogy, and outline the new analogy, since it is
from this new analogy that the mobility method
has sprung.

The left central part of Fig. 1 shows a mass
whose velocity v is measured relative to the
fixed point designated at the right; this may be
considered either as the velocity of the mass or
the velocity across the mass. If a force f of
compression or tension is applied through the
rod at the left of the mass, there will be a change
in the velocity across the mass which can be
computed from f=mdy/di. The old analogy says
that the inductance shown above the mass
plays the same role in the electrical circuit as
the mass does in the mechanical system, because
an equation of similar form holds for the in-
ductance namely, E=LdI/di. Furthermore the

JOURNAL OF APPLIED PHYSICS



energy stored in the mass is mv? and the energy
stored in the inductance is 3LI%2 Likewise at
the right center of Fig. 1 is shown a spring of
compliance !/ (compliance, stretching produced
by unit force, reciprocal of the stiffness) across
which there is a velocity v and through which
there is a force f of compression or tension. The
old analogy says that the condenser shown above
the spring is analogous to the spring because
the velocity across the spring is v=1df/dt while
an equation of similar form holds for the con-
denser namely, /=CdE/dt. Furthermore, the
energy stored in the spring is 3/f2 while the energy
stored in the condenser is 3CE2. A similar
analogy holds between mechanical resistors and
electrical resistors.

In explaining this old analogy, the books do
not usually go into as much detail as we did in
the above paragraph in showing figures which
outline in detail the nature of the quantities
which are analogous. The analogy looks very
pretty as long as one merely points out that the
mechanical quantities are related by equations
of the same form as the equations which relate
the electrical quantities. However, when one
notes that velocity across mechanical elements
is in these equations analogous to current
through the electrical elements, while force
through is analogous to voltage across, the funda-
mental imperfection of this analogy is obvious.
This results further in mechanical elements in
series being represented in the analogous circuit
by electrical elements in parallel, and vice versa.
As an example of this left-handed relationship,
see the mechanical system of the central part of
Fig. 2 and its old analogous electrical circuit at
the top of that figure. Most of the blunders
which have been made by those who tried to
use the old analogy in computing vibrations,
can be ascribed to this inverse relationship of
series and parallel, and of through and across.

Fortunately, there is another analogy, detailed

“in the lower part of Fig. 1, which is free from
these imperfections. Here the condenser is put
analogous to the mass, and the inductance
analogous to the spring. Not only is the formal
similarity of the equations complete as before,
but velocity across is analogous to voltage across,
and force through is analogous to current through.
This results in mechanical elements in series
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being represented by electrical elements in series;
similarly for elements in parallel. The analogous
electrical circuit is therefore of a form very
similar to the mechanical system itself, as
illustrated by the new analogous electrical circuit
at the bottom of Fig. 2 which represents the
mechanical system in the center of the figure.
We could now work out the analogous electrical
problem and transfer our answer into mechanical
terms, but with the analogy as close as is shown,
we ask ourselves what advantage is to be gained
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F1c. 2. A mechanical system (center) with its old
analogous electrical circuit above and its new analogous
electrical circuit below.
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through working with the capital letters in the
electrical circuit when we could as well work
with the small letters in the mechanical system
itself, while carrying out the computation in
the same manner. The mobility method of
computation is the final result of this investiga-
tion and consists in applying the new analogy
merely in the development of the method of
computation; in making computations by the
mobility method, no reference is made to the
analogy or to electrical systems.

In order that the equations may have an
instructive and familiar appearance to those who
know their electrical circuit theory we will
change the letter symbols for force, velocity,
and mass, from the usual f, , and m to 4, e, and

¢ as shown below.

USUAL SYMEBOL SymBOoL Usep HERE

force f 1
velocity v e
mass m ¢

Obviously the meaning of equations is not
changed by a change in the letters which repre-
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sent the quantities appearing in the equations,
so anyone may feel free to use the usual letter
symbols if the equations appeal to him more in
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Fic. 2a. The relationship between the vectors repre-
senting displacement, velocity, and acceleration, in simple
harmonic motion.

that form. (¢ and e above do not represent
current and voltage; they represent force and
velocity.)*

The Mobility Method of Vibration Computation **

For our purposes we may consider mechanical
systems as being constructed of only three kinds
of elements: springs, mechanical resistors, and
masses. These correspond to the three funda-
mental mechanical properties of matter in bulk:
elasticity, viscosity, and mass. A spring has a
displacement across it proportional to the force
through it (Hooke's law) ; a mechanical resistor
has a wvelocity across it proportional to the force
through it; and a mass has an acceleration across
it proportional to the force through it (definition
of force). The displacement produced across a
spring by unit force through it is a constant of
its structure called the compliance I of the spring
and is measured in cm/dyne or inches/pound;
the velocity produced across a mechanical re-
sistor by unit force through it is called the
responsiveness r of the resistor and is measured
in kines/dyne (1 kine equals 1 cm/sec.) or

* For a further discussion of the relative advantages of
the old and new analogies, see F. A. Firestone, “A New
Analogy Between Mechanical and Electrical Systems,”
J. Acous. Soc. Am. 4, 249-267 (1933). This paper was
anticipated by a paper appearing in Germany in 1932
pointing out the new analogy, and which was called to my
attention by its author in 1933; Walter Hahnle, ‘“Die
Darstellung Elektromechanischer Gebilde durch rein elek-
trische Schaltbilder,” Wiss. Veréff. a. d. Siemens-Konzern,
Vol. XI, No. 1 (Julius Springer, Berlin, 1932). A recent
paper dealing exclusively with the old analogy is Myron
Pawley, “The Design of a Mechanical Analogy for the
General Linear Electrical Network with Lumped Param-
eters,” J. Frank. Inst., 223, 179-198 (1937).

** Anyone particularly interested in this subject will
find a more detailed discussion in a mimeographed booklet
of about 150 pages which the author has prepared for his

students. This can be obtained from the author after
July 1938 at a cost not to exceed $1.00.
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inches/sec./pound; the acceleration produced
across a mass by unit force acting on it is called
the mass of the mass and is measured in grams
or pounds/g (g=386 inches/sec.?). The me-
chanical resistor may be visualized as a pair of
massless concentric tubes having a viscous oil in
the space between the tubes so that the velocity
across the combination (velocity of one tube
relative to the other) is proportional to the
force through the combination; substances like
oil, rubber, felt, and deadening materials gen-
erally, have to a considerable extent the prop-
erties of a mechanical resistance, in addition to
their elastic or mass properties. While any
actual spring has some mass, and every mass has
some elasticity, and every actual mechanical
resistor has some mass, for purposes of analysis
of mechanical systems we consider our me-
chanical elements as being ‘“‘pure’” and we take
into account any important additional properties
of any structure by adding elements to the
schematic diagram. Regardless of the actual
structure of our elements, we will represent them
in our schematic diagrams by the symbols shown
in the figures which follow; these same symbols
will be used whether the vibration is linear or
torsional.

If a simple harmonic force is sent through our
mechanical elements, it will produce a simple
harmonic displacement across the spring, a
simple harmonic velocity across the resistor,
and a simple harmonic acceleration across the
the mass, in fact, if we confine our attention to
the oscillating components of the motion we
may say that each of these elements will have
a simple harmonic displacement, velocity, and
acceleration across it. Representing the vibratory
motion as the real part of a vector rotating in
the complex plane (as is common in electrical
circuit theory)} we have the following relation-
ships between the displacement, velocity, and
acceleration, across any element:

INSTANTANEOUS Unrrs
VaLue AMPLITUDE €.6.5. ENGLISH
Displacement  g; =3¢/ s cm inches
Velocity e;=ds;/dt=ed“!  e=juws Kkines inches/sec.
Acceleration a;=d2%;/di?=ad“? a=jwe=—w?s kines/sec.  inches/sec.?
; 7 /
Force i =19t i dynes pounds

{ If the reader is not familiar with the use of complex
numbers in representing vibrations, he can easily pick up
the necessary knowledge by reading the first four pages of
Appendix B of K. S. Johnson’s book, Transmission Circuits
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Here the angular frequency w=2xf where f is
the frequency of the vibration in cycles per
second. j=(—1)% The displacement amplitude
s is a complex constant whose norm or absolute
value |s| represents the actual displacement
amplitude across the element (maximum dis-
placement in the vibration) and whose angle 6,
represents the epoch angle of the displacement
(portion of the cycle of motion in which the
displacement started when ¢=0). The velocity
amplitude e and the acceleration amplitude o
are complex constants whose absolute values
and angles are the actual amplitudes and epoch
angles of these quantities. The relationships
expressed in the above amplitude equations are
set forth in Fig. 2a. The acceleration leads the
velocity by 90° and the velocity leads the
displacement by 90°. The multiplication of each
of these vectors by €/“! causes the set of vectors
to rotate with angular speed w radians/sec. and
the real part of each vector, or its projection on
the horizontal real axis, is the instantaneous
acceleration, velocity, and displacement, respec-
tively. If any one of the three quantities s, ¢, or
@ is known, the other two can be found immedi-
ately from the equations at the right above.
We will find it most convenient to compute e
first, even though we may be primarily interested
in finding s or a.

The mobility z of an element (or group of
elements) is by definition the ratio of the velocity
amplitude across the element to the force
amplitude through the element;

z=e/1 kines/dyne or inches/sec./pound.

The mobility is a complex number, its absolute
value |z| being the ease of motion, the amount
of velocity produced by unit force, and its angle
6. being the angle by which the velocity leads

~ 4, A,
'||——;@—MMN——W\—fo‘m3——_E’ JI

F16. 3. A series mechanical system. The mobility across
a number of elements in series is the sum of their separate
mobilities; z=21+2,+2;+.
the force. The mobility depends only on the
structure of the element and on the frequency of
the impressed force or velocity, and is inde-
for Telephonic Communication (Van Nostrand): or con-

sulting the instruction book accompanying the Keuffel
and Esser log log vector slide rule.

VOLUME 9, JUNE, 1938

pendent of the amount of force or velocity which
is impressed since these are proportional to each
other. For convenience, we may give names to
the real and imaginary parts of the mobility,
calling them the responsiveness r and excitability
x, respectively. Thus

mobility =responsiveness+j excitability ;
z=r+jx.
If a system has some responsiveness in its

mobility it absorbs mechanical energy and turns
it into heat or waves or some other form of

||h@——Wb*—lll
] “.

F1c. 4. A parallel mechanical system;

z2=1/(1/s1+1/294+1/23+).

energy, that is, it really responds to the vibration ;
while if the mobility of a system is a pure
excitability, energy oscillates in and out of the
system but no energy is permanently extracted
from the source, that is, the system merely
gets excited.

The mobility of each kind of element can be
easily computed from a knowledge of the funda-
mental constant of the element and the frequency
of the impressed vibration. If an oscillating force
of amplitude 7 is sent through a spring of
compliance /, the displacement amplitude across
the spring will be s=1; (from the definition of
compliance). The velocity amplitude across the
spring will therefore be e=jws=jwli. The
mobility of a spring is therefore

z=e/i=jwli/i=jwl

and is a pure excitability proportional to the
frequency w. On the other hand, if an oscillating
force of amplitude 7 is sent through a mechanical
resistor of responsiveness 7, it will produce a
velocity across the resistor e=7; (from the
definition of the responsiveness of a resistor).
The mobility of a resistor is therefore.

z=efi=ri/i=r
and is a pure responsiveness independent of the

frequency. If an oscillating force of amplitude ¢
is impressed on a mass ¢, it will produce an
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Fi16. 5. How to make a blunder in analyzing a mechanical
system: the three masses shown in the upper diagram are
in parallel since one terminal of each is the ground and
their movable terminals are connected together; the two
hooks on opposite sides of each mass are not two terminals,
they are the same terminal. The schematic diagram of
}ihe structure at the top is shown in the lower part of the

gure,

acceleration across the mass of amplitude a=1/¢
(from the definition of force, otherwise known
as Newton's laws of motion). The wvelocity
amplitude across the mass will therefore be
e=a/jw=1/jwc and the mobility will be

z=e/i=1/jwc=—j/wc,

a pure negative excitability inversely propor-

tional to the frequency. Summarizing, the
mobility of each of our three mechanical elements
is simply :

ELEMENT MosiLiTY €.6.8. EneLISH

Spring 2=jwl kines/dyne inches/sec./pound

Resistor z=r “ “

Mass z2=—j/we “ “

In the above equations the units are as follows:

C.G.8. ENcLIsH

Spring has compliance  ofl em/dyne  or inches/pound
Resistor has responsiveness of r kines/dyne or inches/see./pound

Mass  has mass of ¢ grams or pound sec.2/inch (or w/g)

Elements are said to be connected in series
when their terminals are connected end to end
(with not more than two terminals to any
junction point) as shown in Fig. 3. Elements
are connected in parallel when their terminals
are connected to two common junction points
as shown in Fig. 4. If there is any question as
to whether in any specific example the elements
are connected in series or in parallel, one should
note that functionally a series connection results
in the same force acting through all the elements,
while the velocity across the combination is the
sum of the wvelocities across the individual
elements; a parallel connection results in the
same velocity across all the elements while
the force through the combination is the sum
of the forces through the individual elements.
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The mobility of a series combination of elements
is therefore

Z=€/’i = (€1+€2+€3+)/i=21+22+23+y

and is simply the sum of the mobilities of the
individual elements. The mobility of a parallel
combination of elements is
e e 1
g=—== =
2 tittetist+  1/z:4+1/224+1/3:+
and is the reciprocal of the sum of the reciprocals
of the mobilities of the individual elements. It
should be remembered that one terminal of
every mass is the fixed point relative to which
the velocity of the mass is measured, otherwise
one may look at Fig. 5 and conclude erroneously
that the masses shown there are in series because
they are hooked end to end; however, the two
hooks on each mass are not the two terminals
of the mass, they are the same terminal, there
is no relative velocity between them, they move
together, and the other terminal of each mass is
the floor of the laboratory. The schematic
diagram of these masses is shown in the lower
part of Fig. 5, indicating that the masses are in
parallel and that the force on the parallel
combination of elements is the sum of the forces
required by the individual elements. Since all
masses have one terminal in common (the frame
of reference), it is not possible to connect a
number of them in series in any simple manner.
The mobility method of vibration computation
consists in drawing the schematic diagram of the
mechanical system and applying the simple
formulas of the last two paragraphs. The system
will usually be merely a series-parallel arrange-
ment of elements, and with the aid of the above
formulas we can easily compute the mobility of
the combination through which the given oscil-
lating force is applied. The velocity amplitude
across this combination can then be found
merely as e=12. The details of such computations
will be most quickly grasped by reference to the
fairly complicated example shown in Fig. 6.
Here a one-pound mass is supported by a
vertical leaf spring of compliance 0.054 inches/
pound. A 2-pound mass sits upon the 1-pound
mass and is separated from it by a film of very
viscous oil of responsiveness 0.1 inches/sec./
pound so that the motion of the lower mass
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transmits a force to the upper mass due to the
viscosity. The 2-pound mass is connected to the
frame of the machine through a spring of
compliance 0.012 inches/pound and to a 3-pound
mass through a spring of compliance 0.005
inches/pound. The 3-pound mass is supported
by the frame of the machine through a film of
very viscous oil of responsiveness 0.4 inches/
sec./pound. A sinusoidal force of amplitude 10
pounds and frequency 15.91 cycles per second
acts upon the 1 pound mass and reacts against
the frame of the machine. We wish to find the
velocity amplitude and displacement amplitude
of each mass.

In drawing the schematic diagram of the
system we identify the two terminals of each
element of the system and connect together in
the diagram those terminals which move together
in the system. Those terminals which are
stationary are connected to the ground symbol
—]I+. Thus the force =10 is shown at the left,
acting between the ground and the movable
terminal of the mass 1; the leaf spring is con-
nected from this terminal to ground. The resistor
representing the oil film is connected between
the movable terminals of masses 1 and 2. We
proceed similarly throughout the remainder of
the system, remembering that one terminal of
every mass is the ground, relative to which we
measure the velocity of the mass. It is to be
understood that regardless of the directions in
which the vibrations might take place in any

L=012

.q' Z=+1266]

—————IWD‘\—-’——Ello

n:aqll'
\ z=386j | ,_,.
Upcm 1y il

z=54; "
'L=.o.ftfl
F1G6. 6. A mechanical structure and its schematic dia-

gram, a numerical problem solved by the mobility method
in the text.
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actual system, the vibrations in the schematic
diagram are along a horizontal line, and the
vertica! lines in the diagram remain vertical
throughout the wvibration cycle. When the
schematic diagram has been drawn the problem
is already analyzed and we are as far along as
we would have been if we had written down the
differential equations of the system and had
found their solutions, for we are now ready to
start numerical computation.

Using the formulas given above we first
compute the mobility of each element at the
impressed angular frequency w=2715.91=100
radians/sec. This has been done and the results
are tabulated above the elements in the figure
(remember that c =w/g), except for the resistors,
whose mobilities equal their responsivenesses.
The mobility of the point @ looking toward the
right, is the mobility of the parallel combination
of mass 3 and the resistor;

1 1
Zo= =
1/0.4+1/~1.286] 2.540.778;
2.5-0.778;
2.5240.7782

=0.3640—0.1133].

The mobility of the point b looking toward the
right, is the mobility of the spring, in series
with the mobility z,;

25=0.5j+(0.3640—0.11337) = 0.3640+0.38675.

The mobility of the point ¢ looking toward the
right, is the mobility of the parallel combination
of 2z;, the mass 2, and the spring;

1
Ge= ’
1/1.2j4+1/—1.930j41/(0.3640+0.3867;)
=0.2864+0.3743;.

Similarly
24=0.14(0.2864+0.37435) =0.3864+0.3743;

1 1 1
and ze=1/(———|— + )
545 —3.86/ 0.386440.3743j

=0.409+0.3737].

Since the mobility of point e is by definition the
velocity which unit force would produce at the
point e, we can immediately find the velocity of
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the point e due to the impressed force {=10

simply as

e.=12,=10(0.40940.37375) =4.0943.737;
=5.54 /42°4 inches/sec.

This means that the maximum velocity of mass
1 is 5.54 inches/sec. while its motion leads the
impressed force by a phase angle of 42°4.
(5.54=(4.092+3.737%)%.) The velocity of the
point d is the same as the velocity of e, es=e,,
so the force through the point d is*

eq 5.54 £ 42° .40 5.54 £42.40

la=—

22 0.386440.3743; 0.538 /44.08
=10.28 /1 —1°.68 pounds.

One should not be disturbed to find that the
force through d is greater than the impressed
force of 10 pounds, since it is the vector sum of
the forces through the spring, the mass, and d,
which equals the impressed force. The force
through the point ¢ equals the force through
the point d, i,=14, so the velocity of ¢

e.=1,2,=10.28 1 —1.68(0.28648 4+0.37437)
=4.845 £ 51.00 inches/sec.

Thus the velocity amplitude of the mass 2 is
4.845 inches/sec. and leads the impressed force
1=10 by 51°. Similarly, since e,=e.

e,  4.845 £ 51.00

pp=—=————"-=910,4°23 pounds,
% 0.36404-0.38675

and since 7.=1;

€. =142,=9.1 £04.23(0.3640—0.11337)
=3.465 / —13.08 inches/sec.

Thus the velocity amplitude of mass 3 is 3.465
inches/sec. and lags the impressed force 1=10
by 13°.08. The displacement amplitudes of the
masses can be found by dividing their velocity
amplitudes by 1007 since s =e¢/jw. We summarize
our answers as follows:

DiSPLACEMENT AMPLITUDES

£=0.0554 £ — 47.60 inches
82=0.04845 £ — 39.00 inches
83=0.03465 £ —103.08 inches,

VELOCITY AMPLITUDES

e1=¢,=5.54 s 42.40 inches/sec.
e2=¢,=4.845 7 51.00 inches/sec.
e3=e,=3.465 1 —13.08 inches/sec.

If the frequency of the impressed force were to
be changed, the mobilities of the individual

*In carrying out computations of this sort in which
the complex numbers are changed from rectangular form
to polar form, or vice versa, the log log vector slide rule is
very convenient as it permits this operation to be per-
formed with a single setting of the rule.
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elements would be changed and the computation
would have to be repeated from the first, in
order to find the new velocities and displacements
of the masses.

Reviewing the method applied above, the
mobility at the driving point has been computed
by the application of the series and parallel
formulas, and the velocity of the driving point
is found from e=1z. The force applied to the
next junction point is found from i=e/z, and
the velocity of that point from e=7z. By con-
tinuing this process, all force and velocity am-
plitudes can be found in any system which con-
sists of a series-parallel connection of elements.

It can be shown quite simply that the average
power dissipated in a mobility 2= |z| £ 6.=r4jx
when a simple harmonic force ¢ is sent through
it or a simple harmonic velocity e is impressed
across it, can be computed from any of the follow-
ing expressions:

le]? le]?

cos 0,=—— cos? 6,
2|z] 2r

_lellé]

Av COs U=

]2
pw=—r=1% ergs/sec. or inch pounds/sec.
2

The factor of 2 in the denominator of these equa-
tions becomes unity if we use the effective value
of e and 4, namely & and 7, which for simple
harmonic motion are equal to €=0.707|e| and
1=0.707|7|. In the above example, the average
power delivered by the force 7=10 to the point e
on which it acts, is
li)2 102
Pw= Tre_ = —2~0.409 =20.45 inch pounds/sec.

The average power dissipated by the resistor
under mass 3 is
le.|? 3.465%

=———==15.00 inch pounds/sec.
2r 2X04

The remainder of the power supplied by the
source, namely 5.45 inch pounds/sec., must be
dissipated by the other resistor since the springs
and masses do not dissipate power; this value
checks approximately with that which we ob-
tain by direct computation;

]2 10.28

—r =

2

PAV =

0.1=5.28 inch pounds/sec.
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This is one method of checking the accuracy of
the entire calculation.

Force and Velocity Laws

Some mechanical systems do not consist
simply of a series-parallel arrangement of ele-
ments, for instance, if we add to the system
discussed above, a spring connecting mass 1
directly to mass 3, the schematic diagram will
look as shown in Fig. 7 and the mobility at the
driving point cannot be computed merely from
the series and parallel formulas. In order to find
the forces and velocities in such a system we must
use two general rules which we may call the

%
z 2
vl |
a
|

'll—,@i—rlilll-
L]

.~ F16. 7. A modification of the mechanical system shown
in Fig. 6, which requires the application of the force and
velocity laws for its solution.

Zy
il

force and velocity laws (Kirchhoff’'s laws in
electricity) :

Force low. The sum of all the forces acting on any junc-
tion point is zero.

Velocity law. The sum of all the velocities across the
structures included in any closed mechanical circuit is zero.
Since the junction point to which a number of
terminals of elements may be connected is
considered as being massless, no force is re-
quired to move it, so the vector sum of all the
force amplitudes acting on the junction must be
zero. Forces through elements lying on the left
of the junction may be taken with the signs
given, and those on the right with their signs
changed. (The force through an element is con-
sidered positive when it is a compressional
force.) Since in going around a closed mechanical
circuit we return to the starting point, or go from
a grounded point to another grounded point,
the sum of all the velocity differences across
the structures included in the circuit must be
zero. When writing down such a velocity equa-
tion, we progress around the circuit in a clockwise
direction and write the velocity across each ele-
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ment passed through in the positive direction
(to the right) with the sign given, and write each
passed through in the negative direction, with its
sign changed. (Velocity across an element is con-
sidered positive when the element is growing
shorter; displacement is positive when the ele-
ment is shorter than its normal length.) In
applying the force and velocity laws we desig-
nate each of the unknown forces through series
of elements by a letter, and then write down the
equations indicated by the laws. This will yield
a sufficient number of equations for determining
the unknown forces. When the forces are known,
velocities can be found at once from e=1z.

As an example, let us write down the force
and velocity equations for the system of Fig. 7.
At the junctions a, ¢, and e, respectively, we find
the following complex equations:

'I:5+i6—1:3—i4=0y
17 —15—12—19=0,
1 —1g—i7—11—123=0.

We now write down velocity laws around various
closed circuits as follows:

i323 —-"L.4Z4 = 0,

izZz—’ing; = 0,

ilzl —1'328 = O,

1626 — 1535 — 1787 =0,
— 1151 +4187+4az2 = 0,
— 192241585 +1325=0.

Since at any frequency the z’s in the above equa-
tions are known from the constants of the ele-
ments, we have 9 simultaneous equations which
can be solved (perhaps by determinants) for the
9 unknown forces, or as many of them as we
wish to know. The velocity of mass 1 is then
e1=1:21; similarly for the other masses.

While this method will work for any system
whose schematic diagram can be drawn, the
series-parallel method is simpler when it is
applicable.

Other General Laws

There are a number of other dynamical laws
which are well known in electrical circuit theory
but which can be advantageously applied to the
mechanical systems as represented in our
schematic diagrams. These laws will merely be
stated here in mechanical terms without proof.
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T hevenin's theorem. While we often think of a
force vibrator as being capable of impressing a
certain constant amplitude of oscillating force
regardless of the mobility of the mechanical
system on which it acts, there is a limit to the
velocity with which any practical force produc-
ing device can move its terminals even when it is
not connected to anything, so it cannot send as
much force through a system of high mobility
as through one of low mobility. Likewise, a
practica! velocity producing vibrator is limited
as regards the force amplitude which it can send
through systems of even very low mobility, so it
cannot produce as much velocity across a system
of low mobility as across one of high mobility.
The internal mobility of a vibrator is defined as
the velocity amplitude which it can produce
between its own terminals when not connected to
anything, divided by the force amplitude which
it can produce through an immovable object;

e free
1 blocked

The velocity form of Thevenin's theorem states
that any vibrator is equivalent to an ideal
velocity vibrator of velocity amplitude equal to
e free, in series with its internal mobility z;, and
the force sent through any system of mobility 2z
to which this vibrator might be connected is
(see Fig. 8)

Zs=

e free
zs—I—z

The velocity produced across the system can be
found as e=4z. The force form of Thevenin’s
theorem states that any vibrator is equivalent
to an ideal force vibrator of force amplitude

1=

e free 25 2

1 W ——aiw—{

F1G. 8. According to the velocity form of Thevenin’s
theorem, any complicated vibrator is equivalent to an
ideal velocity vibrator of velocity amplitude equal to e
free, in series with the internal mobility of the vibrator
z.=e free/:i blocked. The force 7 sent through a load of mo-
bility z connected to the actual vibrator is s =c¢ free/(z.+2).
equal to 7 blocked, in parallel with its internal
mobility 2, and the velocit® produced across
any system of mobility 2z to which this vibrator

might be connected is (see Fig. 9)
1 blocked

1z 1z
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Even a complicated portion of a system may be
considered as the vibrator and its internal
mobility determined by observing or computing
its e free and 7 blocked ; the effect of this portion
of the system on the balance of the system can
be computed from either of the formulas given
above. Such a procedure would be advantageous
when one wished to compute the vibration
which a given portion of the system would
produce in a number of different driven systems;
the entire system would not have to be recom-
puted for each trial, only the changed driven
systems.

The reciprocity theorem. If a force of high
internal mobility is connected between terminals
AB of a mechanical system and produces a
certain velocity between terminals CD, it will
produce that same velocity, both in magnitude
and phase, between terminals AB if connected
between terminals CD. Or, if a velocity of low
internal mobility is impressed in series with an
arm X in a mechanical system and produces a
certain force through an arm Y, it will produce
that same force through X if connected in series
with V. These are the two forms of the recipro-
city theorem and permit one to immediately
compute the vibration which will be transmitted
in one direction through a mechanical system

z,

z

'Iktgﬁ%|n

A blocked

F1G. 9. According to the force form of Thevenin's the-
orem, any complicated vibrator is equivalent to an ideal
force vibrator of force amplitude equal to 7 blocked, in
parallel with the internal mobility z,. The velocity e across
a load of mobility z connected to the actual vibrator is
e=1 blocked/(1/2,+1/2).

by a given force or velocity when he knows
how much is transmitted in the other direction.
This theorem is true for vibrations of any wave
form, and for both the transients and the forced
vibration.

The principle of superposition. If a number of
vibratory forces and/or velocities act simul-
taneously in various parts of a mechanical
system, the instantaneous forces and velocities
produced in the different parts of the system are
simply the sum of the instantaneous forces and
velocities which the separate vibrators would
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produce when acting alone. If the frequencies
of all the vibrators are the same, the resultant
force or velocity amplitude at any point is
simply the vector sum of the force and velocity
amplitudes produced by the vibrators when
acting alone. In computing the vibration pro-
duced by one of the vibrators acting alone, the
internal mobilities of the other vibrators must
remain connected in the system even though
these vibrators are not introducing any energy
into the system.

Compensation theorem. If a system is modified
by making a change Az in the mobility of one of
its branches, the force increment thereby pro-

2,=k°Z,

Fic. 10. A lever of ratio %, changes the mobility by a

factor k2.
duced through any arm in the system is equal
to the force that would be produced through that
arm by a compensating velocity acting in series
with the modified branch, whose value is —z4z,
where 7 is the original force through the modified
branch.

Mobility maiching with levers or gears. If we
have given a vibrator of internal mobility
2s=7s+j%s;, we can extract maximum power from
this vibrator by connecting it to a load whose
mobility is the conjugate complex of g, namely
to z=r,—jx,. If the angle of the mobility of the
load is fixed while only the absolute value of the
mobility of the load is subject to choice, maxi-
mum power will be delivered by the vibrator to
the load when the absolute value of the load
mobility equals the absolute value of the internal
mobility of the vibrator; when |z|=]z,|. As
shown in Fig. 10 a massless lever whose arms
have lengths of ratio % : 1, increases the velocity
by a factor k£ and decreases the force by a factor
k, so the mobility looking toward the lever is %2
times the mobility of the load to which the lever
is connected; z;=~%%. Thus a massless lever or
gear can be used to connect the vibrator to the
load, thereby changing the absolute value of the
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load mobility without changing its angle and
bringing about a mobility match which will
cause maximum power to be delivered by the
vibrator to the load; further increase of power

Is

L O~
lel }
n
—ww—] |t
% ! 2 w
=t
VZc

F1c. 11. The elementary problem of the forced vibration
of the parallel mechanical system of one degree of freedom,
the first problem discussed by most books on vibration
(and unfortunately always considered as analogous to a
series electrical circuit).

can be brought about only by resonating the
system by the addition of a suitable excitability.

Examples

The first problem dealt with by most books
is the simple system shown in Fig. 11 wherein a
mass connected to a fixed point through a spring
and supported on a fixed surface by an oil film,
is acted on by a vibrating force. The schematic
diagram shows the elements in parallel since
one terminal of each is the fixed point, and their
other terminals are fastened together. Since
this is a parallel system we can at once write
down the velocity across the system, or the
velocity of the mass, as

;
1 /r+1/(—=j/we)+1/jol

i
1 r i (wc—1/wl)

and the displacement amplitude

s=e/jw.

If |e] and |s| are plotted against the frequency
of the impressed force they yield the familiar
resonance curves of the form shown in the figure;
the velocity resonance curve is symmetrical
when plotted against a logarithmic frequency
scale. The actual velocity amplitude is maximum
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when wc=1/wl giving w,=1/(lc)}. An example of
this kind of a system is not easy to find on an
automobile.

[ |
2

£

Frc. 12. A simple mechanical system, both without and
with resistance, subjected to an impressed vibration.

A more common type of system is shown at the
left of Fig. 12. A massive base which is vibrating
with a given velocity, supports a leaf spring
which carries a mass on its outer end. This might
represent some accessory which is fastened to the
motor by an elastic bracket, or the knob on the
end of the shift lever, or a radio amplifier which
we wish to protect from vibration by an elastic
suspension, or the vibrating element of a tuned
vibration microphone such as is screwed to a gear
test stand in order to indicate the amount of gear
note, or very crudely the center of a door panel
which receives vibration from the door frame.
Since the velocities of the base and the mass are
measured relative to ground, one terminal of
the velocity vibrator and of the mass is shown as
the ground in the schematic diagram, while the
spring has its terminals connected to the movable
terminals of these elements. The mobility at the
point 4 is the mobility of the spring and mass in
series, and the force through the combination is
e e

g1 jel—i/wc

and the velocity of the mass is

T €
ec——:zzc=7,(——) =
wC 1—w?/w,?

If the actual velocity amplitude across the mass
is plotted against frequency of the impressed
velocity, the solid curve shown in the figure is

Where w,=1/(lc)*.
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obtained ; this indicates that below the resonant
frequency the sprung mass vibrates with a
greater velocity than the source of vibration,
while considerably above resonance the sprung
mass has a very low velocity. At resonance the
sprung mass has a very high velocity and the
system reacts on the vibrator with a large force.
If now we add a resistor in parallel with the
spring by making the spring out of rubber or
adding a damping material to the door panel, we
get the system shown. at the right of Fig. 12.
Here again

. € /( 1 J
i=—=c¢ _—
%4 1/r+1/jwl wc)

e.=1(—j/wc).

and

This yields the dotted curve shown in the figure
which indicates that the addition of the damping
has materially reduced the velocity of the sprung
mass in the neighborhood of the resonance
frequency, but at higher frequencies the damping
has increased the velocity above what it was
with a purely elastic spring. (At the higher
frequencies, however, a door panel would
vibrate in more complicated modes so this
analysis would no longer apply to it.)

The mobility method of computation is not
limited to linear vibrations but is equally ap-
plicable to torsional vibrations if the units are
properly chosen. The same symbols can be used
in the schematic diagram, but with the under-
standing that the vibrations in the elements are
torsional. e is the angular velocity across an
element in radians/sec. 7 is the torque through
an element in dyne cm or pound inches. z is the
torsional mobility in rad./sec./dyne cm or
rad./sec./pound inch. / is the torsional compli-
ance in rad./dyne cm or rad./pound inch. 7 is
the torsional responsiveness in the same units as
mobility. ¢ is the moment of inertia in gram cm?
or pound inches?/g (or pound inch sec.?). An
example is shown in Fig. 13 which represents a
six cylinder crank shaft with flywheel. Each
crank and connecting rod has been replaced by
its equivalent disk as explained in the books on
such matters and we wish to compute the oscilla-
tion of each crank and the flywheel due to a
certain sinusoidal component of the torque
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applied to the first crank. The schematic diagram
is as shown in the figure. As in our first example
discussed on p. 379 we start with the mobility
of ¢; and compute the mobilities at successive
junction points until we obtain the mobility at
the driving point at the first crank. We then
compute the forces through the springs and the
velocities of the other cranks and flywheel. In
this example, the computation will be simpler
than in our first example because all of the
mobilities are pure imaginary instead of com-
plex, there being no resistors in ‘the system.
The vibration of the flywheel due to the vibra-
tory torques supplied at all the cranks can be
found by applying the principle of superposition
mentioned above.

Suppose further that we wished to find the
natural frequencies of this crank shaft. At any
natural frequency, any mass can be maintained
in vibration with a finite velocity without main-
taining any vibrating force on the mass. At a
natural frequency, the mobility of any vibrating
mass and the system to which it is connected, is
infinite. Therefore, we can locate the natural
frequencies by computing the mobility of any
point in the system at a number of different
frequencies and noting which frequency makes
the mobility infinite. This is not as difficult
as might at first sight appear since the mobility
changes sign on passing through infinity, so at
least one natural frequency lies between any two
frequencies of computation if the mobilities at
these frequencies are of different sign. There will
be as many natural frequencies as there are

I
2 ] 7 [
4T

k3|
H

Fi1G. 13. The torsional vibrations of a crank shaft may
be analyzed by the mobility method; not only can the
forced vibration be found but the natural frequencies
and normal modes of vibration can be computed.
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active degrees of freedom of the system, six in
this example. When a natural frequency has been
found, the normal mode of vibration can be
computed merely by applying a vibratory veloc-
ity of this frequency to one point in the system
and computing the velocities of the other points.
In this example the lowest natural frequency
results in a normal elastic curve somewhat as
shown in the lower part of the figure, the first
five cranks swinging against the last crank and
the flywheel.

Acoustical Mobility

The mobility method is also applicable to the
computation of the performance of certain types
of enclosed acoustical systems, such as intake-
silencers. Just as the vibration of mechanical
systems is expressed in terms of the force through
elements and the velocity across them, a simple
harmonic sound traveling along the inside of a
tube is described at any cross section of the
tube by giving its sound pressure and its volume
velocity. The sound pressure is the variation of
the pressure at the cross section of the tube above
and below the normal atmospheric pressure, and
the maximum value of this variation is called
the sound pressure amplitude I measured in
dynes/cm?®. The volume velocity is the rate at
which air is flowing through the cross section
due to the sound and the maximum value of this
oscillating quantity is called the volume velocity
amplitude E measured in cm?/sec.

The acoustical mobility Z of an area lying in
the wave front, is defined as the volume velocity
amplitude through the area divided by the
sound pressure amplitude at the area;

Z=E/I, cm%/dyne sec.

The acoustical mobility is the ease of motion of
the air lying in the area, the amount of oscilla-
tory volume velocity produced by unit sound
pressure amplitude.

The acoustical mobility depends on the struc-
ture of the acoustical system lying beyond the
area and on the frequency of the impressed
sound pressure; it can be computed from simple
formulas for a number of structures and combi-
nations of structures. The formulas are simpli-
fied in form if the frequency enters them in the
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form of a wave number & (the number of waves
in 27 cm) which is defined as k=w/c where ¢ is
the speed of propagation of sound in the medium
in cm/sec. Another constant of the medium
which enters the equations is called the specific
acoustic responsiveness of the medium and is
defined as R,=1/pyc where po is the normal
density of the medium in grams/cm?®; for air
R,=0.025 cm3/dyne sec. under average condi-
tions. The acoustical elements are necks, vol-

,—

=% Z= jAR. tankt
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Fic. 14. The concept of acoustical mobility can be
applied to the computation of the effectiveness of an
intake silencer.
umes, and acoustical resistors. In Fig. 14 a neck
and a volume, whose linear dimensions must be
small compared to the wave-length, are combined
into a bottle shaped structure called a Helm-
holtz resonator. The acoustical mobility of the
area which opens into the wall of the volume of
L c¢m3 can be shown to be

ZL =]kL Rs.

The mobility of the area at one end of the neck,
assuming that the other end opens into free
space and calling the slenderness of the neck
C=1/A =length/area, in cm™, can be shown to be

Zc=(—j/kC)R..

The effective length of a neck is greater than its
measured length by an end correction of ap-
proximately =7/4 at each end, where 7 is the
radius of the neck in cm. If now the neck is
connected to the volume to make the Helmholtz
resonator, the air in the neck will move as a
whole due to the sound pressure which might
be applied at its outer end and the volume
velocity E will be the same into the volume as
into the neck, while the applied pressure will
have to overcome the pressure built up in the
volume and the pressure required to overcome
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the inertia of the air in the neck. The mobility
of the combination, looking into the area at the
outer end of the neck, is therefore

1 1 1
Ze—— / ( + )
1/Z+1/Z¢ jELR, —jR,/kC
kLR,
1—RLC

This indicates a very high mobility or resonance
when k=1/(LC)* as shown in the graph of
Fig. 14, at which frequency the air in the neck
will move with maximum velocity and the sound
pressure in the volume will be a considerable
factor times the sound pressure impressed at the
outer end of the neck.

Simple formulas have also been derived for the
mobility looking into the open end of a tube of
constant cross-sectional area 4 cm? and length
I cm (no restriction on / as regards its ratio to the
wave-length). If the tube is closed at the distant
end so as to give perfect reflection

Z=jAR, tan ki.

If the tube is open at the distant end but the
diameter of the tube is small compared to the
wave-length, there will be approximately perfect
reflection at the open end though with change of
phase in the sound pressure, and the mobility at
the sending end will be approximately

Z=—jAR, cot kL

With this much theory we can understand
the principle of the intake silencer which is
shown in its simplest form in Fig. 14. The air
comes through the horizontal tube and flows
in the direction of the arrow into the carburetor,
the pulsations in this flow constituting the sound
which we wish to keep from radiating from the
open end of the tube. A Helmholtz resonator is
arranged as a side branch and so proportioned
that its resonance frequency lies in the midst of
the frequencies to be attenuated. The mobility
of the resonator is therefore much higher than
the mobility of the tube at the right, and the
pulsations flow in and out of the resonator
rather than out of the tube. The resonator is
effective over a comparatively wide range of
frequencies since its mobility is considerably
less than the mobility of the tube over a fairly
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wide range. If the wave-length becomes twice
the length of the tube at the right, the mobility
of the tube becomes high and there is no silencing
action. The principle of the silencer can also
be described by saying that the presence of the
high mobility resonator cuts down the sound
pressure at that point in the system, so that a
smaller sound pressure actuates the tube at the
right. The behavior of this acoustical system
cannot be computed in detail unless the internal
mobility of the sending end of the system to the
left of the resonator, is known either by compu-
tation or measurement. Double resonators are
often used on silencers, utilizing a second Helm-
holtz working out of the volume of the first
resonator. The acoustical mobility of this double
resonator can be computed from these same
principles if the dimensions of the resonators are
small compared to the wave-length.

Methods of experimentally measuring acous-
tical mobility have been developed and can be
used to supplement or replace computation in
design problems. While much more can be
written on this subject, the above outline should
serve to indicate the usefulness of the concept of
acoustical mobility, the acoustical counterpart
of the mechanical mobility. The mechanical
mobility 2z of an area 4 cm? whose acoustical
mobility is Z, is

2=7/A? kines/dyne.

Acoustical mobility has the useful properties
that it is unchanged at a change of cross section
of a tube, and the acoustical mobility of the
combination of a number of systems which enter
a common junction point small compared to the
wave-length, is the sum of their separate acousti-
cal mobilities;

Z=Ir+Z2+Z5+.

In Conclusion

The mobility method has its limitations. It is
not applicable to the detailed computation of the
transient vibrations excited in systems by arbi-
trary impulses; it is limited to the computation
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of forced vibrations or free vibration in normal
modes. It is not so easily applied to systems like
diaphragms, door panels, or stretched strings,
in which the mass and elasticity are distributed
rather uniformly throughout the system; it is
most convenient when the masses, springs, and’
resistors are concentrated. It is not strictly
applicable to systems containing springs whose
force is not proportional to the displacement, or
resistors whose force is not proportional to the
velocity ; were it not for the shock abosrber being
a resistor with force not proportional to the
velocity, the mobility method would be very
convenient for computing the vibrations of the
car body when driving over a road of sinusoidal
contour. Such an analysis of riding qualities
would require one schematic diagram referring
to the vertical motion of the center of mass of
the body, and another diagram referring to the
pitching motion of the body. One must be careful
when applying the mobility method to systems
in which the vibrations are not all in the same
line.

However, the mobility method is particularly
advantageous in computing the forced vibration
of linear mechanical systems, a kind of problem
very important in practice. Those who know
their electrical circuit theory will have noticed
that due to our choice of symbols, the equations
and methods have become of the same form as
those used in electricity, although no reference
is made to electricity in the solving of the prob-
lems. This similarity is helpful in remembering
the equations and methods, although a lack of
knowledge of electricity need not be considered
a handicap in applying the mobility method.
Noting the analogy which exists between me-
chanics as set forth in the mobility method, and
electrical circuit theory as set forth in a book
like Shea's Transmission Networks and Wave
Filters, we may translate the conclusions of that
book into mechanical terms with the assurance
that they apply to évery mechanical system
whose schematic diagram is of the same form
as the circuit diagram given in the book.
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