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OBJECTIVES

The objectives of this study are:

‘To quantify the effects that the various chemical and physical pro-
cesses have on emission characteristics of exhaust thermal reactors
installed on selected typical engines operating at various condi-
tions on a dynamometer test stand.

*To obtain concentration measurements of pertinent chemical species
and classes at the entrance to, within, and at the exit from thermal
reactors, and from this data to determine gross chemical reaction

rates.

*To obtain information which will be helpful in predicting the design
of gasoline engine exhaust reactors.

*To develop a computer model for thermal reactors.

viii



INTRODUCTION

The approach taken in this study deviates somewhat from that described
in the original proposal. Originally, the intent was to follow an elemental
volume of exhaust gas from the time it left the exhaust valve to the time it
entered the atmosphere. Chemical and physical measurements on this volume
were to be resolved both spatially and temporally. However, the study is now
being directed towards obtaining needed new reaction rate data for pertinent
chemical classes and species using an experimental well-stirred two-tank reac-
tor system. This information will be used in a computer simulation to predict
reactor performance under a variety of conditions, including time varying in-
puts. Therefore, emphasis is being placed on determining gross rate constants
for CO, Oy, total HC, and possibly hydrocarbon classes, taking into account
the residence time distribution of these species within the reactor.

A computer model is being developed to simulate the overall chemical
kinetics of the reaction processes in the engine mounted reactor, using the
rate data obtained from the experimental two-tank reactor mentioned above. A
first generation model has been developed which used rate data found in the
literature. This model will be updated as soon as rate constants and
residence time distributions are experimentally determined from measurements
on the experimental reactor. The current computer model has already brought
out the need for better rate data and for more accurate experimental determi-
nations of input enthalpy. This latter factor has brought about an increased
effort to experimentally determine instantaneous exhaust velocity and temper-
ature measurements.

Current major efforts are now primarily in the following areas:

(a) Experimental determination of the performance of the engine
mounted DuPont reactors.

(b) Preparation of the two-tank reactor system for preliminary
operation.

(c¢) Further development of the computer model.

(d) Experimental determination of instantaneous exhaust gas
velocity and temperature.

(e) Development of a system for the experimental determination
of residence time distribution within the experimental
reactor.



DETATLED PROGRESS PHASE T

A. Multicylinder "Conventional"” Reactor

ENGINE~REACTOR SYSTEM

At the outset of this program, conversations were held with represen-
tatives of various automotive and petroleum companies regarding engines
and "conventional" manifold reactors appropriate to The University of
Michigan study. Those contacted included General Motors, Ford, Chrysler,
DuPont, Ethyl, Mobil, Texaco, and Chevron. Visits were made to General
Motors, Ford, DuPont, Mobil, and Texaco laboratories. As a result of
these discussions, a decision was made to focus on the Chevrolet 350 in.5
coupled with the DuPont type V thermal exhaust reactor.

A 350 in.” V-8 engine, donated by the General Motors Corporation, was
received and set up for dynamometer testing. Table I lists the manufacturer's
specifications for the engine. This engine was selected because it would
remain in production for some years, because it is the largest volume pro-
duction V-8 engine and because DuPont reactors were readily available for
this engine. Figure 1 shows the engine installed for test in Room 243 of
The University of Michigan Automotive Laboratory. The standard vehicle
exhaust system was installed.

TABLE I

CHEVROLET ENGINE CHARACTERISTICS

Model year 1969

Displacement 350 in.

Compression ratio 9.0:1

No. of cylinders 8

Bore 4,0 in.

Stroke 3.48 in.

Con. rod length 5.7 in.

Firing order 1-8-4~3-6-5-7-2
Fuel specification regular

Carburetion Rochester 2-bbl
Bmission control ATR

Rated power 255 BHP at 4200 rpm
Rated torque 365 1b ft at 1600 rpm
Exhaust opening 66° BBC

Exhaust closing 32° ATC

Intake opening 16° BIC

Intake closing T0° ABC

Left exhaust manifold 13 1b/64.6 in.>
Right exhaust meinfold 13.25 1b/73 in.5
Fxhaust port volume %.66 in.”/cyl



Type V reactors and appropriate modified engine parts were procured
from the DuPont Corporation. The DuPont reactors were selected because they
appeared to be the most effective exhaust manifold thermal reactors avall-
able at the time. Figure 2 shows a schematic of the standard type V reactor.
The reactor consists of an outer shell in which 1ls mounted a tubular core
and a radiation shield to insulate the hot core from the cooler outer shell,
Air is injected into each exhaust port. The exhaust gas-air mixture is
swept into the reactor core during the exhaust stroke as the arrows suggest.
When conditions are favorable vigorous chemical reactions occur which convert
hydrocarbon and carbon monoxide compounds to carbon dioxide and water vapor.
The hot reacting gases then flow around the radiation shield into the exhaust
system. Figure 3 shows a cutaway reactor. References 1, 2, and 3 describe
reactor characteristics and performance in more detail.

TABLE IT

DuPONT TYPE V REACTOR CHARACTERISTICS

Year received 1969

Overall length 21.375 in.
Overall diameter (exc. port) 5.5 in.

Overall internal vol, flange-to-flange 259 in.2/reactor
Inner core volume 60 in.5/reactor
Weight 26 1b/reactor
Primary material 310 stainless
Meximum recommended core temperature 1750°F

An engine modification required for optimum reactor operation involves
the intake manifold heating system. The conventional exhaust gas crossover
passage entrances are blocked. Instead, hot water is routed to the cross-
over. This conserves exhaust energy while providing manifold heat. An
intake manifold properly modified wag supplied by DuPont. This manifold is
shown in Figure 5.

One of the reactors received by The University of Michigan was modified
to accept quartz windows at the center of each end of the reactor. This
provides a straight optical path through the hot core. One window is large
enough (1-3/4 in. dia) to allow a visual inspection of the combustion process.
The location of the large quartz window is apparent from Figure 5. The
other window is smaller (3/L in. dia).

INSTRUMENTATION

In order to analyze the effectiveness of the engine-exhaust thermal
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reactor system, various pieces of instrumentation were assembled. Engine
power was measured by a Westinghouse 200 hp electric dynamometer. Fuel flow
was measured by a General Motors displacement-type burette system. Fuel-
air ratio was controlled by pressurization or evacuation of the carburetor
float bowl. Air flow was measured by a General Motors rounded edge orifice
ailr cart and a Meriam micro-manometer. Thermocouples were used to measure
various critical engine temperatures. Exhaust temperatures were monitored
by unshielded immersion thermocouples purchased from Industrial Instrument
Supply Corporation. A large tank was mounted above the engine to mini-

mize pulsation effects. A Kistler Model 601A quartz pressure transducer was
installed in cylinder No. 1 to measure cylinder pressure. A second Kistler
Model TOlA quartz transducer was installed at the exhaust manifold outlet

to monitor exhaust system transient pressure. Mercury manometers were used
to measure the intake and exhaust system average pressures. Continuous gas
sampling taps were installed at each exhaust port, at the exhaust wye, and
at the tallpipe. An overview of the engine and instrumentation 1s shown in
Figure 1.

Gas Analysis

Gas analyses were made with a variety of instrumentation. Table IIT
lists this equipment. The Op analyzer as well as nondispersive IR analyzers
for CO, COp, NO, and HC have been incorporated into a large semi-portable
cart—which can be seen in Figure 1. A schematic of this cart is shown in
Figure 6. The subtractive column analyzer and flame ionization detector
have been combined in a smaller portable cart. Figure 7 shows a schematic
of this system. Air Central, Incorporated Model No. 08-800-71 diaphragm gas
pumps are used to draw the samples.

BASELINE ENGINE EVALUATION

After obtaining the engine and setting up the instrumentation, an eval-
uation was made of the unmodified production 350 in.J Chevrolet engine,
Both performance and emission data were measured. Road load engine horse-
power was calculated. The results are shown in Figure 8 based on assumptions
listed in Table IV. The baseline engine was evaluated at several speed
and load points. A majority of data was recorded around a speed of 1200 rpm
and load of 30 hp. (130 ft-1b torque) which is about 50% of full load at
30 mph. This corresponds to about 12 in. of manifold vacuum. Thus it is
somewhat typical of accelerations on the Federal Test Procedure (9). Air/fuel
ratio, spark timing, speed, and load were varied about this 1200 rpm set
point. The emission results are plotted in Figures 9-24 and tabulated in the
Appendix. ©No correction for dilution or non-chemically correct operation is
applied. Performance data for these tests is tabulated in the Appendix also.



TABLE IIX

GAS ANALYSIS TECHNIQUES

Specie Technique Manufacturer Range
Carbon monoxide NDIRi’g Beckman Inst. Model 315A 0-10%
Carbon dioxide I\TDIRl’5 Beckman Inst. Model 315A 0-15%
Nitric nxide NDIRl’ Beckman Inst. Model 315A 0-4000 ppm
Hydrocarbon NDIR Beckman Inst. Model 315A 0-1000 ppm
Hydrocarbon FIDH Beckman Inst. Model 109A 0-3000 ppm
0o Amperometric Beckman Inst. Model 715  0-5} or 0-2%
Aldehydes DNPH? Wet chemical and Bausch

& Lomb Spectronic
20 spectrophotometer
Hydrocarbon Subtractive
classes column plus FID6
Individual Gas chromatograph  Perkin-Elmer 800
hydrocarbons
Hydrogen Thermal conductivity Instrument under
construction
1. NDIR - Nondispersive infrared.
2. Orsat used as check of calibration gases.
3. Modified Saltzman used as check of calibration gases.
4, FID - Flame ionization detector.
5. DNPH - Dinitrophenylhydrozone wet chemical method--colorimetric procedure

(References 5, 6, 7).
6. Subtractive column technique according to Sigsby, (Reference 8) Additional
discussion in this report under Detalled Progress Phase III.



TABLE IV

ENGINE ROAD LOAD HORSEPOWER CALCULATIONS

(1969 Chevelle with 350 in.3 Engine)
Vehicle Information¥

Weight including 600 1lb test load, W 3945 1b
Frontal area, Ag 21.6 £t2
N/V ratio with 2.73 axle and powerglide 36.4:1
Coef. of rolling resistance, C, .O17
Coef. of air resistance, Cgy .0013
Driveline efficiency
mph 10 15 20 25 30 35 Lo L5 50

Efficiencies .81 .817 .82 .819 .821 .824 .825 .823 .825

Calculations

v 2
[c xW + Cyx A, x V]

Road load hp 75

Il

1]

L [.017 x 3945 + .0013 x 21.6 v2]
575
where V is vehicle speed in mph
Engine hp Requirement = Road load hp/driveline efficiency
Engine rpm = mph x N/V

= mph x 36.4

Results are plotted in Figure 8.

*
Courtesy Chevrolet Division, General Motors Corporation.



A. Air/Fuel Ratio

Flgure 9 shows the emission concentrations of CO, COQ, 05, and NO as a
function of air/fuel ratio. Engine conditions were 1200 rpm, 30 BHP and MBT
spark. Indolene clear fuel was used. Hydrocarbon emissions as hexane are
shown in Figure 10. Both NDIR and FID readings are shown. Aldehydes,
measured by the DNPH method, are also plotted in Figure 10. These data com-
pare favorably to those in the published literature.

Figure 11 shows the CO, NO, and FID hydrocarbon emissions on a mass
basis. The parameter used is brake specific emission rate (BSER), pounds
of emission per bhp-hr. The pounds of emission per pound of fuel termed
fuel fraction emission rate (FFER) is also plotted. Figure 12 shows the
class analysis results from the subtractive column analyzer. Note that the
percent paraffins decreased slightly and the olefins increased slightly as
the mixture was leaned. Aromatics remained about constant. No comparable
data exist in the literature. One must keep in mind that the subtractive
column results include acetylene with the olefins and approximately half
the benzene with the paraffins.8 Additional verification of the subtractive
column analyzer by gas chromatography will increase our confidence in these
results. The Appendix includes a data summary for this test series.

B. Spark Timing

Flgure 13 shows the emission concentrations of CO,, NO, Oy, and CO as
a function of spark timing. BFEngine conditions were 1200 rpm, 30 BHP, and
approximately 15.4:1 A/F ratio. Indolene 30 fuel was used to avoid knocking.
Note that NO increased linearly with spark advance. Figure 1h4 shows the
FID and NDIR hydrocarbon emissions. Aldehyde measurements were not recorded
for this test. These data compare favorably with data published in the
literature. Figure 15 shows the BSER and FFER for the CO, NO, and HC emis~
sions. Figure 16 shows the class analysis results from the subtractive
column analyzer. Note that aromatics were nearly constant whereas paraffins
increased and olefins decreased as the spark was advanced. No comparable
data exists in the literature. The Appendix includes a data summary for
this test series.

C. Engine Speed

Figure 17 shows the effect of engine speed on 002, NO, CO, and O,
concentration emissions. Engine operating conditions were 30 hp, MBT spark
and about 14.8:1 air/fuel ratio. Indolene 30 test fuel was used. Under
these optimized constant load conditions NO decreased linearly with speed.
Figure 18 shows the hydrocarbon emissions. Both measurements decrease with
speed increage. These concentration readings compare favorably with litera-
ture values. Figure 19 shows the BSER and FFER rates. The apparent decrease
in CO mass emission rate results from the lower CO concentration at higher

7



speeds. Figure 20 shows the hydrocarbon class analysis versus engine speed.
Paraffins decrease and olefins and aromatics increase slightly at higher
speeds. No comparable literature values exist. The Appendix includes a
data summary for this test series.

D. Load

Figure 21 shows the effect of load on COy, CO, O,, and NO emission.
NO increases with load at a decreasing rate. At light loads CO and O,
increase and COs decreases slightly. ZEngine conditions were 1200 rpm, MBT
spark and about 15.8:1 air/fuel ratio. Indolene 30 fuel was used. Figure
22 shows hydrocarbon and aldehyde emissions. Incomplete combustion at loads
lighter than 30 ft-1b did not increase aldehyde emissions significantly.
These data compare favorably to thosein the published literature. Pigure 23
shows BSER and FFER emission parameters for this test. Finally Figure 24
shows a class analysis. At light loads the class analysls approaches that
of the Indolene fuel itself. No comparable data exists in the literature
regarding class analysis. The Appendix includes a data summary for this
test series.

B. Experimental Reactor Study

OBJECTIVES

The experimental reactor was included in the program to permit a critical
examination of those parameters affecting changes in the chemical composition
of an elemental volume of exhaust gas as it passes through an exhaust reactor.
Discussions among those involved in the study reflected the opinion that
global reaction rate constants for the disappearance of certaln compounds
and/or classes of compounds in a perfectly mixed reactor were the most criti-
cal unknowns in reactor modeling. Thus the primary emphasis of the experi-
mental reactor program has been placed on designing a system to permit the
determination of these rate constants. An attempt will be made to account
separately for the imperfect mixing effects expected in production vehicle
reactors.

Factors of possible importance in addition to reaction rates in perfectly
mixed systems, such as the composition profiles, flow rates, and mixing
rates in the exhaust pulses, have also been studied to some extent with a
separate system, a linear reactor. This work, which corresponds closely to
that anticipated at the outset of the project, will be discussed in a fol-
lowing section.



GENERAL REQUIREMENTS OF STIRRED TANK SYSTEM

The stirred tank experimental reactor is to provide kinetic data for a
perfectly mixed system. Basically this requires that air and exhaust gas of
measured composition flow steadily at measured rates through a highly stirred
reactor having a known and uniform pressure, temperature, and composition.
Means must be provided to independently vary the inlet composition, relative
exhaust and air flow rates, overall flow rate, and reactor temperature.

The design features incorporated to achieve these objectives are described
in the following section.

GENERAL DESCRIPTION OF STIRRED TANK SYSTEM

The stirred tank system, which will also be called the two-tank system,
is sketched in Figure 25. This system will be attached directly to the
exhaust port of a propane fueled single cylinder CFR variable compression
ratio engine., Hot exhaust will pass from the exhaust port through a per-
forated exhaust inlet tube and into a 1350 in.) surge and mixing tank and
then through a nozzle into the 50 in.”2 reactor. The high velocity jets
generated by the nozzle will be used to keep the reactor well stirred. Air
will be injected through a heated line into the reactor inlet nozzle. A
throttle and by-pass loop will control flowrate in order to permit the re-
actor residence time to be varied without changing engine conditions. The
two tanks and connecting piping will be constructed of Hastelloy-X or simi-
lar high temperature alloys and should be capable of continuous operation
at up to 2000°F.

Gas samples will be withdrawn at the reactor inlet and outlet through
water cooled sampling probes. Gas temperatures will be measured with
shielded thermocouples in the surge tank, at the reactor entrance, at three
locations inside the reactor, and at the by-pass flowmeter. The degree of
uniformity of temperature inside the reactor will be checked by comparing
the three thermocouple readings. As a spot check the thermocouples can be
moved around inside the reactor, and in addition the composition can be
determined at various locations by inserting water-cooled sampling probes
through the thermocouple taps. Surge tank and reactor pressures will be
measured with manometers. Propane and air flow rates to the engine as well
as injection air flow rate will be measured with critical flow orifices and
injection alr temperature with a shielded thermocouple. Flow rate through
the by-pass loop will be measured with a Venturi meter after the gas has
been cooled by passing through a heat exchanger.

MIXING IN THE REACTOR

The most critical task of the reactor design is the maintenance of a
high mixing rate. The mixing occurs in two steps; (1) the exhaust is mixed
with air just upstream of the reactor inlet, and (2) the exhaust-air mixture

9



is mixed with the products of reaction in the reaction chamber. In the
present design both steps depend upon the mixing effects of turbulent jets.
Figure 26 is a cross-section view of the reactor showing the jet orifices.

A. Mixing of Exhaust With Air

The mixing of the exhaust with air is accomplished by using the high
air supply pressure to force air through twelve 1/16 in. dia holes equally
spaced around the circumference of the reactor inlet tube. At the maximum
designed air flow rate of 30 lbm/hr this should result in an air velocity
of from about 500 ft/sec to sonic velocity through the holes depending on
the alr temperature. The resulting mixture is then discharged through the
reactor inlet nozzle into the reactor.

B. Mixing of Reactants With Products

The reactor is designed to operate at a flow rate of up to 60 lbm/hr.
For the present nozzle design this should require a pressure drop of about
4 psi across the twelve 3/32 in. dia inlet holes and result in a velocity
through the holes of about 1100 ft/sec at an inlet temperature of 1000°F.
The centerline velocity of a jet of this size discharging into an infinite
medium would retain about Lo% of its initial value after the 1.5 in. it
travels in the reactor before striking a wall (see, eg., Abramovich (10)),
and thus should possess enough kinetic energy to cause a fairly high level
of recirculation and turbulence in the reactor. The micro-mixing parameter
of Evangelista, Shinnar, and Katz (11), which represents the ratio of resi-
dence time to micro-mixing time, is 8.5 for this system. For a given re-
actor volume this parameter can only be increased by decreasing the number
and/or size of the inlet holes, which consequently requires a higher pressure
drop across the inlet nozzle. In order to check for imperfect mixing effects
it will be necessary to use at least two different reactor nozzles resulting
in different values of this parameter. The design permits nozzles to be
easily interchanged, and the requirement of higher back pressures can be
met by increasing the engine intake system pressure.

SYSTEM CONTROLS

Exhaust flow rate and composition can be controlled to a large extent
by individually controlling the upstream pressures of the air and fuel
supplied to the engine, while temperature can be controlled by varying the
engine compression ratio and spark timing. Since this does not provide much
control over hydrocarbon emissions, provisions have been made to allow the
introduction of species into the surge tank if this is deemed necessary.

In order to permit variation of reactor residence time while maintaining
constant inlet composition by holding engine conditions constant, a by-pass
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loop and throttle valve have been incorporated into the design. Injection
air flow rate is independently controlled by adjusting the pressure upstream
of the critical flow orifice, while temperature is controlled by adjusting
the power to the air heaters with a variable transformer.

FABRICATION

Fabrication of the reactor system is underway at the Walker Manufac-
turing Corporation.

LINEAR REACTOR STUDY

The experimental program initially envisioned called for following an
element of exhaust gas through a linear reactor by sampling the concentra-
tion as a function of time at several positions. Temperature, pressure, and
velocity measurements would also be taken, and to permit the use of optical
techniques the reactor was to be constructed of quartz. The design of this
reactor was completed and some parts, including sections of quartz tubing,
were purchased.

Rather than begin work with the complicated and relatively expensive
quartz reactor, a linear reactor consisting of a simple straight mild steel
pipe was attached to the exhaust port of the same single cylinder engine
now being used with the two-tank system. Both steady and timed samples were
obtained for the engine conditions listed below,

Spark Advance 30°(mbt)

RPM 1020 = 10

I.M. Vacuum 8.5 - 8.8 in. Hg
Compression Ratio 8.5:1

Air/Fuel Ratio .19, CO

using the method described by Daniel and Wentworth (12). Results for total
FID hydrocarbon concentration as a function of crank angle at five locations
along the reactor located approximately 4.5, 7, 10.5, 13.5, and 17.5 in.

from the exhaust valve, respectively, are presented in Figures 27a-e. An
attempt was also made to obtain the velocity as a function of position and
time by following the peak concentration in the exhaust slug from these
figures, and the results were compared to those obtained by a numerical solu-
tion based on the method of characteristics. Some degree of success was
achieved, but more work would be required to obtain completely satisfactory
agreement between the two methods.
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(2).
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DETATILED PROGRESS PHASE II

Modelling an Exhaust Reactor as a Stirred Tank

A first-generation model has been developed to simulate the operation of
a 300 in.2 reactor attached to four cylinders of a 350 in.> displacement eight-~
cylinder engine. It is based on instantaneous mixing of air and exhaust at
their respective instantaneous flow rates at the inlet to the reactor. The
reactor itself is assumed to be well stirred, meaning that temperature and com-
position are uniform throughout, down to the level of "micromixing."

Recognizing that exhaust enters in pulsations identified with the firing
of individual cylinders and that the flow rate of air may be staged, the pro-
gram was written to accept up to 12 input streams each of which can be timed
to enter the reactor over any portion of a 720° engine cycle. The values for
rate of flow, temperature, and composition for a given input are generated by
function subprograms, so that any desired pattern of variation can be intro-
duced without rewriting the calling program. Each input may contain up to 20
chemical species, which may subsequently appear as either reactants or prod-
ucts in any of 10 reactions.

The computer model computes temperatures, pressures, compositions,
enthalpies, heat loss, reaction rates, outflow, and accumulation. A Runge-
Kutta method of fourth order is used to compute the total moles in the reactor,
the total enthalpy of the reactor, and the moles of each chemical species at
any given time from rates of reaction, rates of flow, and rate of heat loss.
The reactor temperature is updated for each new value of enthalpy using a half-
interval root-finding technique. Pressure is computed from the total mole
content of the reactor and temperature by using the perfect gas law.

Heat loss from the reactor is computed as the product of an overall heat
transfer coefficient times the difference between the temperature within the
reactor and the ambient temperature. The overall coefficient has been treated
as a constant and its value has been estimated, neglecting radiation, to be
0.775 Btu/°F hr, based on a reactor shell having 2 £t2 of surface area sur-
rounded by a 5-1/2 in. thickness of ceramic insulation.

Flow rate out of the reactor is computed as the product of 0.0025 times
the instantaneous gage pressure within the reactor in psig. The constant
0.0025 was obtained by trial operation of the program to obtain an average
operating pressure of approximately 1 psig.

Chemical reactions are communicated to the computer by arrays which give
the coefficients of the chemical species in the chemical equation. Rate data
for the reactions are introduced using correlations based on an Arrhenius-
type power law of the form
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= x :
Y s “0,

All of the simulations run thus far are based on selected reaction kinetics
avallable in the literature.

At the start, the only chemical reactions considered were the oxidations
of carbon monoxide and hydrocarbon as methane. Published rates for oxidation
of CO are shown in Figure 28. These differ by several orders of magnitude
(probably because of variations in experimental conditions). The rate equa-
tion for CO chosen for use in the simulation was that obtained by Yuster (Lk)
in studies on exhaust systems.

The rate of oxidation for methane was adapted from results given by
Koslov (27). Koslov's rate equation contains the partial pressure of methane
raised to the -0.5 power (PCHA‘O'5); because of difficulties posed by having
a rate which became infinite as concentration approached zero, this was sum-
marily changed to Pthl‘O along with a compensating change in the pre-
exponential coefficient to adjust the rate to match Koslov's at 600 ppm
methane. The rate equations finally used were as follows:

Carbon Monoxide = Yuster

_ 2 -35,600/RT
rCO 1.91 x 10 e 0 02

Methane - Koslov

r = -2.08 x 107 e—60,000/RT P Pl‘5
CH), CH), ~0p

Units are: r-1b moles/sec in.?; T - OK; p-psia; R-1.987 cal/g mole °K.

In the first simulation, input from each cylinder was assumed to enter at
a flow, temperature, and composition which varied periodically during the course
of the exhaust stroke measured in degrees of engine crank angle. The range
and pattern of variation shown in Figures 29 through 32, was based on a con-
sensus by project personnel. The variation in hydrocarbon concentration with
crank angle agrees with the data given by Daniel (16). All values shown are
consistent with operation of the engine at 1200 rpm with fuel consumption of
20 1b/hr and an air/fuel ratio of 15, which is essentially the stoichiometric
ratio where the fuel is assumed to be normal octane. The mass-average concen-
trations of combustibles entering with the exhaustiwere 0.8} CO and 552 ppm
hydrocarbon. Additional air at 100°F was assumed to be introduced into the
reactor at a constant rate, which over a cycle amounted to MO% of the entering
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exhaust to give a "dilution ratio” of 1.4. Exhaust temperature varied from
1200 to 2000°F.

The results of the simulation at instantaneously varying input conditions
were characterized by wide swings in the outlet flow, temperature, and methane
concentration and smaller variations in pressure, CO, and Oy, as shown in
Figures 3% through 35. Performance approached repeated cyclic operation after
three engine cycles of 720°, corresponding to 0.3 sec, starting with the reac-
tor filled with nitrogen and assuming no thermal capacity in the reactor wall
and insulation. Conversion of CO to COp was computed to be approximately 60%
and the conversion of CHj to CO, and HpO approximately 9%,. These values are
in generally good agreement with experimental results given by Schwing (36)
for similar operating conditions.

A second simulation was run at the same inlet conditions of temperature,
flow, and composition as shown in Figures 29 through 32, but with averaging
of these inlet conditions with time over the duration of each exhaust stroke.
Separate exhaust pulses from individual cylinders were still introduced. This
simplification caused the reactor temperature to drop from 1180°F to 960°F and
reduced conversion of CO to ¥, and that of CH) to 3%,. The cause for the dis-
crepancy was subsequently shown to be that time-averaging produced a major
reduction in the enthalpy input for the inlet stream. That this would be
expected to occur can be seen from the fact that the highest flow coincides
with the highest temperature. Averaging temperature and flow separately
negated the effect of this coincidence.

A third simulation was performed with inputs that were time-averaged
over both the exhaust stroke of individual cylinders and over the firing of
the four cylinders in each 720° engine cycle. Thus the input for this run
was reduced to a steady flow at a uniform temperature and composition.
Results were essentially the same as for the second simulation.

In a fourth set of simulations, temperature variation during the course
of the exhaust stroke was averaged to give the same enthalpy input for the
entering exhaust as at the instantaneous temperatures shown in Figure 29.
This was accomplished by a program which determines the enthalpy of the input
over one cycle of 720° from instantaneous flow, composition, and temperature,
and then matches this enthalpy with a value computed from a constant tempera-
ture. The "enthalpy-averaged temperature'" thus defined was computed for the
instantaneous flow and composition. It should be noted that it has been shown
that a summation of time-averaged flow and flow-averaged composition produces
the same average temperature. Since the computation was not explicit in the
enthalpy-averaged temperature, the solution was obtained by using a half-
interval root finding technique. Use of this enthalpy-averaged temperature
in the simulation program produced conversions for CO and CH) that were vir-
tually the same as for the first simulation based on instantaneous tempera-
tures. This was true whether enthalpy-averaged temperature was used in com-
bination with instantaneous flow and composition or with time-averaged flow
and flow-averaged composition. This result is shown in Figures 36 through 39
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which are the resulting time variations of temperature, pressure, and CO, CH,
and Op concentrations. These results compare favorably with those presented
in Figures 34 and 35 for the instantaneous input. It was concluded that the
cyclic properties of the input were not of themselves important in determining
conversion, but that timéeaveraging unwittingly changed the energy content of
the entering exhaust and was for that reason responsible for an unacceptably
large error. This conclusion reinforces an observation made earlier, to the
effect that the measurement of temperature at the inlet to the engine-mounted
DuPont reactor should reflect the true energy content of the entering exhaust
if the model is to be successfully based on independently determined reaction
kinetics.

All of the previously mentioned simulations were based on computations
performed using a step size of 1/50 of a 720° cycle. Decreasing the step size
to l/lOO of a cycle produced only a negligible change in the indicated perfor-
mance of the reactor, however increasing the step size to 1/10 and 1/5 cycle
resulted in unacceptable errors.

Because of high cost associated with running at small step sizes, the
simulation program could not be run to cover the relatively long period of
time required to simulate reactor warm-up. To estimate the rate of warm-up,
a hand calculation was performed on a reactor having 4 in. dia, 2 ££2 shell
area, 1/16 in. stainless steel walls, and 3-1/2 in. thickness of ceramic fiber
insulation. The unsteady state heat balance was approximated by assuming
that the gas in the reactor was immediately at its steady state temperature,
that the temperature across the steel shell was uniform, and that the temper-
ature profile across the insulation remained linear. Surface heat transfer
coefficients were estimated to be 3.2 Btu/hr £t° °F inside and .92 Btu/hr
ft2 °F outside at steady state. On this basis, the shell wall temperature
increased by 9% of its total change in 36 min. This time estimate is likely
high, since the approximation of using & linear temperature profile across
the insulation caused more heat to be lost during the warm-up than would
actually occur. To bracket the warm-up period on the low side, we assumed
perfect insulation at the outside surface of the steel shell, which yielded
9%, warm-up in 21 min. Krambeck (28) computed reactor warm-up to occur in
approximately 10 min for a 110 in.2 reactor having an inner wall l/32-in.
thick, which indicates order of magnitude agreement.

The most important result of the approximate warm-up calculations was
that the initial rate of temperature rise in the steel wall was bracketed
between 1.5°F/sec and 2.6°F/sec for the two sets of assumptions given just
previously. At intermediate times during warm-up, the rate of change in wall
temperature would be somewhat less than these values. Thus, for one engine
cycle lasting for 0.1 sec, the maximum change in wall temperature falls between
0.15 and 0.26°F. As noted previously, the temperature, flow, and composition
leaving the reactor approach a repeated cycle after three engine cycles or
0.3 sec. During this time the wall temperature would change by less than 0.45
to 0.78°F. Since the temperature drop across the inside gas film resistance
is always much larger than this, varying from approximately 1000°F at start-up
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to 130°F at steady state, the change in wall temperature has a negligible
effect on the energy balance computed over three engine cycles. Thus the
effect of wall temperature during warm-up can be investigated by running sep-
arate simulations of three cycles each at different fixed wall temperatures
between ambient and steady state. Reactor performance during warm-up com-
puted on this basis is shown in Figure 40. Outlet temperature increase from
approximately 1140°F just after start-up to 1260°F at steady state. Conver-
sions change from 55 to 809 for CO and from 90% to 99} for CH.

While our main interest is in modelling the exhaust reactor itself, the
exhaust ports leading into the reactor and the exhaust pipe leaving the reac-
tor may also provide residence times sufficient for significant amounts of
reaction. To evaluate the importance of the inlet port, a stirred-tank simu-
lation was run on a volume of 7.5 in.D recelving exhaust from a single cylin-
der. Inlet conditions, which averaged 0.8} CO, 552 ppm CH), and 1572°F, were
assumed to vary periodically in the same manner as for exhaust gas entering
the 300 in.”2 reactor (Figures 29 through 32). Air was introduced at 100°F to
achieve a dilution ratio of 1.4 as before; however, the flow rate for the air
was staged to give 107 of the average rate over the 75° interval of crank
angle corresponding to maximum exhaust flow and a higher rate over the remain-
ing 645° of a 720° engine cycle. This assumption for air rates was intended
to parallel the behavior of existing methods, which tend to admit air in
inverse proportion to exhaust flpw because of back pressure (21).

Temperatures, pressures, and concentrations in the exhaust port were
observed to exhibit periodic oscillations of wide ampliture as a function of
crank angle, as would be expected for a small volume receiving a cycling input.
These results are shown in Figures L43a-e. Changes in hydrocarbon and carbon
monoxide during the period after exhaust flow ceased for a cycle were repre-
sented by an exponential-type decline as combustion and dilution by the con-
tinuing flow of alr dropped concentrations to near zero at the end of each
720° cycle. The most significant finding was that conversion of CH), was 707,
and the conversion of CO 204 within the small volume of the port. It should
be remembered that these conversions are based on the same selected literature
values of kinetic constants used previously (4k4,27) and are therefore subject
to an unknown error for the conditions of this problem. However, the tenta-
tive conclusion is that the exhaust port may be quite important in predicting
overall conversions between the exhaust valve and the tailpipe of an exhaust
system. Its importance may however be less than that shown due to ilmperfect
mixing of air and exhaust within the small volume of the port.

In a final series of simulation on the 300 in.J stirred tank reactor,
@% hydrogen was added as an additional fuel species and the amount of carbon
monoxide was increased to 84. Hydrocarbon as methane was maintained at 552
ppm as before.

The proportion of H2 in relation to CO was established on the basis of
an equilibrium constant of 3.8 for the water gas shift reaction, as proposed
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by D'Alleva (13). In the absence of information on the kinetics of homoge-
neous oxidation of hydrogen, it was assumed that the hydrogen was consumed
immediately upon entering the reactor.

A chief reason for running a simulation at higher levels of combustibles
was to check the Runge-Kutta solution for the combined mass and energy balance.
This was accomplished by comparing the steady state predicted by the reactor
model and that obtained from an independent calculation of the mass and energy
balance lines. It was possible, using the kinetics for the combustion of CO,
to compute the mass balance (temperature as a function of conversion) for
various initial concentrations of CO. The resulting temperatures were deter-
mined explicitly for a specific initial concentration and exit conversion.

The energy balance line was determined by first calculating the initial tem-
perature of the exhaust mixed with injected air plus the energy contribution
for the complete combustion of hydrogen. This was determined using the pro-
gram which calculated the enthalpy-averaged temperature of the exhaust. It
was then a simple matter to obtain the slope of the energy balance line and
thereby predict the steady state.

Because of the characteristic "S$" shape of the material balance curve, a
series of energy balance lines for progressively higher inlet exhaust temper-
atures should reach a point of ignition evidenced by an abrupt increase in
conversions and temperature. Results are presented in Figure 26 for inlet
temperatures of 900°F, 1000°F, 1036°F, and 1072°F. The inlet concentrations
of CO and Hp were 8% and M%, respectively. The program correctly predicts the
ignition conditions for these temperatures. However, it incorrectly predicts
a nonignition point for an inlet temperature of 1000°F and predicts the incor-
rect nonignition point for the 900°F inlet temperature. The conversions are
much too high for the predicted temperature.

After correcting the above problem, modelling based on a stirred tank

will be discontinued until after kinetic studies with the experimental reac-
tor are completed.
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Inlet

SCHEMATIC DIAGRAM FOR PROGRAM EXHAUST

Program Parameters

engine input initial ambient computation
speed timing conditions conditions and printing
l l l controls
4
flows > Stirred + flow
Reactor Tank
temperatures - Simulation Model -+ temperature
"Exheust"
compositions - N N -+ composition
Stoichiometry Thermodynemics Kinetics
Chemical Data
LIST OF DATA INPUTS

Specific heat constants (A,B,C,D)
Heats of formation (pHF)
Molecular weights (MwT)
Gas constants (RG & RK)
Number of inputs ()
Number of chemical species (M)
Number of reactions Q)
Pre-exponential rate coefficients (AA)
Activation energies (E)
Stoichiometric coefficients (vu)
Reaction rate exponents (orders) (NE)
Engine rpm (LAMBDA)
Input crank angles (ALOW)
Crank angle spans for inputs (ASPAN)
Minimum temperatures of inputs (TLOW)
Temperature spans of inputs (TSPAN)
Minimum flow rates of inputs (FLOW)
Flow spans of inputs (FSPAN)
Minimum concentrations in inputs (XL.OW)
Concentration spans of inputs (XSPAN)
Reactor volume (v)
Ambient pressure (PA)
Ambient temperature (TA)
Heat transfer coefficient (overall) (HBAR)
Flow coefficient (CFLOW)
Initial reactor temperature (TOZERO)
Initial reactor pressure (POZERO)
Initial reactor compositions (XOZERO)
Tolerance for temperature calculations (TEPS)
Duration of simulation in engine cycles (MAXCYC)
Number of computational steps per cycle (NSpCYC)
Print frequency (FREQ)
Meximum number of half~interval iterations (ITMAX)
Print controls (PRINT)

MAXIMUM NUMBER OF PRINTED OUTPUTS

Numbers of inputs, species, and reactions
Heats of formation and specific heats

Stoichiometric :quations and chemical rate equations

Input parameters

engine rpm
input timing
temperature
flow
composition

Initial end ambient conditions
Computational and printing parameters

Reactor temperature, pressure, and mole balance versus crank angle

Reactor composition versus crank angle

Inlet flow, temperature, and enthalpy versus crank angle

Inlet composition versus crank angle
Energy balance versus crank angle
Reaction rates versus crank sngle

Rates of species "appearance"” versus crank angle

Intermediate computations used for debugging
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FLOW DIAGRAM OF PROGRAM OPERATION

_______________________________ > I. [Clea.r Working Arraysw

|

II. {Read Inpifil——) TERMINATEI

l

IIT. Calculate cycle timing parameters:
cycle time (CYCTIM); step size (DELTAT); mex.
time (TMAX)

IV. | Initialize parameters of integration:

TIME; ANGLE; no. of cycles (NCYC); temperature
(T0); pressure (PO); moles (MO); flowout (FOUT);
concentrations (X0)

V. | Compute initial moles and enthalpies of all components
in the reactor

VI. | CALL RUNGE (a fourth order Runge-Kutta routine)
Routine RUNGE computes new values for reactor
contents including (1) totel moles, (2) total

g enthalpy, and (3) moles of each chemicel species.

A~

The fourth order routine requires that the
derivatives of these quantities be computed
b times (in each time step) by the calling
program

] 1

VII. |IF (RUNGE.NE.1l)
True o — Felse
VIII. | The return of a velue for RUNGE not equel to "L" IX. | Compute derivatives:
indicates a step has been completed and that A. Determine crank angle
4 printing will occur as called for by the array B. Compute new composition in reactor
PRINT C. Compute reactor temperature from total
moles, total enthelpy, and composition using half
__________ If TMAX has been exceeded, control returns to interval root finding technique
"I" to begin another run or to terminate D. Update pressure uging gas law
E. Compute rates of flow and enthalpy leaving
reactor

F. Compute reactor heat loss

G. Determine flow, temperature, and composi~
tion for each active inlet stream using subpro-
grams FNF, FNT, and FNX

H. Compute the derivative of total moles in
the reactor from flow in, flow out, and change in
moles due to reaction

I. Compute the derivative of total enthalpy in
the reactor from enthalpy in, enthalpy out, and
heat loss

J. Compute rates of all chemical reactions
from reaction kinetics

K. Compute the derivative of the moles of each
species in the reactor from flows and composi-
tions in and out and reaction rates

NOTES:

1. Subprograms FNF, FNT, and FNX supply values of flow,
temperature, and composition as functions of crenk
angle.

2. All enthalpies are generated by a subroutine HMOLAR
based on temperatures, specific heats, and heats of
formation supplied by the calling program.

3. All time advance is accomplished within subprogrem
RUNGE.
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DETATILED PROGRESS PHASE III

A. Spectroscopic Analysis of Engine Exhaust Gas

To examine the feasibility of using & spectrometer as an analytical
instrument for this study, a quantitative spectroscopic analysis of engine
exhaust was made and the results were compared with those obtained with a non-
dispersive infrared analyzer.

The instrument used was a Perkin-Elmer Model 112 spectrometer with a NaCl
prism, a thermocouple detector, and a globar light source. Exhaust gas was
drawn into a one-meter gas cell from the engine exhaust pipe through an ice
bath and filter. The pressure in the sample cell was brought to 1 atm and an
analysis made for CO, COp, NO, and total hydrocarbons using the 4.65-, 2.7-,
5.3-, and 3.4-micron bands, respectively. A sample record is shown in Figure
43. Calibration curves for both the spectrometer and the NDIR were obtained
from span gases with known composition which were purchased from Olson Labora-
tories. Data were obtained at several fuel/air ratios, loads and spark posi-
tions, and are summarized in Tables V, VI, and VII. Average discrepancies are
seen to be 364, for CO, &, for COp, 2%, for NO, and 6kq, for total hydrocarbons.
Corrections for Hp0O interference were made in obtaining the results for COo.

TABLE V

SPECTROMETER-NDIR COMPARISON FOR VARIABLE FUEL/AIR RATIO

FUEL/

RUN  ° o co(%) C02(%) NO (ppm) HC (ppm)
NO. SPECT. NDIR SPECT. NDIR SPECT. NDIR SPECT. NDIR
RATIO
81 11.28 8.75 10.70 10.2 8.21 450 680 575 375
80 12.96 3,14 5.61 12.1 1ll.21 1300 2547 Los 325

76 1k.97 0.90 0.65 k.0 12.22 1700 2594 257% 225
79 16.19 0.39 0.2% 4.1 1k.13 2300 2834 160 207
78 17.82 0.24 0.10 h.h 12.48 1675 1989 350 171
77  19.85 0.35 0.10 11.5 10.96 960 1186 265 180
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TABLE VI

SPECTROMETER-NDIR COMPARISON FOR VARIABLE LOAD

DYNAMOM-

RUN ETER CO(%) C02(%) NO(ppm) _HC(ppm)
NO. SPECT. NDIR SPECT. NDIR SPECT. NDIR SPECT. NDIR
SCALE
102 3.0 0.40 0.23 12.70 11.70 606 960 702 835
101 9.5 0.40 0.16 12.85 1l2.7k 1130 897 577 306
100 16.7 0.43 0.16 13.05 12.87 1250 1761 555 225
99 25.4 1.06 0.37 13.30 12.48 2480 2106 358 216
103 %%.0 0.68  0.86 11.90 1l2.7h 1245 2066 787 415
104 ho.0 2.06 1.28 11.10 12.48 1400 1837 710 365

TABLE VII

SPECTROMETER-NDIR COMPARISON FOR VARIABLE SPARK TIMING

RUN Ti;?ﬁg CO(%)
NO. SPECT.  NDIR
(deg.)

117 17 0.7 0.65
116 25 0.8 0.51
113 33 1.58 1.63
114 L1 1.43 1.49
115 50 0.8 0.37

B. Measurement of Instantaneous Engine Exhaust Velocity and Temperature

The discussion concerned with Phase II of this project has brought out
the fact that the reactor model is quite sensitive to the enthalpy input to
the reactor. An accurate experimental determination of the enthalpy input
requires good measurements of both instantaneous engine exhaust velocity and
temperature. Since no known conventional techniques are available for getting
these measurements, developmental work is underway on a new technique which
appears promising for both measurements.

The method uses laser-schlieren photography with a rotating-mirror
camera. The laser-schlieren system is used to detect turbulent eddies as they
move with the exhaust stream. The average eddy spatial velocity is assumed to
be equal to the exhaust stream velocity. By projecting the resulting schlieren
image through a narrow slit and moving the slit image at a fixed rate across a
sheet of Polaroid film, by means of the rotating mirror, a photograph is
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obtained which gives continuous records of both eddy position and time, over a
short-time interval. The slope of the resulting image at any point gives
instantaneous velocity.

Measurement of instantaneous gas temperature will be attempted using the
same technique for measuring the speed of a spark-induced shock wave in the
gas stream. Since shock velocity is proportional to Tl 2, the gas stream tem-
perature can be estimated from the measured shock velocity.

This work has been started using equipment made available from previous
studies at The University of Michigan Automotive Laboratory. This equipment
has been modified and installed on a CFR engine where preliminary results have
been obtained. These results are promising and work is continuing.

C. Hydrocarbon Class Analysis by Subtractive Column
A subtractive column analyzer was built to measure the three principal

hydrocarbon classes. The technique used is identical to that of Sigsby and
Klosterman, Environmental Science and Technology, 1, No. 4, April 1967, p. 311.

Olefins and acetylenes are removed by a mercury sulfate-sulfuric acid
scrubber. Aromatics are removed by a palladium sulfate~-sulfuric acid scrubber.
A flame ionization analyzer is used as the hydrocarbon detector.

Figure 7 shows a flow schematic of The University of Michigan system. The
unit has three parallel paths. The exhaust sample is directed either through
path Sy (total hydrocarbons, So (total minus olefins and acetylenes), or 83
(total minus olefins, acetylenes, and aromatics). Provisions were made for
zeroing the FID and for backflushing. Dry nitrogen is used for the backflush.

To check the performance of the analyzer three calibration gases were
blended. These gases (as analyzed by the manufacturer) were:

paraffinic: 4620 ppme propane in nitrogen

aromatic: 315 ppmc toluene plus 282 ppmc benzene in nitrogen—
597 ppme

olefinic: 100 ppmc acetylene, 150 ppmec propylene, 101 ppmc
ethylene, and 205 ppmc l—butene in nitrogen—total
556 ppme

The FID measured results on new columns are reported as ppmc in the table
below. The FID was calibrated on the propane mixture.



Calibrating Gases
4620 ppme 597 ppme 556 ppme

Paraffinic Aromatic Olefinic

Column Used

Backflush 0 0 0

Aromatic and Olefin Sub. 4620 192 0

Olefin Sub. 4620 570 0

None L6620 570 582
Calculated Results

Paraffins and Benzene 4620 192 0

Olefins and Acelytene 0 0 582

Aromatics 0] 378 0

These data show that the columns subtracted the constituents as expected.
Apparently all the acetylene is reported with the olefins and part of the
benzene (192 ppme of 315 ppmc in mix or 604,) is reported with the paraffins.
A detailed GC analysis is required to substantiate the subtractive column
values.

Experience shows that the percent benzene which breaks through varies
from column-to-column. Flowing dry nitrogen through the aromatic subtractor
improves benzene retention. A 60% breakthrough is about average. Column life
appears to be on the order of one hour actual analysis time. This varies with
flow rate and gas composition. We usually change columns when they are about
504, discolored.
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Figure 1. Chevrolet 350 in.J engine set-up for emission test in Room 243 of
The University of Michigan Automotive Laboratory.

rEXHAUST GAS—_l OUTER SHELL
/A C [ e - |
Wi T . -
d > —Q-—-—- &
3 =0

0
|

RADIATION CORE
SHIELD TO EXHAUST SYSTEM

Figure 2. Type V DuPont exhaust manifold reactor. Figure
courtesy DuPont Corporation.
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Figure 3. DuPont type V reactor at The University of Michigan. Quartz win-
dows in the right-hand reactor provide a see-through optical path.

Figure 4. Cutaway view of type V reactor. Courtesy DuPont Corporation.
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Figure 5. Modified intake manifold. Hot water replaces exhaust
as the source for intake charge heat.
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BSFC AND CO, CO9, O, PERCENT

16
— 3000
14
2500
12—
10 2000
=
8 H a
1500 ~
o
=
6___
1000
4__
500
2 -
0 = 0

0 10 12 14 16 18 20
MEASURED AIR-FUEL RATIO

Figure 9. (O, CO, Op, and NO emission vs. air/fuel ratio. 1200 rpm,
50% load, MBT spark, Indolene clear fuel. :
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Figure 10. Hydrocarbon and aldehyde emission vs. air/fuel ratio. 1200 rpm,
504, load, MBT spark, Indolene clear fuel.



BSER, LBM / BHP-HR

1.00

.80

--BSER

o\ —0O— CO
\® O NOox10
A totalHCx 10
\ —FFR
\ -o- C0
| \ m NOx10
‘ A total HCx 10

MEASURED A IR -FUEL RATIO

Figure 11l. Mass emission vs. air/fuel ratio.
50% load, MBT spark, Indolene clear fuel,
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PERCENT OF TOTAL HYDROCARBONS
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Figure 12. Hydrocarbon class analysis vs. air/fuel ratio.
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BSFC AND CO, CO,, Oy, PERCENT
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Figure 13. CO2, CO, Op, and NO concentration emission vs. spark timing.

1200 rpm, 50% load, 15.4:1 A/F ratio, Indolene 30 fuel.
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Hydrocarbon emissions vs. spark advance.
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Figure 15. Mass emission vs. spark advance. 1200 rpm, 509,
load, 15.4:1 A/F ratio, Indolene 30 fuel.
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Figure 16. Hydrocarbon class analysis vs. spark advance.
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BSFC AND CO, COy, 02, PERCENT
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Figure 17. COp, CO, 0O,, and NO emission vs. engine speed. 507, load,

MBT spark, 14.8:1 A/F ratio, Indolene 30 fuel.
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Figure 18. Hydrocarbon emission vs. engine speed. 504 full
load, MBT spark, 14.8:1 A/F ratio, Indolene 30 fuel.
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Figure 19. Mass emission vs. engine rpm. 50% load,

MBT spark, 14.8:1 A/F ratio, Indolene 30 fuel.
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Figure 21. CO,, CO, Op, and NO emission vs. torque. 1200 rpm,
MBT spark, 15.8:1 A/F ratio, Indolene 30 fuel.
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Figure 22. Hydrocarbon and aldehyde emission vs. load. 1200

rpm, MBT spark, 15.8:1 A/F ratio, Indolene 30 fuel.
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FRACTIONAL CONVERS ION

1.0 1700°F 1200°F
1200°F
9
8-
-
-
e initial CO concentration
Ty / of 8%
/ // / rote: the temperatures
/; / labeled at the top of the
A /, / energy balance lines are
// / the 1nitial reactor temper-
/] / atures.
3 ////
//
/
/
2 f—
1
90?°F
1\
\
oL Yd4
800 1000 1200 1400 1600 1800 2000 2200
TEMPERATURE OF
Figure 42. A combined mass and energy balance on CO.
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APPENDIX

ENGINE TEST DATA SUMMARY FOR CURVES OF FIGURES 9-24
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