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Simulations of random walkers on two-dimensional (square lattice) percolation clusters were 
performed for a range of occupation probabilities from critical to unity. The number of distinct 
sites visited, over 2X lOS steps, shows the conjectured scaling, crossover and superuniversality 
(ds = 4/3, within 1 %) behavior over a wide range of site occupation probabilities. Possible 
deviations from superuniversality and/or scaling are discussed. 

I. INTRODUCTION 

The idea that the random walk efficiency on a percolat­
ing cluster increases drastically with increasing occupied site 
concentration is nearly a decade old. I The number of distinct 
sites visited and the trapping probability of the walker were 
first simulated by Argyrakis, Hoshen, and Kopelman. 2-4 
The mean square displacement of an "ant in a labyrinth" was 
first discussed by de Gennes5 and related to the critical cor­
relation exponent (v). While early diffusion simulations 
seemed to support this,61ater work7 showed the superiority 
of the scaling approach.8 However, a deeper understanding 
of the subject occurred only a year ago, with the realization 
that random walk on critical percolating clusters is con­
trolled by a fractal spectral ("fracton") dimension.9.10 It was 
realized soon thereafter that crossovers must exist between 
the fractal and the Euclidean behavior and that this cross­
over must be related to the correlation length. II-

14 Such 
crossovers are indicated in the Monte Carlo simulations of 
the mean square displacements by Havlin et al. 13 and even in 
the much older simulations. IS We show here the results of 
high quality simulations on the number of distinct sites visit­
ed for asingle walker (elsewhere we show similar simulations 
for the density of reacting random walkers, i.e., reactions of 
multiple random walkers, in two and three dimensions).28 
These results are not only of theoretical interest, but are re­
lated to various experiments on diffusion, trapping, and 
annihilation (fusion) reactions, especially for excitons on iso­
topic mixed crystals. 15-22 Crossovers from fractal to Euclid­
ean behavior are already implicit in our old simulations of 
single walkers on random lattices 1.4,23 and of multiple (react­
ing) walkers.24-28 Here we present a detailed study, over 
2 X lOS steps, of such fractal-to-Euclidean crossovers for sin­
gle random walkers on percolating clusters of square lat­
tices. 

The average number of distinct sites visited S N' after N 
steps on a percolation cluster, at criticality, is given by 

S d,l2 NccN , N~ co, 

01 Supported by NATO Grant No. SA 5205 RG 295/83. 
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(1) 

where ds is the spectral dimension, 9,10 which is believed to be 
4/3, i.e., the exponent in Eq. (2) is 2/3, for values of p = Pc, 
where p is the probability and Pc is its value at the critical 
percolation point. In the spirit of Gefen et al. II and Havlin et 
al.,13 we write 

SN(t~ co,p) = t d
,l2 f[(p/pc - 1) t -(2v-Hp)]. (2) 

This scaling relation includes the well-known static percola­
tion exponents8 for the correlation length (v), the percolation 
probability (f3) and the conductivity 1J.t). We check here the 
range of validity ofEq. (2). We note that the crossover time t * 
(from fractal-to-Euclidean) is given I 1,13 by 

(3) 

The preexponent can be found, in principle, from our simu­
lation results. On the other hand, we try a crude approach 

(4) 

where d ~ is an effective spectral dimension29 (with values 
between 0 and 2). While the scaling approach works up to 
p = 0.7, the crude approach works throughout the crossover 
regime and is directly applicable to experiments. 15-22 

II. METHOD OF CALCULATIONS 

We use Monte Carlo simulation techniques, which are 
in the spirit of the model recently reported,30 but have con­
siderably imprOVed the algorithm, increasing both the speed 
of operations and the size of the lattice used. A binary lattice 
is made of two components that are termed as either allowed, 
open sites labeled 1, or nonallowed, closed sites labeled O. All 
1 's and O's are mixed at random, for any given ratio. All 
random walks take place only on connected open sites, with 
zero probability for a step to a closed site. In previous prac­
tice, all lattices were generated and stored in computer mem­
ory before the start of each run and remained active for the 
whole duration of the execution, something rather expensive 
because lattice portions that were never used still occupied a 
considerable memory space. The present algorithm, called 
the cluster growth technique, generates only the lattice por­
tions used for the random walk, thus effectively increasing 
the size ofthe lattice. The lattice starts with one site only, and 
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it is built continuously as the random walk proceeds by gen­
erating more sites adjacent to the random walker. Of course, 
once a site is generated and its identity chosen it remains as 
such in the memory for the whole run. Obviously, only one 
random walk can be executed on each lattice using this 
method, which is more time consuming but has considerable 
advantages from a statistical point of view. 

Since only five alternative pieces of information are 
needed at each time (the identity of the site, 0 or 1, and 
whether a site has been visited before or not, or whether it 
has not been defined), we can utilize more efficiently the 
length of each computer word by breaking each 32 bit word 
in four 8 bit sections, thus effectively increasing the size of 
memory (direct access) by a factor of 4. This is done in FOR­
TRAN by use of a subroutine with LOGICAL*l and IN­
TEGER *4 variables declaration, occupying the same mem­
ory space and identified continuously via an 
EQUIVALENCE statement. We thus avoid the difficult task 
of byte manipulation in machine language. The outcome is 
that the lattice size L is now larger, typically in the vicinity of 
L = 4 X 106 sites. Our aim has been to monitor a random 
walk process that never needs to cross the boundary sites, so 
that in practice our results pertain to an infinite lattice. We 
let N = 200 000 be our maximum value so that N / L = 0.05, 
which is a very safe ratio. In the past, where high N / L ratios 
were used (of the order of 1, or even higher), it was found 
necessary to use alternate indirect methods to extrapolate to 
the case of an infinite lattice. The problem that arises in the 
case of high N / L ratio is that of artificial revisitation, where 
the walker is confined to a small region, due to the small L 
producing a smaller S N value than the normal. 

All different topologies in one-, two-, and three-dimen­
sionallattices are reduced to a one-dimensional array in the 
virtual computer memory, thus saving on transfer times and 
increasing the speed of operations. All calculations are per­
formed in a DEC computer model VAX 11/750 with 550 
Mbytes of total memory. We use alternate random number 
generation routines by IBM, DEC, and by the University of 
Michigan MTS Computer Center to ensure absolute ran­
domness of events. 

III. RESULTS AND DISCUSSION 

Figure 1 shows the random walk crossover for the 
square lattice site percolation case. Close to the critical point 
(p = 0.593) SN has a simple power dependence on the time 
(number of steps N) and, using Eq. (1), log S N is linear with 
log N. The very small corrections to the asymptotic behavior 
of Eq. (1) are analyzed elsewhere.30 An effectively simple 
power dependence is again seen for the p = 1.0 case (in spite 
of the well-known logarithmic correction for this 2D lattice). 
However, for all intermediate values of p the lines are curved 
(upward!), showing the crossover from fractal to Euclidean 
behavior. 

Figure2isascalingplot, basedonEq. (2)withds = 4/3, 
according to the superuniversality conjecture.9-1l We also 
use v = 4/3, P = 5/36 according to the den Nijs conjecture 
(proved now?) andJL = (1/2)[v(3d - 4) - P], again accord­
ing to the d s = 4/3 conjecture, giving, for d = 2, JL = 91/72. 
Hence, 2v - /3 + JL = 91/24;::::3.79. Using instead of the 

FIG. I. S N VS N for binary square lattices. Walk on percolating cluster only 
(see Refs. 29 and 30). Top to bottom:p = 1.0,0.9,0.8,0.7,0.65,0.63,0.61, 
0.60, and 0.59. 

above value (3.79) values of3.6 and 4.0 yielded slightly inferi­
or scaling plots (asjudged by the eye). We note that the Fig. 2 
plot is quite satisfactory if we remember that our simulation 
included 200 000 steps (compared to 1600 by Havlin et al.13 
for the scaling of the diffusion, i.e., mean square displace­
ment) and that for our case of SNaIl relevant exponents are 
exact, with no room for adjustable parameters. 

Figure 3 shows that the scaling behavior does fail 
further out from the critical point, as expected. While for 
p = 0.7 scaling still seems to work, this is not the case for 
p = 0.8 or higher. This result is again consistent with that of 
Havlin et al.13 even though the latter authors do not show 
results for p > 0.7 and also, as stated above, their time do-
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FIG. 2. Scaling plot: SNIN 2/3 vs (piPe - I)No.263
, for walk on percolating 

cluster. The different symbols correspond to differentp values: 0.59, 0.595, 
0.60, 0.605, 0.61, 0.62, 0.63, and 0.65. Note that the p = 0.59 values are 
below the threshold and, thus, appear to the left of the line X = O. The N 
values picked are: 2000, 42000, 82000, 122000, and 162000. 
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FIG. 3. Extended scaling plot: SN/N 2
/3 vs(p/Pc - 1)No.263

• Same as Fig. 2 
(contracted) but with the addition of curves for p = 0.7,0.8,0.9 and 1.0 (left 
to right). Note that the p = 0.7 curve merges with the lower p scaling curves 
of Fig. I. However, the p = 0.8, 0.9, and 1.0 curves seem to deviate from it. 

mains are three orders of magnitude shorter. Thus, it ap­
pears that the correlation length (s ) is a useful concept in the 
range O.593<p<O.7, as is the corresponding exponent (v). 
Qualitatively, these results are consistent with the behavior 
(curvature) of S N vs N in Fig. l. 

Figures 4 and 5 show the behavior of the effective fractal 
exponent. While above the critical point (Pc) the crossover is 
in the direction of the Euclidean (classical) behavior (and 
slope), this is not so below Pc, where the "crossover" is 
towards the random walk on a finite cluster behavior, result­
ing in an effective "saturation" of the sites (all are visited). 

Figure 6 is another representation of the same qualita­
tive ideas shown in Figs. 4 and 5, i.e., an effective spectral 
dimension. It is obvious, that for longer times (N;::: 2 X lOS), 
the rise of diS is sharper than at short times. This means that 
for P""""Pc the random walk becomes more "efficient." This 
plot itself reminds us of similar plots relating to the trapping 
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FI? 5. 2 log S N !log N vs N, same as Fig. 4, but semilogarithmic represen­
tatIOn. 

of random walkers (excitons) in both experiments and simu­
lations. 1-4,16-23 Obviously, for shorter times, the effective diS 
rises less sharply with p. This just means that for times 
shorter than the correlation time ["crossover time"-Eq. 
(4)] the random walk is essentially "fractalized," i.e., the cor­
relation length is longer than the path of the random walker. 
We also notice that for the naphthalene crystal the singlet 
exciton is believed to hop about 2 X 105 times within its life­
time. 2,16 Thus, the simulations given here should be applica­
ble to past and future trapping and annihilation experiments. 

Finally, we would like to point out that the present 
study does not provide a stringent test for the value of /-t. A 
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0.2 uncertainty in the reciprocal crossover exponent (see 
above) would give a 15% uncertainty in p. Recent direct 
simulations3l on p have claimed a value of about 3% above 
91/72. We cannot dispute that. However, if we believe the 
Alexander and Orbach scaling relation9--ll 

p - /3 + 2v = 2ds (dv - /3 ), 
then this would result in ds being 1 % below 4/3. This would 
just be consistent with our present best statistical evaluation 
of the long time random walk, just above criticality32 
ds /2 = 0.66 ± 0.01, i.e., nominally 1% below 2/3. Thus, 
there seems to be no problem with the above scaling relation­
ship, so far, and the suspected correction to superuniversa­
lity, in two dimensions, is about 1 % downwards, for ds • 

In summary, our long time random walk simulations 
confirm the scaling, crossover, and superuniversality hy­
pothesis of random walkers on percolation clusters to within 
a few percent. Furthermore, they show a fairly wide validity 
range for the scaling behavior and a consistency between the 
crossover exponent and the superuniversality conjecture 
(ds = 4/3). Similar studies for three-dimensional lattices are 
in progress. 

ACKNOWLEDGMENTS 

We would like to thank S. Alexander, S. Havlin, J. Ho­
shen, J. Klafter, R. Orbach, and I. Webman for helpful dis­
cussions. 

'R. Kopelman, in Proceedings of the Seventh Molecular Crystal Symposium 
(Nikko, Japan, 1975), p.37. 

2R. Kopelman, in Topics in Applied Physics, edited by F. K. Fong (Springer, 

Berlin, 1976), Vol. 15, p. 297. 
3J. Hoshen and R. Kopelman, J. Chem. Phys. 65, 2817 (1976). 
4p. Argyrakis, Ph.D. thesis, University of Michigan, 1978. 
'P. G. de Gennes, Recherche 7, 919 (1976). 
6C. D. Mitescu and J. Roussenq, C. R. Acad. Sci. Paris A 283, 999 (1976). 
7T. Vicsek, Z. Phys. B 45, 153 (1981). 
8D. Stauffer, Phys. Rep. 54, I (1979). 
9S. Alexander and R. Orbach, 1. Phys. Lett. 43, L625(1982). 
lOR. Rarnmal and G. Toulouse, 1. Phys. Lett. 44, L13 (1983). 
"Y. Gefen, A. Aharony, and S. Alexander, Phys. Rev. Lett. SO, 77 (1983). 
12p. G. de Gennes, C. R. Acad. Sci. Paris 296,881 (1983). 
13S. Havlin, D. Ben Avraham. and H. Sompolinsky, Phys. Rev. A 27. 1730 

(1983). 
141. Webman. Phys. Rev. Lett. 52.220(1984). 
"C. D. Mitescu. H. Ottavi. and 1. Roussenq. in Electrical Transport and 

Optical Properties of Inhomogeneous Media-1977. edited by J. C. Gar­
land and D. B. Tanner (American Institute of Physics. New York. 1978). 

16p. Argyrakis and R. Kopelman. 1. Chem. Phys. 66, 3301 (1977). 
17p. Argyrakis and R. Kopelman, Chem. Phys. Lett. 61. 187 (1979). 
18p. W. Klymko and R. Kopelman. 1. Lumin. 24,25,457 (1981). 
19p. Argyrakis and R. Kopelman, Chem. Phys. 57. 29 (1981). 
2Op. W. Klymko and R. Kopelman, 1. Phys. Chem. 86. 3686 (1982). 
21p. Argyrakis and R. Kopelman, Chem. Phys. 78, 251 (1983). 
22p. W. Klymko and R. Kopelman. 1. Phys. Chem. 87, 4565 (1983). 
23p. Argyrakis and R. Kopelman, 1. Theor. Bio. 73, 205 (1978). 
24p. Argyrakis, J. Hoshen. and R. Kopelman. in Fast Reactions in Energetic 

Systems, edited by C. Capellos. R. F. Walker, and D. Reidel (Dordrecht. 
Holland. 1980). p.685. 

2'R. Kopelman, J. Hoshen, J. S. Newhouse. and P. Argyrakis, J. Stat. Phys. 
30,355 (1983). 

26R. Kopelman, P. W. Klymko, J. S. Newhouse, and L. Anacker, Phys. 
Rev. B 29,3747 (1984). 

27L. Anacker, R. Kopelman and J. S. Newhouse, J. Stat. Phys. (1984). 
281. S. Newhouse, P. Argyrakis, and R. Kopelman, Chem. Phys. Lett. (in 

press). 
29p. Argyrkias and R. Kopelman, Phys. Rev. B 29,511 (1984). 
30 A. I. Keramiotis, P. Argyrakis, and R. Kopelman, Phys. Rev. B (in press). 
31R. Orbach (private communication). We also thank the referee for bring-

ing similar, unpublished, results to our attention. 
32L. Anacker, P. Argyrakis, and R. Kopelman, J. Stat. Phys. (in press). 

J. Chern. Phys., Vol. 81, No.2, 15 July 1984 


