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A variational method is presented which is used to calculate the energy appearing in the various diffracted
orders set up when a plane wave is incident upon a periodic reflecting surface. Either the first or the second
boundary condition can be so treated. A sample problem is worked showing that if the average absolute slope
of the reflecting surface is small (segments of surface with large slope may be included) and if the displace-
ment of the surface is not large compared with the wavelength of the incident radiation, the formulation
gives results correct to within a few percent. The calculation shows the existence of Wood anomalies; these

are discussed in the paper.

I. INTRODUCTION

HE problem of the reflection of radiation from

nonplane surfaces has in the past received the
attention of many people employing various approxi-
mations in its treatment.’=® It is the purpose of this
paper to present a variational method for the treat-
ment of such problems, in particular those in which the
surface involved has a displacement which is of the
order of magnitude of the radiation wavelength and in
which the surface may have portions of moderately
large slope, though the average absolute slope should
be small. This class of problems is one which is not
amenable to treatment by the methods at present
available.

The method may be described as follows. Following
Trefftz,® a linear combination of known solutions to
the wave equation is chosen to represent the reflected
field. The coefficients will be chosen here so that they
minimize the square of the error in the boundary condi-
tion. (Trefftz chose them so as to minimize the Rayleigh
quotient.) This process of minimization is equivalent
to orthogonalizing the set of functions formed by evalu-
ating the trial functions on the boundary. Once this
set is orthogonalized one can easily construct the
estimates of the reflection coefficients for the surface
involved.

The class of problems to be considered will now be
described. It is desired to find a solution ¢ of the two-
dimensional, time-independent wave equation,
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in a half-space bounded by a periodic surface {(x)
(see Fig. 1). Here { is assumed to depend only on x. In
Eq. (1) k=w/c when w is the angular frequency of the
radiation source and ¢ is the phase velocity in the homo-
geneous medium bounded by {(x). The solution of the
time-dependent wave equation is then given by ¢e**.

Using the method described herein, one may treat
either the first or the second boundary value problem.”
Thus one may require either

¢ (2,8 (x))=0 (2)
or,
0 (x,2) o, @
n |z

Here 8/9n represents the derivative normal to the sur-
face. It is supposed that the incident radiation consists
of a plane wave making an angle 6; with the 4z-direc-
tion; then one can write the total field as the sum of
two components,

¢=0¢it+¢, 4)

(5)

where,
¢i=exp(ik[x sinf;+z cosf; )

with exp(x) =e".
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F1G. 1. Sketch showing the definition of the symbols used
in the solution of the reflection problem.

7 One could use the same method to treat problems where the
boundary condition is of the form [A¢+B(8¢/0n)]t(z)=0
where 4 and B may be functions of # or, in fact, the more general
problem where one is given two different media separated by a
periodic surface and is asked to find the reflected and the trans-
mitted fields.
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The boundary conditions given by Egs. (2) and (3)
are frequently encountered in the treatment of problems
involving acoustic and electromagnetic radiation. For
acoustic problems, the function ¢ may be taken to repre-
sent the (time-independent) velocity potential, with
¢ defined by

v=—V¢ 6)

where v is the particle velocity at an arbitrary field
point (x,z). Then the first boundary value problem,
represented by Eq. (2), corresponds to a physical
problem in which {(x) is a pressure release surface.
Furthermore, from Eq. (6) it is evident that the second
boundary value problem corresponds to the physical
problem in which { () is a rigid surface. For problems
involving electromagnetic radiation on the other hand,
¢ (x) is assumed to be a perfectly conducting surface.
Then for an incident plane wave which has its propaga-
tion vector lying in the x-z-plane and which is polarized
so that the electric vector is perpendicular to the x-z-
plane, one chooses the boundary condition given by Eqg.
(2) where it is supposed that the electric field, which has
but a single Cartesian component, is given by the func-
tion ¢. Finally, for incident radiation polarized so that
the electric field lies in the x-z-plane one lets ¢ represent
the (single Cartesian component) magnetic field and
chooses the boundary condition given by Eq. (3).

II. REPRESENTATION OF THE REFLECTED FIELD

In order to. make progress toward a solution of the
foregoing class of problems, Rayleigh® and others®1®
have chosen to represent the reflected field by an infinite
set of plane-wave solutions of the wave equation. In
addition to homogeneous, one must choose inhomo-
geneous waves. The waves must be chosen in such a way
that they are either outgoing or exponentially damped
as z—— oo, Furthermore the fact that the boundary is
periodic implies that one needs only a discrete set of
such waves. Thus, one is led to expect that the reflected
field ¢ can be represented by the following type of sum:

> A, exp[—ik sinf,x—ik cosd,z] @)

where
sind, = vK/k—sing;;
cosf,=[1—sin%, J}, (8)

where K=2x/A (see Fig. 1), and where the coefficients,
A,, are to be determined through the use of the bound-
ary condition. The angles 8, of the various reflected
orders are just those obtained from the ordinary grating
equation.

Lippmann! has questioned the validity of the repre-
sentation given by the expression (7) in the region

8 Lord Rayleigh, Theory of Sound (Dover Publications, New
York, 1945), second edition, Vol. 1T,

sy Fano, Phys. Rev. 51, 288 {193??

0K, Artmann Z. Phys&k 119, 529 (1942).
1R, A Llppmann, J. Opt. Soc. Am. 43, 408 (1953).
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tM<2<{(2), at the same time confirming its validity
in the region z<{*. The ¢¥ is defined as the maximum
displacement of the surface (see Fig. 2).

By using the Helmholtz formula®? to represent the
field, and upon utilizing Sommerfeld’s contour integral
representation for the Hankel function appearing in
that formula, one arrives at the following representation
for the reflected field :

¢ (P)= 2. A, exp[—ik sindxp—ik cosBzp], (9)

=0

when zp—{*# <0, and where

y K fA[ 1 ds,a¢(1)]
l’n';rkcf)sl),, 0 41 dx, Oy

Xexpli sin kxi-ik cosf (x1) Jdx1

(10)

Further

¢.(P)= 3 {A,(2p) exp[ —ik sind,xp—ik cosf,zp ]

+A4,%(zp) exp| — ik sinf,xp+1k cosfzp 1}, (11)
when {M <zp<{(x), where,
K 1 ds:8¢(1
A (zp)= f [___i )}
mk cosf,v = 4idxy 9n
Xexpl'i sind,kxFik cosf.f (x1) Jdxy  (12)

and with C*(zp) defined in Fig. 3. The symbol 8/d»,
represents the derivative with respect to the outward-
drawn normal (see Fig. 2). The (xp,3p) are the rectangu-
lar coordinates of (P).

The plausibility of the assertions made above con-
cerning the reflected field now becomes evident. From
Eq. (9) it is seen that when the point (P) is removed
from the surface, the reflected field is composed .of
plane-wave solutions which either proceed in the nega-
tive z-direction or die out exponentially in that direc-
tion. Furthermore, when {¥<zp<{(xp) one sees from
Eq. (11) that the field may be represented in a form

Z
4 ds -
-»—A-—o1 /§(X) \' M v )
T ™
fw

(P)

Fr6. 2. The figure shows the symbols used in the
Helmholtz formula and subsequent development.

'z Baker and Copson, see reference 1, Chaps. T and II.
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which appears to be a combination of waves moving
in both the plus and the minus z-directions with coeffi-
cients dependent upon zp. Of course in the latter case,
individual terms of the series are not solutions of the
wave equation.

For certain problems it may turn out that the repre-
sentation given in Eq. (11) is merely an alternate (and
more complicated) form for the representation of the
type given by Eq. (9). Indeed this is the case for one
special problem which can be solved exactly. The
problem is one in which the field satisfies the boundary
condition given by Eq. (3). It is supposed that the
incident wave falls normally upon one of the faces of
the representative groove form (see Fig. 4) ; in the figure,
n is an integer. The reflected field for this problem
obviously consists of a single plane wave moving
in a direction opposed to that of the incident wave
and with amplitude unity. This solution is valid in the
entire region z <¢.

To summarize the work in this section, it is evident
that for some problems one can represent the reflected
field by a sum of plane waves proceeding in the negative
z-direction even in the region {¥ <z<{(x). However,
although to the author’s knowledge an exact solution
indicating the necessity of using a more complicated
representation of the type given by Eq. (11) is lacking,
it seems reasonable to suppose that in general the plane-
wave representation is not sufficient in the region near
the reflecting surface.

III. VARIATIONAL METHOD
It will be convenient to define

¢r=¢rP+¢rNP; (13)

where
¢,p=— 2. A,exp[—iksinbx—ik cosf,z], (14)
pu—°0

valid in the region z <{(x) with 4, constant, and ¢.np
represents that part of the reflected field which cannot
be written in that form. For the purposes of the present
paper, attention is restricted to those problems for
which

|penvp| L|Drp|. (15)
Lippmann and Oppenheim’® have proposed a sufficient
Z
A
A
TNCECT, —=X
/ P
4

E cHz,)

Fic. 3. Diagram defining the contours C*(zp).

BB, A. Lippmann and A. Oppenheim, Technical Research
Group, 56 West 45 Street, New York 36. Final Report on Con-
tract No. AF18(600)-954.
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Fi1G. 4. Figure showing a simple reflection problem
which can be solved exactly.

condition for the validity of the relation (15). It is:
[$¥] /A1, (16)

when A and X are of the same order of magnitude. The
results given in Sec. IV make it evident that this
condition is too restrictive for the present work,
probably because of the minimal formulation of the
problem.

It is possible, through a detailed consideration of the
images contained in the region {(x) <z <0, to estimate
the function ¢,~p using a method essentially the same
as that outlined below. Problems for which such a
treatment is necessary will be considered in a later
paper. In order to simplify notation it will be assumed
hereafter that ¢.vp=0. Furthermore, only the first
boundary value problem [the boundary condition is
given in Eq. (2)7] will be considered in detail. It is not
difficult to alter the formulation for the second bound-
ary value problem.

To proceed, upon using Egs. (2), (4), (5), (13), and
(14) one finds the following relation for the deter-
mination of the constants 4,:

exp (tk[sinf x4 cosh ¢ () ])

— 3 A, exp(—ik[sinfa+costf () ) =0 (17)
and upon applying Eq'. (8), and dividing by the common
factor exp(ik sinfx), this becomes
exp[ ik cosf¢ (x)]

— S A, exp[—ivKw—ik cosdt(®)]=0. (18)

To render the treatment of Eq. (18) more systematic let

Fi(x)= €xp )
Fy(x)=exp(l)
F3(x)=exp(—1)
Fy(x)=exp(2)
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and _
A=4y
41=Al
A3=A_1

(19)
where, in Eq. (19),
exp(v)=exp[ —ivKx— ik cosb,¢ (x)];
further let
.= exp[ik cosf (x)]. (20)
Then Eq. (18) becomes,
bi(x)— 3 AxFi(x)=0. (21)

k=1

If the series in Eq. (21) is broken off after the Nth
term, as must be done in many problems, the left side
of that equation is not in general equal to zero. It is
proposed that in such a case, the constants A be chosen
in a way such that the integral over the surface ¢ of the
absolute square of the left side of Eq. (21) is minimized.
Since all quantities in that equation are periodic with
period A, it is sufficient to carry the integral from x=0
to x=A. It is easily seen from Eq. (17) that this
minimization is equivalent to carrying out the corre-
sponding minimization of the error in the boundary
condition. It is not difficult to show that if one chooses
the coefficients A so that they satisfy the set of equa-
tions (with/=1,2,--- \N)

N
2 Ap(FFi)= (Fl#i;i) (22)
k=1
when the inner product of two functions, (gk), is
defined by

1 A
== ghis, (23)
Avy

then the foregoing indicated minimization is accom-
plished.

Rather than approach the inversion of the set of Egs.
(22) directly, it has proved convenient for the purposes
of computation to use an equivalent though less direct
method. To see this method, let Eq. (21) be considered
again. One observes that the problem is equivalent to
finding that linear combination of functions F, which
is equal to the given function ¢:.1¢ Thus functions Fy,
are not in general mutually orthogonal. This suggests
that one proceed by constructing an orthonormal set
of functions from linear combinations of the given set
F;. There is a well-known method for doing this.'®

U Setting ¢rwvp [of Eq. (13)] equal to zero is equivalent to
assuming that this is possible.

16 For a reference concerning representations in terms of sys-
tems of functions see R. Courant and D. Hilbert, Methods of

Mathematical Physics (Interscience Publishers, Inc., New York,
1953), Vol. I, Chap. I, Secs. 2 and 3.
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Let the desired orthonormal set be Gi; then one can
write

k
Gk= Z Fl(k)FI,

=1

(24)

with
(Gm,G'n) = 6mn

when 8., is equal to one or zero depending on whether
or not m=n and where the coefficients I';*) are deter-
mined as follows. Let G, be equal to F, divided by its
norm. The norm of F is defined as (F1,F1)}. One then
takes that linear combination of F; and F. which is
orthogonal to G, divides it by its norm and sets it equal
to Ga. Upon proceeding in this way the following
recursion relations for the coefficients in Eq. (24) are
easily obtained:

vit®
T®= (25)
N
where
k=1 8
1<k, viP=— 3% 3 TO¥F,F)r,®, (26)
B=1 a=1
=k, vP=1
and where
k k
Ni= 2 X v @*F,F)v®, (27)
u=l =1
when the star indicates the complex conjugate.
Now let
) N
M (x)= 3. BiGi(x), (28)
=1

where ¢:") represents the Nth approximation to ¢
and where By are defined by

Bi=(Gr$:) (29)
or upon using Eq. (24),
k
By= 2 Fa(k)*(Fay‘si)- (30)
o=l

Then by using Eq. (24) in connection with Eq. (28)
one can write,

N
M (x)= 3 Ay'Fy (31)
k=1
when
_ N
A= Y BJ,@®@ (32)
a=k
That _ _
A=A (33)

where A; are defined implicitly in Eq. (22) can be seen
by observing that the B; as defined in Eq. (29) are
the Fourier coefficients of the function &; with the set
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Gy 1t follows then that the quantity

1

A
[ g gy 39
Ay

is minimized and therefore that the coefficients A}/,
as obtained from the coefficients By in Eq. (32), must
also minimize the expression (34). But Eq. (22) govern-
ing the quantities A; was obtained by minimizing the
quantity Eq. (34). Hence Eq. (33) must follow. Indeed
one can verify Eq. (33) directly by substituting Eq.
(32) in Eq. (22).

One of the advantages of the foregoing procedure
toward the solution of Eq. (22) is that one obtains an
estimate of the error incurred by breaking off the
infinite system of equations at N, this error being
combined with the error involved in the assumption
that ¢,yp=0. The estimate is obtained in a way
similar to that by which one ordinarily obtains Bessel’s
inequality.!® One finds that

1 po N
—f 6= ida=Gof)~ T |Blt (3
[}

A k=1

or by observing the definition of ¢; given by Eq. (20),
N
M.S.E.=1— 3 |B:|? (36)
k=t

where M.S.E. stands for the mean square error in the

boundary condition [the expression (34)]. The error

arises both as a result of considering only a finite

number of diffracted waves and as a result of neglecting

¢rNP‘

There is a relation which follows from the conserva-
tion of energy which can also be used as a check on
the accuracy of the calculation. By considering the
energy balance within the region of the x-z-plane
bounded by {(x), =0, x=A, and z=—C, where C is
large and positive, one obtains the following relation
for the exact solution:

cosf;= 3 cosh,| 4,]? (37
14

where the summation is carried over those values of

y for which cos, is real and where the notation of

Eq. (14) is used again, remembering the changes made

by Eqgs. (19). .

A third relation which can be used to check the
accuracy of the calculation arises from the reciprocity
theorem.'® To obtain this expression one treats first the
problem of the reflection of radiation from a periodic
surface which is finite in extent in the x-direction, using
the Helmholtz formula. This problem is then compared
with the corresponding problem involving an infinite
periodic surface. By allowing the finite surface to
extend to greater and greater distances in the x-direc-

16 See reference 8, Vol. 2, Sec. 294,
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F16. 5. Figure showing the type of surface for
which computations have been made.

tion, one finds the following relation governing the
plane-wave reflection coefficients,

cosf, A ,(8;) = cosb;4,(6,), (38)

where 4,(6;) represents, as before, the reflection coeffi-
cient of the vth order wave but with the incident direc-
tion explicitly indicated. From Eq. (38) it is seen that
the zeroth order (specular component) should be
symmetrical about 6;=0, regardless of whether or
not the surface is symmetrical.

To sum up the results of this section, one uses Eq.
(32) to obtain estimates of the reflection coefficients of
the various diffracted waves. The quantities B; are
defined in Eq. (30). The quantities I';*® which are also
needed are defined in Egs. (25), (26), and (27). Finally,
it is a simple matter to alter Egs. (30), (25), (26),
and (27) for the second boundary value problem.

IV, RESULTS OF CALCULATIONS AND CONCLUSIONS

Calculations based upon the method presented in
the foregoing have been carried out for surfaces of the
class shown in Fig. 5, and for the first boundary value
problem. Hence, since the field function vanishes at
the surface in such a case, the solutions are appropriate
for acoustic problems involving free surfaces or for
electromagnetic problems involving incident energy
polarized with electric vector perpendicular to the page
in Fig. 5.

In the figure three representative reflected wave
directions are shown, although they have not been
chosen to fit any particular case.

The surface was chosen for calculation for two
reasons. First, it is of some physical interest. The sea
surface assumes a shape reminiscent of that shown in
the figure under conditions of high wind, so that
the treatment of the problem may be helpful in
attaining an understanding of the distribution of
acoustic or electromagnetic energy reflected from such
a surface. Furthermore, the surface is of the type
known as an echelette grating which is used in optical
and infrared spectral work. The second reason for
choosing the indicated type of surface for the calcula-
tions is that the calculations are somewhat simplified.
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The integrals shown in Eq. (23) can be evaluated in
terms of exponentials when the surface is composed
of straight line elements.

The entire problem, starting with the calculation of
the inner products (Fi,F.) and (Fi@;) through the
calculation of the quantities T';*® and including the
calculation of the estimates of the reflection coefficients
Ai(or A,) has been programmed for MIDAC, the
University of Michigan digital computer. The cyclical
form of the central part of the calculation, the central
part being the computation of the quantities T',®
given by Egs. (25), (26), and (27), renders the formula-
tion easily adaptable to a digital machine. The capacity
of the machine limited the calculation to ten diffracted
waves (N=10).

For the calculation presented in Fig. 6 a surface of
the type shown in Fig. 5 was chosen with ¢ =10° and
with A=1.155\. This ratio of A to A implies that for a
given incident angle, at most three diffracted orders
appear. The plus second diffracted order never exceeds
0.38%, and is too small to show on the graph. It is
noted from Fig. 6(a) that the energy deficit of the
calculation [as computed from the right side of Eq.
(37)] averages about 2.59, and never exceeds 59;
furthermore, the M.S.E. is less than 0.025. From these
two checks, it seems reasonable to expect that the
error for a given order is less than 59, (of its value).
It is seen that the calculation is more accurate for
incident angles nearer grazing.

As suggested in Sec. ITI, the reciprocity relation can
also be used to check the accuracy of the calculation.

o

1 1 ! |
30° 0° -30° -60°
INCIDENT ANGLE, 8;

Fic. 6(a). The solid curve shows 1-M.S.E. (where M.S.E. is
the mean square error in the boundary condition). The dashed
curve shows the ratio of the total calculated, reflected energy to
the incident energy.
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F16. 6(b). The curves show the fraction of the total incident
energy which is contained within a given diffracted order when
a plane wave is incident upon the periodic surface with an angle,
measured from the normal as indicated by the abcissas. The
reflecting surface is described by ¢ =10° and A=1.155x.
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It was deduced from Eq. (38) that the reflection
coefficient for the zeroth order should be symmetrical
about the normal. It follows then from the energy
relation given by Eq. (27) that the percentage of the
total incident energy in the zeroth order should also
be symmetrical. It is seen from Fig. 6(b) that this order
is symmetrical within a few percent, the assigned error.
All other reciprocity checks carried out also agree
within a few percent. For instance one should have,

c0s60°41(0°) = cos0°4:(60°), (39)
and
c089°8’41(45°) = cos45°4,(9°8'). (40)

Actually, the numbers from the calculation are —0.1485
+0.1449; and —0.15624-0.1525¢ for the left and right
sides of Eq. (39), respectively; —0.17874-0.2312¢ and
—0.17354-0.22427 for the left and right sides of Eq.
(40), respectively.

From Fig. 6(b) it is seen that the main part of the
reflected energy is carried by the zeroth, or specular
order. This component never drops below 809;.

>
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NUMBER OF TERMS IN APPROXIMATION

F16. 7. The graph shows the successive approximations to the
energy contained in the various orders appearing when a plane
wave is normally incident upon a surface with ¢=10° and with
A=1.23\. The total calculated energy is also shown.

Discontinuities of the type shown in the zeroth order
at §=~=-8° are known as Wood anomalies!” and have
often observed experimentally for perpendicular-polar-
ized radiation. Rayleigh'® showed that the positions of
the anomalies were connected with those angles at
which diffracted orders appear. Both Wood and
Rayleigh concluded that the anomalies appeared only
for (electromagnetic) radiation incident with electric
vector perpendicular to the generating element of the
reflecting surface (the second boundary value problem)
and that for parallel-polarized radiation no such
anomalies occurred. Recent work by Palmer® has shown
that the anomalies can occur for parallel-polarized
radiation as well. Palmer concluded however that in
this case the anomalies would not appear for shallow
surfaces, where the angle ¢ is small. The present
calculation shows that they are to be expected even

17 R. W. Wood, Phil. Mag. 4, 396 (1902).
18 Lord Rayleigh, Phil. Mag. 14, 60 (1907).
1 C. H. Palmer, Jr., J. Opt. Soc. Am. 42, 268 (1952).
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TasLE I. A comparison of the results of the Kirchhoff formulation with those obtained using the variational method for normal incidence.

Theory Zeroth Plus first Minus first Total energy
Kirchhoff —~0.248 +0.720; 0.1900—0.313: ~0.1397+4-0.1546:¢ 67%
Variational —0.1875+40.879:; 0.297 —0.290; —0.09164+0.329; 95%

for such surfaces, although the effect here is not large,
about 59.

It is to be remarked that the problem of calculating
the shape of the anomalies has proved difficult in the
past. It is seen in Fig. 6 that the anomaly shows a sharp
edge on the side where a new order first appears, as is
often observed experimentally.!® Existence of this edge
is connected with the fact that the energy contained
within an order falls off rapidly as the angle of the
order approaches 90° (as the order disappears). In fact
it can be shown through the use of a perturbation
treatment such as Rayleigh’s? the treatment being
useful for near grazing incidence, in conjunction with an
application of the reciprocity theorem'® that it is to
be expected that the slope of the curve is infinite at
this point. Indeed it is just this discontinuity, and its
attendant effect upon the other orders through the
conservation of energy requirement, that gives rise to
the Wood anomalies.

It is of interest to compare the results of the present
calculation with those obtained for the same problem
using other methods. One might first consider Rayleigh’s
perturbation treatment. However it turns out that the
method, at least in first order, is not applicable, since
one requirement for its validity is that 2#<<1 whereas
here k{¥~1. Secondly, one might consider using
Kirchhoff’s approximation.! The results obtained using
this approximation are essentially the same as those
obtained from Eckart’s* and Brekhovskikh’s® formul-
tions. Kirchhoff’s method gives results which are
considerably in error. For example the complex reflec-
tion coefficient using Kirchhoff’s approximation is

compared with the corresponding results using the
present formulation in Table I. The surface chosenis
the same as that used in Fig. 6.

Finally, the question of the rate of convergence of
the calculation is taken up. In Fig. 7 are shown the
successive approximations to the values of the reflection
coefficients, as each new diffracted wave is introduced
in the calculation. It seems to be reasonable to deduce
from the results shown that including more terms (more
diffracted inhomogeneous plane waves) in the calcula-
tion is not likely to significantly improve the result.
One then concludes that the residual error arises from
the incomplete form of the representation of the
reflected field, as explained in Sec. II. Hence, further
improvement can be expected only through the intro-
duction of images in the region {<z<0. However, it
seems that for surfaces whose average absolute slope
is small (sections of surface of large slope may be
included) and whose maximum displacement is not too
many wavelengths, the formulation as presented is
accurate to a few percent.
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