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Computations of three-dimensional Rayleigh-Taylor instability
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The fully three-dimensional deformation of an interface between two fluids resulting from a
Rayleigh-Taylor instability is studied numerically in the limit of weak stratification. The
Navier-Stokes equations are solved by a finite difference method, and the interface is kept
sharp by front tracking, The difference between the large-amplitude stages of flows initiated by

two- and three-dimensional perturbations is discussed.

The Rayleigh~Taylor instability, where a heavy fluid
falls into a lighter, underlying fluid, is one of the classical
instabilities of fuid mechanics. It is the prototype problem
for fiuid mixing induced by unstable stratification, and as
such, is of similar importance as the Kelvin-Helmholtz in-
stability is to fluid mixing induced by a shear flow. Because
of its fundamental importance, it has been the focus of many
studies in the past, starting with Rayleigh late in the last
century.! In addition to 2 number of analytical studies, most
confined to early times and small amplitudes, several excel-
lent experiments have been performed to investigate various
aspects of the problem. We only mention the work of Read,”
who focused on the statistical properties of mixing as a result
of the growth of many initial waves, and Talbot and Jack-
son,> who considered viscous fiuids as a model for the forma-
tions of salt domes.

The Rayleigh-Taylor instability has also been a favorite
topic of computational scientists, and a large number of sim-
ulations have been reported. Most calculations have as-
sumed inviscid flow (or at least very small viscosity}, and
the evolution of a single initial wave to a large amplitude is
now fairly well understood for two-dimensional or axisym-
metric flows. The early caiculations by Harlow and co-
workers at Los Alamos, e.g., Daly,” laid the foundations for
such an understanding, and later work has confirmed and
extended their findings. For the so-called single fluid case,
where the lighter fiuid is of negligible density, the heavy fluid
falls down in thin pointed spikes, whereas the light fiuid pen-
etrates upward in big rounded bubbles. For a finite density
difference, vortices forma on the side of the spike. These vorti-
ces are stronger and have less downward motion as the den-
sity difference is reduced; in the limit of a vanishing density
difference, they remain stationary at the original interface.
More recent numerical studies have focused on the interac-
tion of the initial “structures” {(bubbles and vortices} and
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how the number and size of such structures change as the
flow evolves. Youngs,® using a method related to the marker
and cell (MAC) method of Harlow and Welch® and Trygg-
vason,” using a vortex method, show simulations of moder-
ate stratification where the flow is more vortex dominated;
GHmm et al.,® using a front-iracking method and Zufiria,”
using a modified form of the vortex algorithm described by
Tryggvason,” study bubble competition for strongly strati-
fied flows. In addition to numerical studies of the large-am-
piitude evolution, a number of models kave been proposed to
explain the general trend. Such models include Gardner ef
al.'’ and Zufiria'! for the single fuid case, and Aref and
Tryggvason'? for weakly stratified flows. For a review of the
Rayleigh-Taylor probiem, we refer the reader to Sharp.’?

Experiments on the Rayleigh-Taylor instability aimost
always involve a fully three-dimensional problem, and un-
like, say, the Kelvin—Helmholtz instability, there is usually
no phase observed to be predominantly two dimensional.
Although the importance of three-dimensionality is widely
recognized, see, for example, the discussion by Sharp," nu-
merical investigations of the large-amplitude stage have been
limited to two-dimensional {or axisymmetric) studies.
Here, we present fully three-dimensional simulations for
weakly stratified, viscous fluids and compare the evolution
resulting from a simple three-dimensional disturbance to the
evolution initiated by a strictly two-dimensional distur-
bance.

We solve the Navier-Stokes equation in vorticity form
by a finite difference method, second order in both time and
space. The density stratification is assumed to be small so
that the vorticity (vector) streamfunction equaticns can be
solved by a fast Poisson solver. The computational domain is
a rectangular box, periodic in the horizontal directions, and
with rigid, stress-free, top and bottom. The density interface
is assumed to remain sharp throughout the caleunlations. To
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keep the interface sharp, and prevent numerical diffusion or
spurious density oscillations, we explicitly track the inter-
face. The interface is divided into triangular elements whose
corner points are advected with the flow. At each time step,
the density field is constructed from the new position of the
interface and used to calculate the baroclinic generation of
vorticity. The front-tracking technique will be discussed in
detail elsewhere.'* In the simulations presented here, the dis-
tribution of elements on the interface, i.e., the front grid, is
not modified during the simulations. Such regridding is es-
sential for long time simulations, since stretched portions of
the interface are depleted of computational points and {al-
though usually less troublesome) elements accumulate on
compressed portions. The grid is kept fairly coarse, ie,
17X 17 X 33 meshes. Two-dimensional simulations suggest
that this adeguately captures the characteristics of the evolu-
tion, and although the actual numbers do change slightly
under grid refinement, the gualitative structure of the solu-
tion remains the same.

Here we limit ourselves to simple initial conditions. In
two dimensions, the addition of two waves of the same length
corresponds simply to a phase shift, so the interaction must
be between waves of different wavelength. In three dimen-
sions, the waves can have a different orientation, so the ini-
tial conditions can contain waves of the same wavelength but
different direction. To address the effect of such additional
modes, we compare the large-amplitude evolution of an in-
terface perturbed by a single harmonic wave, cos(2wx/L},
to the evolution of an interface perturbed by
0.5fcos(2mx/L,} + cos(2ay/L,) . In order to keep the in-
itial growth rate the same, the total wavenumber must be the
same, soweselect L=1land L, =L = V2. For a wave of
this dimension, corresponding to the most unstable wave-
length, the nondimensional viscosity is v/ AgL > = 0.024
(see Chandrasekhar'?).

In Fig. 1, we show the evolution of the interface for the
three-dimensicnal perturbations at nondimensional times
(t/Ag/L)2.0, 2.5, and 3.0 for a viscosity corresponding to
the most unstable wave. The initial disturbance of the inter-

FIG. 2. The large-amplitude stage for a single initial mode. Here ¢ = 2.75.

face is such that a “blob” of heavy fluid falls down in the
center, and the light fluid rises in the corners. As the top fluid
penetrates the light one, baroclinically generated vorticity
forms a closed vortex ring around this blob and starts to rofl
up the interface. Since the evolution is entirely symmetric
with respect to the heavy and the light fiuid in the weakly
stratified limit, the same process takes place for the rising
light fluid.

The large-amplitade stage for an interface perturbed by
a two-dimensional disturbance, but with the same linear
growth rate, is shown in Fig. 2, at time 2.75. The develop-
ment of the initial wave follows the pattern familiar from
two-dimensional studies; two counter-rotating vortices form
at the original interface and remain stationary as the heavy
and the light fluid penetrate each other. The amplitude ver-
sus time for both cases is plotted in Fig. 3. Initially, the
growth is the same, since the waves in both cases are still
almost linear. As the interface enters the nonlinear stage, the

FIG. 1. The evolution of an interface disturbed by two modes. The nondimensional times are 2.0, 2.5, and 3.0.
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FIG. 3. The amptitude versus time for the runs in Figs. I and 2. Two-dimen-
sionaj disturbance: —; three-dimensional disturbance:- - -,

growth of the three-dimensional disturbance is considerably
larger than that for the single wave disturbance.

The major difference between the two- and three-di-
mensional evolution is due to the guite different vortex strac-
ture of the large-amplitude stage for different initial pertur-
bations. When there is only one wave, the evolution is two
dimensional, and the vorticity field consists of two counter-
rotating vortices that are constrained by symmetry to re-
main at the original interface. For the three-dimensional dis-
turbance, the large-amplitude solution consists of vortex
rings that propagate away from the original interface. Since
the major portion of the vorticity now advances with the
biob, in addition to the curvature effect of a ring vortex, the
blob propagates considerably faster into the other fluid than
int the single mode case where the vorticity remains behind,
confined to straight vortex filaments. To bring this point out
more clearly, in Fig. 4 we have plotted the second moment of
the enstrophy (vorticity squared}, normalized by the total
enstrophy times the square of the maximum amplitude, or

§v(z~z5)0* dv

2 2
(Z - ZO)mafoa) v

0=

for the run in Fig. 1 (fully three-dimensional disturbances)
as well as the run in Fig. 2 (two-dimensional disturbances).
Here, 7, is the mean elevation of the original interface. Note
that €} would be unity if all the vorticity is located at z_,,
and its smallness is a measure of how close the vorticity stays
to the symmetry line. Obvicusly, this plot confirms that vor-
ticity is located farther from the symmetry line for the fully
three-dimensional case than in the two-dimensional run,
Theevolution in Fig. 1 is greatly affected by viscosity; in
particular, little roll-up has taken place at the last time
shown. To address the effect of viscosity, we repeated this
run with ten times smaller viscosity, and the results are
shown in Fig. 5, for nondimensional time 2.5. The amplitude
is considerably larger than in the more viscous case, and the
interface now folds over on the side of the upward and down-

658 Phys. Fluids A, Vol. 2, No. 5, May 1890

¢.500

0.333 -+

AN
N\ e
<C3 N L

e
\'\»
\”~‘
\\~RJ

0.167

J
06.000 - — . : - —

0.00 1.3 267 4.00

Time

FIG. 4. The second moment of the vorticity, normalized as described in the
text, for the runs in Figs. 1 and 2. Two-dimensional disturbance: —; three-
dimensional disturbance: - - -,

ward moving blobs, suggesting the beginning of the forma-
tion of rolied-up vortices.

The results presented here suggest that, at least for small
stratification, the evolution of the large-amplitude stage may
differ somewhat from that predicted by a two-dimensional
simulation with simple initial conditions. However, as em-
phasized by several investigators’*%!® the single wave initial
condition may only teli part of the story. At larger ampii-
tudes the interaction of the initial *“‘structures” can modify
the long-time evolution substantially.

This brief study is only a first step in 2 more comprehen-
sive investigation of the large-amplitude, three-dimensional
Rayleigh—Taylor instability. The interaction of more modes,
in particular, subharmonic instabilities, as well as the effect
of finite density stratification, are currently being investigat-
ed and will be reported in a later publication.

FIG. 5. The large-amplitude stage for a two mode initial condition, and ten
times smaller viscosity than in Fig. 1. Here 7 == 2.5.
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