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In the development of high-speed aircraft, rockets, missles, etc., wind-tunnel pressure measurements at
supersonic velocities are necessary to determine certain aerodynamic characteristics. Because of the lack
of knowledge concerning the proper choice of parameters in the design of pressure instrumentation, the
response time has been known to exceed the running time in the case of the intermittent tunnel. Pressure
systems consisting of an orifice, a capillary tube, a length of connecting tubing, and a pressure-sensitive
element connected in series are analyzed. The time required for the pressure in the pressure-sensitive
element to reach within 1 percent of the equilibrium pressure is defined as the response time of the system.
Experiments are conducted to determine the effect of the various geometric and dynamic parameters on the
response time. Analytical solutions of the flow equations by numerical integration are carried out for the
special case of a length of capillary tubing connected to the pressure-sensitive element for three different
inside diameters.

The data indicate that the response time can be maintained within acceptable limits for present-day
supersonic wind-tunnel installations by proper choice of the geometric and dynamic parameters. The agree-
ment between theory and experiment, being quite satisfactory for the special case solved analytically,

NOVEMBER,

1953

indicated that the approximations in the derived flow equations are justified.

NOTATION

a=tube radius
d=1inside diameter of model tubing
d,=inside diameter of connecting tubing
dg=orifice diameter
f=total number of gas molecules
i=subscript to indicate spatial stations
j=subscript to indicate time stations
k=constant (=RT)
I=length of model tubing
I,=length of connecting tubing
m' =rate of mass flow
p=pressure
po=capsule pressure
peg=1initial pressure in capsule reservoir at zero time
Pm=Inean pressure
pr=reservoir pressure
r=radius
t=time
- {=nondimensional time
u=velocity component in the direction of the x axis
ue=velocity at the boundary in slip flow
x=spatial position in tubing
z=coordinate
A=constant
B=constant
F=slip-flow parameter
F p=viscous shearing force
F ' = viscous shearing force in slip flow
H=slip-flow parameter
P=nondimensional pressure

* This research was conducted at the University of Michigan in
partial fulfiliment of the requirements for the degree of Doctor of
Philosophy. Thanks are due Dr. A. M. Kuethe and Dr. L. L.
Rauch for their invaluable guidance and encouragement in all
phases of the work.

+ Associate Professor of Aeronautical Engineering and Research
Associate, Georgia State Engineering Experiment Station.

R=gas constant
T=absolute temperature
V =volume of capsule reservoir
X =nondimensional spatial coordinate
e= coeficient of external friction
Am=mean free path of molecules
u=coefficient of viscosity
prp=effective viscosity coefficient
p=mass density :
p1=density at 1 micron of pressure
T=response time
$= coefficient of slip

FLOW EQUATIONS

THREE general types of flow can exist in capillary
tubes; namely, continuum flow, slip flow,! and
free-molecule flow.2 The type of flow which one might
encounter is dependent on the medium used, the magni-
tude of the mean pressure in the tubing, and the radius
of the tubing. For the case at hand, the magnitudes of
the mean pressure and the radii of the tubing are
chosen to represent typical supersonic wind-tunnel
pressure measurements. The resulting flow is then
found to be almost exclusively in the realm of a con-
tinuum flow.

The derivation of the equation of motion is based on
the assumption of a continuous medium, constant-area
tubing, and a fully developed flow over the entire
length of the tubing. The change of state of the flow
is assumed to be described by an isothermal process;
and, by the introduction of the unsteady, compressible
continuity equation, the quasi-steady, viscous, com-

1Brown, Dinards, Cheng, and Sherwood, J. Appl. Phys. 17,
802 (1946).

28. A, Scharf and R. R. Cyr, “Time constants for vacuum
gauge systems,” University of California Report No. H E—
15042 (1948).
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pressible equation of motion is developed. The boundary
equations are developed assuming a finite reservoir, in
which the changes of state take place isothermally, at
one end of the tubing and an infinite reservoir (pressure
constant) at the other end of the tubing. The initial
distribution of pressure p(x) is assumed to be a step
function with the pressure discontinuity located im-
mediately before the infinite reservoir. Schematically
the idealized model of a typical supersonic wind-tunnel
pressure system is shown in Fig. 1. The resulting non-
linear, partial differential equation of motion and
boundary equation are solved by numerical step-by-
step integrations for three different conditions in which
the capillary tube diameter as well as the reservoir
pressure are varied.

Starting with the Hagen-Poiseuille law® for fully de-
veloped flow (and assuming the flow is fully developed
over the entire length of the tubing), the rate of mass
flow can be written as

wpat dp
] (1)
8u dx

m=—

where ' is the rate of mass flow, p is the mass density,
a is the radius of the tubing, u is the coefficient of vis-
cosity, p is the pressure, and x is the spatial co-
ordinate.

The incompressible flow equation (1) is modified to
include the effects of compressibility by means of the
isothermal equation of state,

p="p, )

where k= (RT) is a constant, R being the universal gas
constant, and 7 the absolute temperature. Substituting
Eq. (2) into Eq. (1) we obtain

T . Jdp @)
m'=——atp—,
8uk Ox

CAPILLARY TUBING

PRESSURE SENSING

INFINITE RESERVOIR ELEMENT

Fia. 1. Idealized model of pressure system,

Assuming one-dimensional unsteady flow the con-
tinuity equation may be written as

dp

0 4
—Gi)=——, @

3 A. M. Kuethe and J. D. Schetzer, Foundations of Aerodynamics
(John Wiley and Sons, Inc., New York, 1950), p. 222.
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where ¢ is time. If we now take an incremental length
(Ax) of tubing (Fig. 2) and substitute the rate of mass
flow given by Eq. (3) into Eq. (4), we obtain in the
limit as Ax—0

ap a* 9 f 3p
———— zr—). 5)
dt 8udx\ dx

The boundary conditions are derived for the physical
system shown in Fig. 3. Because of the large ratio of
surface area to chamber volume in typical pressure
capsules (in this case, approximately 320: 1), the change
of state in the capsule reservoir is assumed ‘to be
isothermal. The boundary condition for the flow out of
the capsule (x=0) is obtained by equating the rate of
mass flow in the tubing [Eq. (3)] to the rate of change
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of mass in the capsule. This results in

ap wa! ap]
N I— , 6)
ot ]2:0 SV#PE—.’X—C 2=0 (

where V' is the capsule volume (assumed constant since
calculations! indicate only a few percent change on
account of diaphragm deflection).

The boundary condition at x=1 simulates the condi-
tion at a model orifice in a steady wind-tunnel flow,
that is, constant pressure. Thus

p] =constant. )
z==]

The initial condition in the pressure is taken as a
step function and is given by

p(0,x)=4,

#(0,)=B, ©

where 4 and B are constants. ,
Equation (5) represents the differential equation
of motion for the one-dimensional, quasi-steady, de-
veloped, viscous, compressible flow in capillary tubing.
The equation characterizes a nonlinear diffusion process
and has the same form as the heat equation with the

thermal conductivity being proportional to the tem-

4S. Timoshenko, Theory of Plates and Shells (McGraw-Hill
Book Company, Inc., New York, 1940), p. 60.



PRESSURE RESPONSE IN SUPERSONIC WIND TUNNEL

perature. Solutions®® of Eq. (5) have been presented
for initial conditions and boundary conditions not
applicable in the present case.

Nondimensionalized Equations of Motion and
Boundary Equations

The equation of motion and boundary equations are
nondimensionalized in order to study the important
nondimensional parameters which govern the flow. On
the basis of previous experimental information, the
characteristic pressure, length, and time are taken as
the reservoir pressure pg, length of capillary tubing /,
and response time of the system 7, respectively. The
resulting nondimensional equations are

Equation of motion:
P 1ya® prr aP\? aP
I o
o 8\P u X Xz

Boundary conditions:

at X=0 .
AP wya® prr flat\ OP
—EE) (5w
o 8\ u v X
at X=1:
P=1, 1

where P, X, { are the nondimensional pressure, spatial
coordinate, and time, respectively. From Egs. (9) and
(10) it is seen that two nondimensional parameters
appear. The parameter [(a?/B)(prr/u)] is termed a
dynamic similarity parameter and is found in both
equations, whereas the geometric similarity parameter
(la2/V) is found only in Eq. (10).

Analytical Solutions

Attempts to solve the differential equation of motion
and boundary equations failed and resort was made to a
numerical solution in the form of step-by-step integra-
tions. The equations are approximated by finite differ-
ences. Initially the derivatives were approximated by
straight line sequents but, after several steps were com-
puted using this method, it was found that the term

involving \ \
aP P
(Z) )
ax ax:

contains two terms of almost equal magnitude but of
opposite sign. This results in the subtraction of two
large numbers whose difference is relatively much
smaller in magnitude. In order to minimize the errors,
the curve of P vs X was approximated by parabolas.”®
The resulting equations in difference form are given as

( & Agthur S.Iberall, J. Research Natl. Bur. Standards 45, RP 2115
1950). -
¢ J. M. Kendall, “Time lags due to compressible-Poiseuille flow
resistance in pressure-measuring systems,” NOLM 10677 (1950).
TR, A. Willers, Practical Analysis (Dover Publications, New
York, 1948}, p. 310.
8 J. B. Scarborough, Numerical Mathematical Analysis (Johns
Hopkins University Press. Baltimore, Maryland, 1950}, p. 132.
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F16. 3. Schematic diagram of a typical pressure system.

PRESSURE SENSING
ELEMENT

Equation of motion:

1/a Pr
Py =P, j+§( )

P
2Piot-Pipy— P 1—~2P; o\ |2
<] ),
10 i
Pi;
+ ; (QPyo= Py —2P;
P 2P ) ] & (12)
o )i —— (12
T axe
Boundary equations:
at X=0
w/a* pr\ £
Po.i+1=P0.1‘+"‘(""' —-‘) (—)
S8\ u |4
Al
X Py, j(Pop1—Po)if—, (13)
AX
at X=1:
Py, j=constant=1, (14)

where the subscripts ““i”” and ;7 denote spatial stations
and time stations, respectively.

Three numerical solutions ‘were calculated for the
idealized system shown in Fig. 1. The idealized system
is used because the discontinuities in the tubing area
(Fig. 3) at the junctures of the orifice and connecting
tubing with the capillary tubing cannot be handled
readily in the step-by-step integrations. As a result
three cases of the idealized system were computed
numerically and compared with experiment in order to
determine whether the derived equation of motion and
boundary equations approximated the actual flow
process in the tubing. The orifice and connecting tube
can be considered as end effects; that is, the orifice
could be replaced by an additional length of capillary
tubing and the connecting tube by an additional volume
in the pressure sensing unit. These effects are handled
conveniently by experiment rather than as additional
complications in the theoretical equations. The initial
steps in the numerical integration were made with very
small time increments (0.000001 sec) in order that the

t The derivative aP/9X, at X =0, was computed by two
methods. A plot of P #s X was made and dP/8X at X=0
measured graphically. Also a plot of aP/3X vs X was made and
faired into X=0. Both methods proved successful; thus, one
method served as a check on the other.
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Fic. 4. Block diagram of experimental apparatus.

step function in the pressure (initial condition) could
be approximated by derivatives resulting in negligible
Errors.

DESCRIPTION OF APPARATUS

The test apparatus was designed to simulate typical
supersonic wind-tunne!l pressure instrumentation sys-
tems. A block diagram of the complete system is shown
in Fig. 4.

The pressure capsule, developed at the supersonic
wind tunnel at the University of Michigan, is shown in
Fig. 5. This instrument, having a negligible time lag,
was ideally suited for this work. The capsule is machined
from 24 ST bar stock and has a diaphragm approxi-
mately 0.025 inch thick and 3 inches in diameter.
Calibrations of the capsule showed that the deflection
of the diaphragm at its center is linear with load
(pressure). The motion of the diaphragm is transduced
by a differential transformer whose linear range was
more than adequate for the range of diaphragm de-
flections encountered in these tests. Model or probe
tubing used in typical supersonic tunnel tests was
simulated by stainless-steel hypodermic needle tubing.
The connecting tubing, that is, the tubing ordinarily
used to join the model tubing and a differential mercury
manometer, was simulated by copper tubing since
rubber and plastic tubing were found to be too porous
at low absolute pressures. Figures 6 and 7 show the
simulated orifice assemblies. The pressure reservoir,
analogous to the test section (constant pressure) in a
supersonic tunnel, consisted of two tanks manifolded
together with a combined capacity of 22} cubic feet.
With this capacity runs could be made at reservoir
pressures of 5-mm Hg absolute with less than § percent
change in reservoir pressure under the most extreme
conditions in these experiments. The reservoir pressures
were maintained by means of a vacuum pump and a
Wallace and Terrian dial-type pressure gauge.

The electronic recording equipment shown in Fig. 4
consists of a Miller amplifier and power supply, linear
differential transformer in the pressure capsule, a cap-
sule compensating circuit, two Brush dc amplifiers, and
a Brush recorder. The power supply provides the oper-
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ating potentials for the tubes in the Miller amplifier and
also provides a 2-kc carrier voltage for excitation of the
bridge circuit formed by the Miller amplifier and the
capsule compensating circuit. The compensating circuit
serves three basic purposes:

(1) Resistance R; and condenser C; provide the
proper phase balance between the differential trans-
former and the carrier voltage originating in the power
supply.

(2) Resistance R, serves as a current-limiting re-
sistor in order to protect the transformer from excess
current.

(3) Resistances R; and R, provide two external
bridge arms which combine with the two arms built
into the Miller amplifier to form a bridge circuit.

The function of the Miller amplifier is threefold:
(a) the ac signal from the pressure capsule is first ac
amplified; (b) the amplified ac signal is then rectified
and then the detector, being phase sensitive, gives the
signal a sign (4 or —), depending on the motion of the
diaphragm being positive or negative; (c) the dc output
signal is then dc amplified. The output signal from the
Miller amplifier, being 4% volt, is then amplified by two

Fic. 5. Exploded view of pressure capsule.

dc amplifiers since 415 volts is required to drive the
Brush recorder pen full scale from the center of the
paper. In addition the two Brush amplifiers are neces-
sary for additional sensitivity.

EXPERIMENTAL PROCEDURE
Tests Conducted for Correlation with Theory

In order to compare the three numerical solutions
with experiment, three tests were made using the
idealized system shown in Fig. 1. Since the Brush re-
corder paper is only 40 mm wide, the desired sensitivity
over the entire absolute pressure range (e.g. atmospheric
to 20-mm Hg) could not be maintained. In order to
circumvent this difficulty the following procedure was
used : For the initial run the gain of the Brush amplifiers
was set so that the pressure change (atmospheric to
20-mm Hg) was traced out on approximately the full
width of the paper (curve a, Fig. 8). Atmospheric
pressure was then reintroduced into the lines and
capsule, and the gain increased so that a pressure of
100-mm Hg absolute in the capsule would correspond
to the top line on the recorder paper. This resulted in
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the pen being off scale against the mechanical stops
until the capsule pressure approached 100 mm, after
which the pen traced out the remainder of the run until
the equilibrium pressure of 20-mm Hg was reached
(curve b, Fig. 8). The same procedure was repeated for
succeeding runs, using full-scale deflection for top line
pressures of 50- and 21-mm Hg absolute {curves ¢ and d,
Fig. 8). A continuous curve of capsule pressure vs time
was obtained by plotting the data from the four
individual runs.

Tests Conducted to Show Effects of Important
Parameters

In typical pressure instrumentation in supersonic
wind-tunnel testing (Fig. 3), certain parameters are
considered as being of prime importance in determining
the response time characteristics of the system. These
parameters are listed as:

(a) orifice diameter dy;
(b) inside diameter of model tubing d;
(c¢) length of model tubing /;

F16. 6. Orifice assemblies.

(d) inside diameter of connecting tubing d;

{e) length of connecting tubing /.;

{f) local pressure at model orifice (reservoir pres-
sure) pr;

{g) initia] pressure in capsule reservoir and instru-
ment lines at time=0 pe;; and

(h) volume of pressure-sensing element V.

Since the time lag in any system will depend on the
capacity of the pressure-sensing element, it is obvious
that the volume of this unit should be designed with a
minimum capacity. For this reason the pressure capsule
used in these tests was designed with a volume which
is small compared to the combined volumes of the
capillary and connecting tube. The parameter (%) was
not varied but was held constant at its value of 0.106
cubic inch. The parameters (a)-(g) were chosen each
with a specific range corresponding to the values used
in present-day intermittent tunnels.

(a) Orifice Diameter dy

No criteria seem to be available in the literature as
to the optimum size of an orifice in supersonic flow
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Fig. 7. Details of orifice assembly.

research. Too large an orifice can cause disturbances to
the flow in the neighborhood of the body, whereas too
small an orifice can result in a large response time due
to restriction of the mass flow in or out of the lines. The
orifice length is usually quite small. A representative
value of 0.05 inch was used. Five orifice diameters
(0.045, 0.035, 0.025, 0.020, and 0.015 inch) were
selected.

(6) Moadel Tubing Diameter d

In most supersonic tunnels the model sizes are re-
stricted by relatively small test sections. The model
support through which the tubing is carried must also
be as small as possible to minimize interference effects.
The size of the model tubing (especially for the case
where a large number of pressure orifices are required) is
therefore limited. Five inside diameters were chosen;
namely, 0.063, 0.054, 0.042, 0.031, and 0.025 inch. The
tests conducted to show model tube diameter effect
were made with length as a parameter.

(¢c) Model Tubing Lengthl

The model tubing lengths (2, 4, 6, 8, and 10 feet)
were selected to cover the range for installations in
operation at the present time and also in anticipation
of the requirements of much larger supersonic tunnels
which inevitably will be built. The tests to show length

MECHANCAL STOP
- TA0mm Hg N\ POSITION

.l al \
"s/\ ] P
o b\'\ c \ d \\
\\ \‘\ ‘\\
\\ \\ N ™

\’ N - \\\ \\

_____ T

-EQUILIBRIUM PRESSURE {(20mm Hg)
Fs 50mm Mg Pg=2imm Hg

BOUNDARIES OF
RECORDER PAPER

R=100 mm Hg

F1c. 8. Recorder traces used to obtain desired sensitivity over
complete range of capsule pressures.
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Frc. 9. Orientation of capsule, pressure line, and orifice test setup.

effect were run using each of the five values of d for
each tube length and the remaining parameters held
constant as described in the tests for the evaluation of
the model tube diameter effect.

(d) Connecting Tube Diameter d. and Length I,

In most installations the pressure-sensing unit must
of necessity be located external to the tunnel. For this
reason a length of connecting tubing is required. In
order to investigate the parameters d, and I, three
values of d,=(0.067, 0.083, and 0.125 inch) and
I.= (0, 60, and 120 inches) were tested.

(e) Reservoir Pressure pr

Reservoir pressures, corresponding to the static pres-
sures measured on a model, were chosen with the
following values 50-, 30-, 20-, 15-, 10-, and 5-mm Hg ab-
solute. For blowdown tunnels using atmospheric pressure
as a stagnation condition, these pressures correspond to
test-section Mach numbers ranging for 2.42 to 4 for
isentropic flow. Each of the five model tube diameters
were tested with each reservoir pressure. The other
parameters (do=0.025-, I=24-, l,.=60-, d,=0.067-, and
peo="740-mm Hg) were held constant throughout this
series of experiments.

(f) Initial Line and Capsule Reservoir Pressure peq

The effect of changing the initial capsule reservoir
and line pressure will be to reduce the mass of air which
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F1c. 10. Typical brush recorder trace showing p. vs time
(1.05pr< pe=

ARNOLD L.

DUCOFFE
R LR
4000 Re,=2070 LBS /FT2 1]
: ——id=04025 INS. L
2000 - §=24INS. =
2
1000 PRn55.6 LBS /FT™ | |
| g e
600 |1 ‘
ﬁlé%l;l\l{\dENT Fic. 11. Compari-

S son of theoretical and
N experimental  pres-
sure variation in the
capsule reservoir.

100

o0
(o]

- /"i r':

PRESSURE~ POUNDS,/ 5Q FT
w
8

| : -
L 1
L EGULBRIM PRESSURE 5
I"i'|",1‘Hv
o Liii N S O O
0 02 04 06 08 10 12 14

TIME- SECS x 10"

R
(o]
i

must be evacuated before the system reaches equi-
librium. In the previous tests the pressure in the capsule
reservoir and lead lines was set at atmospheric pressure
merely for convenience in running the experiments.
The experimental setup for the condition wherein
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no connecting tube is used is shown in Fig. 9. The
pinchcock at the left is used to introduce any desired
pressure into the capsule reservoir and lines. The upper
pinchcock at the right simulates a quick-opening valve
for exhausting the air from the capsule to the reservoir;
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while the lower pinchcock serves as a means to adjust
the reservoir pressure in the 223-cubic foot tank.

REDUCTION OF DATA

As shown in Fig. 10 the capsule pressure approaches

the equilibrium (reservoir) pressure asymptotically. The
response time is defined as the time required for the
capsule pressure to reach within one percent of the
reservoir pressure. In order to obtain sufficient sensi-
tivity the top line of the Brush recorder paper corre-
sponds to a capsule pressure of p.=1.05pz. The starting
point is designated by A, the point where p.=1.01pz
by C, and the equilibrium value (p.=pz) by D.;The
response time (7) is then the distance between 4 and C,
measured as shown in Fig. 10, divided by the paper
speed (mm/sec).
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F16. 14. Spatial pressure distribution.

RESULTS

The variation of capsule pressure as a function of
time for the three cases computed numerically is shown
in Figs. 11 through 13 as solid lines, while the experi-
mental results are indicated on the same plots by circled
points. The step-by-step integrations were carried to
the point where p.=1.025pz; hence, the broken line
from p,=1.025pr to p.=1.01pr. The agreement be-
tween theory and experiment is quite satisfactory, indi-
cating that the approximations in the derived flow
equations and boundary conditions are justified. Spatial
pressure distributions in the tubing obtained in the
step-by-step integration procedure are presented in
Figs. 14 through 16 in which only a few of the actually
computed steps are shown. The curves give a qualita-
tive description of the manner in which the spatial
pressure distribution changes from that of a step func-
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Fi1G. 15. Spatial pressure distribution.

tion at zero time to essentially the condition of equi-
librium.

The effect of each parameter on the response time, 7,
is presented as a series of graphs in Figs. 17 through 23.

(a) Orifice Effect

The orifice effect is shown in Fig. 17 by a plot of
response time wvs orifice diameter, do, with tube diam-
eter, d, as a parameter. The results indicate that the
orifice size does not appreciably effect the response time
until the ratio of tube diameter to orifice diameter
approaches 2.5. As this value is exceeded the response
time as compared with the response time for no orifice
starts to increase rapidly as is evidenced by the curve
for d=0.063 in. The effect of decreased orifice size is
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analyzed as a restriction of the flow of air through the
system and thus as an increase in the response time.

(b) Diameter Effect

The effect of changing the model tube diameter is
shown by a plot of response time vs tube diameter with
length as a parameter in Fig. 18. From the graph it is
seen that the diameter of the tubing is very critical if
the response time is to be minimized. A change in
diameter has essentially two effects: (1) the capacity
of the system is altered, and (2) the rate of mass flow
through the system is changed. The effect of changing
the capacity of a typical system as a result of change in
the tube diameter is almost negligible (as will be shown
later). Hence, the increase in response time for decreased
tube diameters is attributed primarily to the restric-
tion of the mass flow through the system.

(¢) Length Effect

The length effect is derived from a crossplot of Fig. 18
and is shown in Fig. 19. Since the slopes of the curve
increase with decreased diameter, the effect of length
is seen to be more pronounced for the smaller diameters.

(d) Connecting-Tube Diameter and Length Effects

The results of varying the dimensions of the con-
necting tube are shown in Fig. 20. The connecting-tube
effect is twofold; (1) the connecting tubing contributes
the major portion of the capacity of the system, and
(2) it offers resistance to the flow through the system.
Referring to Fig. 20 for the case of d=0.063 in., one
notes that the curve for d,=0.067 has a larger response
time than the curve for d,=0.083 for the two lengths
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50 224
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30 P2 20mm. Hg
- 4 d= \
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Z6 —
b= ———0.042] |
w 4 N
2 .
o N ~—30.054
a — . [
ne —+0.063 -
14

00! 0.02 0.03 0.04 0.05
ORIFICE DIAMETER, dy-(INS)

Fie. 17. Orifice effect, dp.
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Fic. 18. Diameter effect, d.

l,=60 and 120 in. This is explained by the fact that
the d,=0.067 tube has almost the same diameter as the
model tube (0.063 in.). Thus, in this case the connecting
tube not only increases the capacity of the system, but
also gives rise to large viscous forces, thus restricting
the flow in the same manner as the capillary tubing.
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FiG. 19. Length effect, /.

The other connecting-tube diameters (d,=0.083 and
0.125 in.), being considerably larger than the model
tubing, influence the response time primarily by the
resultant increased capacity of the system. For the
other extreme in model-tube diameter (0.025 in.), the
effect of increasing the diameter, d,, is an increased ca-
pacity and an expected increase in response time.
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(e) Reservoir Pressure Effect

The effect of changing the reservoir pressure is pre-
sented in Fig. 21. The curves indicate that the absolute
value of the pressure has a large effect on the response
time. If we examine the equation of motion

ap/t=K[ (9p/0x)*+p(8*p/34%)]
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F1g. 21. Reservoir pressure effect, pz.

and boundary equation at =0

89/ 9 Jomo= K 1p(8p/0%) Jomo,
we find that the nonlinearities in the equations indicate
that, if the pressure is halved everywhere, the response

time is increased by a factor of 2. Referring to Fig. 21,
we find that, if we start with an initial line and capsule
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Frc. 22. Initial line and capsule pressure effect,
peo, pr=20-mm Hg.

pressure of 740-um Hg and a reservoir pressure of
20-mm Hg and then reduce the reservoir pressure to
10-mm Hg, the response time is approximately doubled.
It will be shown later that halving the instrument line
and capsule reservoir pressure has almost negligible
effect on the response time, As a result, it is evident that
the particular nonlinear character of the differential
equation of motion is substantiated by experiment.
We may also see from the equation of motion that the
term (dp/dx)? is always positive and for flow out of the
lines the term [p(8%p/9+%) ] will be negative. Thus, for
a given spatial distribution of pressure, p(z), at any
instant the amount the pressure decreases at each
spatial station for a given time increment will depend
on the absolute value of the pressure.

(f) Initial Line and Capsule Pressure Effect

‘The effect of evacuating the line and capsule reservoir
pressures to a value approaching the constant reservoir
pressure is shown in Figs. 22 and 23 for reservoir pres~
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Fi1G. 23, Initial line and capsule pressure effect,
peo, pr=10-mm Hg.
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sures of 20- and 10-mm Hg absolute, respectively. As is
shown in the graphs, the advantages of pumping down
are quite small unless the capsule and line pressures
approach the reservoir pressure within 1-mm Hg or less.
For the case of a pressure model where 20-30 leads
might be used the amount of time gained during any
run would be considerably less than the time required
to evacuate each line to the predicted pressure at each
orifice.

Experimental Errors

The reservoir pressures in the range 5<pz<20 (mm
Hg) were set within £0.1-mm Hg. For the range
20<pr<100 (mm Hg) the error in gauge reading was
#+0.20-mm Hg.

The lag of the Brush recorder pen under a step-
function change in voltage was measured to be 0.01 sec
for full-scale pen defection. Since the capsule pressure
changes in an exponential manner, the pen lag will be
considerably smaller, and is estimated to be of the order
of 0.003 sec for the most rapid pressure changes en-
countered in the experiments. The time required to
open the quick-opening valve (pinchcock) could not be
determined readily. However, the results of check runs
indicate that this time lag was so small that it could not
be detected. In any event, for each value of = for a
particular experimental setup at least two check runs
were made and 7 computed from an arithmetical
average of at least three readings.

CONCLUSIONS
Limitations of Theoretical Analysis

On the basis of the satisfactory agreement between
theory and experiment, we may conclude that the
initial assumptions of quasi-steady developed laminar
flow with isothermal changes of state closely approxi-
mate the flow conditions in the tubing. However,
several limitations must be imposed on the theoretical
development, since the theory is applicable over only
a specified range of the parameters chosen for investi-
gation.

(a) Over the chosen range of tubing diameter, the
condition of isothermal change of state is applicable;
however, as the tubing diameter is increased the thermo-
dynamic process involved becomes polytropic and
finally approaches the condition of an isentropic process.
No attempt has been made to analyze the transition
states between the isothermal and isentropic processes,
since most supersonic pressure systems fall well within
the range of diameters investigated.

(b) The assumption of continuum flow is applicable
until the reservoir pressure (or model-surface pressure)
drops below 20-mm Hg absolute (see Appendix). For
lower absolute pressures, the equation of motion for the
flow must be modified to account for the violation of
the no-slip condition at the boundaries of the tubing.
The slip condition is incorporated into the equation of
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motion by the introduction of an experimentally derived
effective coefficient of viscosity and is defined by the
ratio of the normally computed coefficient of viscosity
to a slip-flow correction factor. Free-molecule flow con-
ditions are probably never approached in supersonic
flow research (see Appendix).

(c) The assumption of fully developed laminar flow
is violated for two reasons. First, flow in tubing becomes
fully developed at a position many diameters down-
stream from the entrance of the tube; and second, for
the large pressure drop over the initial part of the
experiments the flow may be turbulent.

Further limitations on the theory are the end effect
where the air exits from the tubing into the reservoir
and the expansion effects where the tubing is coupled
to the pressure reservoir and the capsule.

Since the effects previously described cannot be
handled conveniently in the theoretical development,
discrepancies between the theory and the experimental
data will exist.

Limitations of Experiments

(a) The experimental setup was designed to repro-
duce actual pressure systems with the exception of 90°
bends inside the pressure models, which are necessary
in order to take the model leads through the sting or
support. These bends are usually fairly gradual (large
radii of curvature) and the effects are considered to be
negligible.

(b) In the experimental procedure the pressure drop
across the tubing was chosen so that air flowed out of
the capsule reservoir at all times. Thus, no information
is available on the response time for air flowing in the
opposite direction. The technique is justified on the
basis of the differential equation of motion, wherein
the nonlinearity predicts that the response time is a
function of the absolute pressure of the system. Thus,
for a given reservoir pressure we see that line pressures
greater than the equilibrium pressure are more advan-
tageous on a response time basis than line pressures
below the equilibrium value. However, for small values
of the equilibrium pressures (below 20-mm Hg absolute)
some advantage is to be gained by initial line pressures
less than 20-mm Hg absolute because of the condition
of slip flow at the boundaries.

(c) The experimental results apply only for pressure-
sensing elements having an infinitesimal mechanical
response time. For systems employing manometers, the
dynamic and viscous effects of the fluid columns will in
some cases increase the response time considerably.

Criteria for Minimum Response Time

The following criteria in the choice of suitable param-
eters are presented for the design of pressure instru-
mentation with minimum response times:

(a) The orifice diameter should not be less than one-
half the model-tubing diameter, with slight advantage



PRESSURE RESPONSE IN SUPERSONIC WIND TUNNEL

to be gained as the orifice diameter approaches the
tubing diameter.

(b) The model tubing should be made as short as
possible, incorporating the largest inside diameter that
is feasible. :

(c) Connecting tubing should be short, with the in-
side diameter lying between 1} to 13 times the inside
diameter of the model tubing.

{(d) The capacity of the sensing-unit reservoir should
be minimized.

(e) The advantage of pumping the initial reservoir
and line pressure to a value close to the model-surface
pressure is quite small unless the initial pressure
approaches the equilibrium pressure to within I-mm Hg.

APPENDIX
Criteria for Slip Flow and Free-Molecule Flow
Slip Flow

The equation of motion for steady, isothermal, de-
veloped flow is derived from Eq. (5) by setting dp/8t=0
and is given by

(8p/0x)*+p(6°p/ 92%) =0, (15)
the boundary conditions being
p=po at x=0
p=p1 at zx=L (16)
The rate of mass flow, »',% is then given by
m'= (wa*/16pkl) (p— p1b), an

where £ is the proportionality constant in the isothermal
equation of state. The derivation of Eq. (17) is based
on the assumption that the coefficient of viscosity, #,
isa constant, i.e., proportional to the temperature which
is constant in an isothermal change of state, and that
the condition of no slip at the walls of the tube is valid.
The assumption of a constant coefficient of viscosity at
moderate and high pressures is predicted by kinetic
theory.® However, the failure of Eq. (17) at low pres-
sures is explained by the failure of the no-slip condition
at the walls rather than on the basis of a variable
viscosity.

Under the conditions of small pressures, the condition
of no slip at the wall is violated,* since the coefficient
of viscosity now becomes a function of the pressure.
The derivation of Poiseuille’s law is modified in that
the velocity at the wall is taken as #, instead of 0 when
the mean free path of the molecules is comparable with
the tube radius. The resulting tangential force, Fr, on
the wall, which for the condition of no slip is written as

Fr=p(du/dy) Jmo, (18)

8 E. H. Kennard, Kinetic Theory of Gases (McGraw-Hill Book
Company, Inc., New York, 1938}, p. 292.

0§, Dushman, Scientific Foundations of Vacuum Technique
(John Wiley and Sons, Inc., New York, 1949), p. 84.
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is now modified and assumed proportional to %, and to
the surface area 4,
Fy'=eud, (19)

where the constant e is termed the coefficient of external
friction. Balancing the viscous and pressure forces over
an incremental length of tubing dl, we have

—wa’dp=F ¢’ =2xaeuydl, 20)

uo=— (a/2¢) (dp/d}). (21)

In order to determine the average velocity for the
condition of slip flow at the walls, we start with an
analogous expression® for #, given by

tto= 8(du/d%) Jomo= — $(d/dr) J o, (22)

where § is a constant called the coefficient of slip and
is defined by the relation $=p/e. The Poiseuille equa-
tion® for the velocity in a continuum flow, given by

w=(r*/4p) (dp/dx)+c logsr+c1, (23)

is now employed with modified boundary conditions
given by

which gives

u=uy at r=a,
du/dr=0 at r=0. (24)

Substituting these boundary conditions into Eq. (23)
and employing relationship [Eq. (22)7], we have

2dp a®dp Sadp

B=——

dudr dudr 2udx

(25)

or more simply
u=(1/4p} (r*~a*—28a)(dp/dx). (26)
The mass flowing past any cross section of the tube
per second is

m’=£ f 2mrudr,
kg

wat 8\ dp
m'=—— —-—(1+4—)p——~.

al dx

or

(27)

The integrated form of Eq. (27) is identical to that of
Eq. (17), except for the additive constant (48/a).
Thus, we may write

™ pi—p) (14— (28)
m’= po _ }9 ( ""'),
6u O\ a
Maxwell suggests that a fraction f of the gas molecules
striking the walls of the tubing would be reflected
diffusely ; that is, the molecules would suffer a complete
loss of their initial average tangential velocity. The
fraction 1—f of the gas molecules would be reflected
specularly; that is, with no change in their tangential

velocity. According to the predictions of kinetic theory,?
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the coefficient of slip can be written as
8=[(2/f)—1\m, (29)

where \,, is the mean free path of the molecules at the
mean pressure in the tubing. Thus, we may write for
Eq. (28)

Tat 2 Am
m’=—(p02—p12)[1+4(——1)—]. (30)
16ul f a

From kinetic theory and Maxwell’s distribution of
molecular velocities the mean free path! is given by

An= (w/200)}(u/ pm), (31)

where p; is the gas density at 0.001-mm Hg and p, is
the mean pressure of the flow. Substituting Eq. (31)
into Eq. (30), we have

m’=%(ﬁ02—plg)[l+4(g)*(§—I)H], (32)

where H represents the term [/ pna(p1)¥]. Examination
of Eq. (32) indicates that the slip-flow equation is
essentially the Poiseuille equation (17) multiplied by a
correction factor which assumes importance as the
ratio, (A../a), of the mean free path to the tube radius
increases and also as f becomes small (smooth walls).
Experimental datal! for the determination of the factor

w\1/2
{+G) Gl
2/ \f
which is denoted by F for flow in copper capillary
tubing, is presented in Fig. 24. The tests were run using

air as the flow medium, with tube radii of 0.0512 and
0.0313 inch. The effect of slip is accounted for by
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defining an effective viscosity which is given by the

relation
(33)

The factor H can be simplified for ease in interpreting
Fig. 24 by substitution of appropriate values; it re-
duces to

us=u/F.

H=4.10/pma, (34)

where p. is the mean pressure (po+#1)/2 in microns
of mercury (1 micron=0.001-mm Hg) and ¢ is the tube
radius in cm. In the theoretical calculations for the
0.025-inch inside-diameter tubing and a reservoir pres-
sure of 20-mm Hg, H is found to be

4.10

= =0.00647.
20 000X0.0125X 2.54

Referring to Fig. 24, the factor F is found to be approxi-
mately 1, so that no correction for slip is necessary.
However, for a reservoir pressure of 5-mm Hg, the value
of H would be increased to 0.0259 and from Fig. 24 the
value of F is seen to be 1.22, so that slip-flow correc-
tions are necessary.

On the basis of the above calculations it can be seen
that slip-flow corrections are not necessary for the
numerical solutions, since the smallest reservoir pres-
sure investigated was 20-mm Hg. However, in those
experiments where the reservoir pressure was set at 3-,
10-, and 15-mm Hg, slip flow probably occurs in the
smaller-diameter capillary tubes.

Free-Molecule Flow

At very low pressures the internal friction of the
fluid becomes very small because the mean free path
of the molecules becomes large compared to the radius
of the tubing. Under these conditions the collisions
between molecules are very infrequent and may be
neglected. This assumption? is valid if the mean pressure
in microns (10~° mm Hg absolute) is less than the
reciprocal of the tubing diameter in inches,

Pu<1/2a. (35)

For the case of supersonic wind-tunnel testing, where
the mean pressure might be as low as 5000 microns and
the tubing inside diameter may be as small as 0.020
inch, it can readily be seen that free-molecule flow is
not approached. That is,

Pm(=5000)>>1/2a(=50).



