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The velocity and temperature distributions inturbulent buoyant induced by a line source or point source
of heat are calculated by assuming the eddy viscosity and eddy diffusivity to be constant in any cross
section of the plume. Two solutions in closed forms are obtained for the two-dimensional plume,
corresponding to turbulent Prandtl number o equal to 2/3 and 2. Two such solutions are also obtained for
the round plume, corresponding to o equal to 1.1 and 2. The solution for o =2/3 is compared with
previous measurements for two-dimensional plumes, and the solution for o =1.1 is compared with
previous measurements for the axisymmetric plume. The analytical and experimental results agree well in
the two-dimensional case, and satisfactorily in the axisymmetric case.

. INTRODUCTION

It is well known that when a flow is turbulent the as
yet un-resolved problem of closure prevents any rigor-
ous analytical solution for the velocity field. In attempt-
ing to give approximate analytical solutions for turbulent
flows, Prandtl® gave a mixing-length theory which Toll-
mien® applied to the calculation of the velocity distribu-
tion in jets, When compared with the experimental re-
sults of FSrthmann,3 Kuethe,* and Reichardt, ® the cal-
culated results of Tollmien for the velocity are invari-
ably less than (although not by much) the measured val-
ues over the central part of the jet. A more serious ob-
jection to the application of the mixing-length theory to
jets is that the curvature of the velocity profile must
necessarily be infinite at the center of the jet. In other
words, the velocity profile has a cusp there. 1t is
strange that this fact has never been pointed out before.
Tollmien,? who solved the equation for the velocity dis-
tribution in the jet numerically, naturally could not have
noticed this point.

In 1942, Prandtl® proposed a simpler theory for the
calculation of the velocity profile in jets and wakes,
This was probably suggested by the experimental results
of Reichardt,® Immediately afterwards, Gortler? ap-
plied this simpler theory to the calculation of velocity
distributions in two-dimensional and round jets. The
results of his calculations agree much better with all the
experimental results in the core of the jets, but near the
edge or edges of the jets Tollmien’s calculations with
the mixing-length theory seem to give better agreement.
This is perhaps not surprising, for it is near walls and
other regions (such as the edge of a jet) of significant
variation of turbulent-transport coefficients that the mix-
ing-length theory can be expected to give better results.
The simpler theory of Prandtl presumes a constant eddy
viscosity at each jet cross section, varying only with
the longitudinal distance along the jet. The greatest
virtue of this simpler theory is that there is no infinite
curvature of the velocity profile at the center of the jet,
and its greatest advantage is the simplicity with which
it can be applied, as so well demonstrated by Gortler.”

Confirmation of the validity of the simpler theory of
Prandtl in the core of jets (indeed in the core of wakes
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or pipe flows) came from Laufer’s measurements,®
which clearly showed that the eddy viscosity in the core
of turbulent flow in a circular pipe is constant, although
it varies drastically near the wall of the pipe, and that

it varies with the Reynolds number. We now know that
Prandtl’s simpler theory can be confidently applied to
the core of jets, wakes, and flows in pipes and channels,
with the expectation that near the edges of jets and wakes
and near the walls of pipes and channels the theory can-
not be expected to give good results.

In this paper, we shall apply Prandtl’s simpler theory
to the calculation of velocity and temperature distribu-
tions of turbulent buoyant plumes, much as Gortler has
applied it to the calculation of the velocity distribution
in turbulent jets. After the analyses are given, the cal-
culated results will be compared with the available ex-
perimental results of Schmidt,® Rouse ef al.,!° and
Yih. 11,12

Il. TURBULENT TWO-DIMENSIONAL BUOYANT
PLUME

Let x be measured vertically upward from a line
source of heat along the center of the buoyant plume
above that source. With the location of the source as
the origin, v is measured in a horizontal direction nor-
mal to the line source. We shall use « and v to denote
the velocity components in the directions of increasing
x and v, respectively, g to denote the gravitational ac-
celeration, € to denote the kinematic eddy viscosity, o
to denote the Prandtl number for turbulent flow, i.e.,
the ratio of € to the eddy diffusivity., The ambient at-
mosphere will be assumed uniform, with a constant
specific weight y,, and the difference between the specific
weight 3 in the plume and v, will be denoted by Ay.
Then, the boundary-layer forms of the equation of mo-
tion and the equation of heat diffusion are

uu, + vuy = €uyy —gAV/YD’ (1)
and
8 3 82
—_ —Ay=¢g-! Ay, 2
uaxAHvay v=eo gz hy (2)

In (1) the subscripts x and v indicate partial differenti-
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ation, In writing (1), it is tacitly assumed that the pres-
sure distribution in the entire atmosphere is hydrostatic,
The equation of continuity is

u, +v,=0, (3)
so that a stream function ¢ exists, in terms of which
u=9,, v=-1y, (4)
The boundary conditions for » and Ay are
v=u,=0=(8/3y)Ay at y=0, (5)
P is finite and Ay=0at y=+=, . (6)

Let the strength of the line source per unit length be
measured by G, so that

¢=- [ usyay, )
if longitudinal diffusion is neglected, as in (2). Indeed,
using (3), (5), and (6), we can obtain (7) by integrating

(2).

A dimensional analysis shows that x(G/p)'/?® has the
dimension of kinematic viscosity, Hence, we can as-
sume, in the spirit of Prandtl’s simplified theory,

€= x(G/p)'/3, (8

where p is the density of the ambient fluid and A is a
dimensionless constant to be determined from experi-
mental data. With (8), it can easily be verified that a
similarity solution is possible if we make the following
transformation:

b=(G/p)3x f(m) , (9)
Ay == x Y pG?)30(n), (10)
n=v/x. (11)

Equations (4) and (9) give
u=(G/pV3f'(m), v==(G/p)*'*(f-nf").

Then, (1) and (2) become, after some straightforward
calculations,

(12)

—fF =M 48, (13)
~o(8f) =\8", (14)
The boundary conditions become
f(=o0, f""(0)=0, 6(0)=0. (15)
f(x) is finite, 8(+<)=0, (18)
Let
f=AtanhBry; (")
then, (14) gives
8=Csech™Bn, m=Ac/BAx. (18)

There are two possible solutions, In case 1, (13) is sat-
isfied if

0=2/3, A=3Bx, m=2, C=6B%"Z, (19)
The integral relation (7) now has the form

f fredn=1, (20)
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Equations (17), (18), (19), and (20) give, after some cal-
culations,

AC=3/4.
Then, (19) gives

24B°\3=1, (1)

which determines B in terms of A, Then, A and C are
also determined in terms of x, by (19).

In case 2, a similar calculation gives

0=2, 128B°)\°®=15, A=2B)\, C=15/32B), (22)

by which A, B, and C are determined in terms of .

It is not known what effect the molecular Prandtl num-
ber would have on the “turbulent” Prandtl number, but
the latter must be closer to 1 than the former. Indeed,
we should be quite contented with a solution with o=1,
The closest o for which we have a solution in closed
form is 2/3. We shall use the solution to compare with
existing data and to determine X. Since

u=(G/p)*/*ABsech?Bn,
the point of inflection of the velocity profile is at
Bn=0.881.

The measurement of Rouse et al,!? gave

1/3 2
N, - _ifm
(G) “‘l'aoe"p[ 2(0.125)]

x3 1/3 1 n 2
(ﬂ) AV‘"Z‘GexP[ﬂ(o.uo)]

Thus, at the point of inflection of the experimental ve-
locity profile =0.125, so that we obtain

B=17.051.

Then, for case 1, where 0=3, we obtain from (21) and
(19), very closely,

A=0.01337, A=0.282, AB=1.99, C=2.66.

Comparing 1, 99 with 1, 80 and 2. 66 with 2.6, we see
that it is rather reassuring that the calculation could
produce rather good agreement, considering that our o
is not 1 but 2, Near the edge of the plume however, the
similarity solution gives consistently higher velocities
and temperatures than the experimental values of Rouse
et al 10

Hl. TURBULENT ROUND BUOYANT PLUME

The point source of heat is now the origin. The x axis
is still vertical, but the radial cylindrical coordinate r
now replaces y, so that the symbol v now denotes the
radial velocity component. The meaning of u is un-
changed. The equation of motion and the equation of
heat diffusion are now, respectively,

€9 Ay
Utk + Vthy =2 o (ru,) ~-g ?—0— , (23)
9 3 € 9 9
MEA7+UW Ay—;3;<r§ A'y) (24)
The equation of continuity is
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3 8
8—y—(rv)+§(ru)=0,

which allows the use of Stokes’ stream function ¥, in
terms of which

u=(1/7),, v==Q1/7),. (25)
The boundary conditions are

u,=0=v=(3/87r)Ay at =0, (26)

¥ is finite and Ay =0 at r=, 27

The flux G is now defined by
G=~21 j rubydr . (28)
0
A dimensional analysis shows that the eddy viscosity can
be taken to be
€=XGx2/p)*/? (29)

according to Prandtl’s simplified theory for jets. As in
(2), we have used €/c for the eddy diffusivity for heat.

With (29), the differential system consisting of (23),
(24), (26), and (27) allows a similarity solution if we
make the following transformation:

¥ =3\MGx®/p)/ 3 f (), (30)
= 8y =3\*(pG*/x*)/ %6 (n), (31)
n=r/x.
Then,
u=3NG/px)"3f"/n, (32a)
v=\NG/px)"' 33f' - 5f/1), (32b)
and (23) and (24) become, respectively,
A=5F)Sf"/nY =f2/n=f""+n8, (33)
-50(f8) =(ne"). (34)
The boundary conditions become
f(0)=f'(0)=6'(0)=0, (35)
f(=) is finite, 6(=)=0, (36)

We try a solution of the form
f=B[1-(1+An")"], (37)

which gives, by virtue of (34) and the boundary condi-
tions on 6, the results

6=C/(1+APY", m=506B/2. (38)
Again, there are two possible solutions. In case 1,

15364°%

13 (39)

B=%, 0=1.1, m=3, C=

The number A can be related to A through the dimen-
sionless form of (28)

1am3f Flodn=1. (40)
0

From (40) we obtain
CA3=11/547, A23=1331/829427, (41)

Thus, only X needs to be determined experimentally.
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In case 2,
B=%,0=2, m=4, C=2564%2/25, (42)
Use of (40) gives
CA3=25/727, A*2®=625/184327, (43)

Again, the results for 0=1.1 (case 1) can be compared
with available experimental results, Equation (32a) can
now be written as

G 1/3
x
pxX

At the point of inflection of this u profile,

6AAB

(1+APR

n=(54)1/2,
The measurements of Yih!*!% gave
1/3 1 2
(%") u:4.7exp[—-§<——-—o 372) ] , (44)
x5 \1/3 1/ n ¥
-<p—G-2-> Ay—ll.Oexp[— E(m) ] . (45)
Thus,

(54)-1/2-0,072, A=38,58,
and (41) and (39) then give, in turn,
A=0.0151. 6)AB=3.8.

The value 3.8 is somewhat below the 4.7 in (44), It is
quite possible that the anemometer used by Yih was too
clumsy and not sufficiently accurate, and that the experi.
mental value 0.072 for the 7 at the inflection point is too
small. The lack of a computer to take accurate mean
values of # was also a source of error. (Yih read the
mean by eye,) Perhaps more accurate measurements
would give a maximum value for the left-hand side of
(44) closer to 4. As to Ay, we have, from (31),

= Ay =(pG¥/x®M332C(1 + ARY 3,

The value 3X*C can be calculated from the first equation
in (41), since A is known, and we have

2C=12.88,

compared with the experimental value of 11, In spite of
the lack of good agreement, it is still rather reassuring
that the values are as close as they are. Again, near
the edge of the plume the theoretical values for the ve-
locity and the temperature are consistently higher than
the experimental values, which are represented by (44)
and (45).

It is also satisfying that the x for the two-dimensional
plume and the ) for the axisymmetric plume are very
close to each other.

We now compare the analytic results with Schmidt’s
experimental data,?® which can be summarized in the
formulae (44) and (45), with 2,7 and 13,7 replacing 4.7
and 11,0, respectively, and 0.105 and 0. 099 replacing
0.072 and 0.084, respectively. Thus,

(54)1/2=0.105, A-18.14;
and (41) and (39) give

2»=0.0025, 6MAB=2.96, 3:C=7.178,
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The figure 2. 96 is quite near 2.7, but 7. 78 is quite far
from 13.7. The lack of good agreement may be related
to the fact that Schmidt’s data do not satisfy the momen-
tum equation obtained by integrating (23) from =0 to

r=oo,
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