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8. CONCLUDING REMARKS 

The theory we have been studying here may be 
extended in two ways: One may develop a topo­
logical generalization or an algebraic one. 

(1) In the case of a topological extension, (Ei)iEl 
and F are supposed to be topological vector spaces. 
We define then :F-continuous formal series of (Ei)ieI 
into F as being formal series of (Ei)ieI into F such that 
their kernels ((J(n.) define continuous monomial map­
pings of TIiEl Ei into F. For instance, in quantum 
field theory the "generating functional" 

IS expected to be a continuous formal series of 

c: [8, [JJ], where C is the field of complex numbers 
and 8 the space of rapidly decreasing functions. 
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(2) In the case of an algebraic extension, (Ei)ieI and 
F are no longer supposed to be vector spaces, but they 
are modules over a ring A (or A-modules). 
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A Green's function for the elastic wave equation, which satisfies certain boundary conditions on the 
surface of a homogeneous half-space, is derived by means of the Fourier transformation. This half-space 
Green's function is then applied to the computation of radiative effects due to the earth's surface when a 
radiating source is located on or within that surface. The results obtained are to be taken as an extension 
of a previous and similar formulation for the infinite medium due to Case and Colwell. 

1. INTRODUCTION 
A method for computing the elastic radiation from 

a small source in the earth's interior has been presented 
by Case and Colwell,1 This method, which assumes 
the earth to be an infinite medium, can be modified 
to include effects due to the earth's surface simply by 
replacing the (known) infinite-space Green's function, 
which is used, by an appropriate half-space Green's 
function. Our purpose here is, first of all, to obtain a 
representation for the half-space Green's function, and 
secondly, to demonstrate its applicability in computing 
corrections to the solution of Case and Colwell. 

Our method is straightforward. To obtain the de­
sired Green's function, we formulate the problem in 
terms of an integral equation, which equation is then 
solved by Fourier transforms. Our application of the 
Green's function then proceeds in a manner closely 
parallel to that of Ref. 1. The only complication lies 
in the fact that, once we choose a definite orientation 
for our half-space, the matrices which occur are not 
tensors, i.e., not rotation covariant. Hence tensor 
theory arguments, with the computational simplifica­
tions they often afford, are not available to us. 

The notation to be used here differs in several minor 
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respects from that of Case and Colwell. In particular, 
2-dimensional vectors will be denoted by an arrow: 

a == (al , a2), a = (a, a3) 

and we will use the convenient abbreviation 

We now integrate Eq. (2.6) over V, apply the diver­
gence theorem, and note Eq. (2.2). Upon renaming 
variables (and indices) and using the facts that 

(2.7) 
and 

0; == ~, i = 1,2,3. 
ox~ 

we obtain the desired equation 
The Fourier transforms of a function fer) with respect 
to 2- and 3-dimensional space will be denoted by r 
land], respectively, with the conventions .!tir, ro) = Gilr, ro) + J/2rlllk(r/)fzlr/, ro) 

l(k, X3) = J exp (ik . r)f(r) dr, 

/(k) = J exp (ik • r)f(r) dr. 

Note that we deal exclusively, and hence tacitly, with 
the Fourier transforms with respect to time. (It will 
become evident below that the inverse transform for 
the time variable is essentially as trivial here as it was 
in Ref. 1.) The summation convention is used through­
out. 

2. THE HALF·SPACE GREEN'S FUNCTION 

Integral Formulation 

We consider first a general region V of r-space, and 
seek thesolutionhi(t, ro) to 

-w2Phi(r, ro) = OkDiI,m(a)fmi(t, to) + t5ii t5(r - to), 

r,roEV, (2.1) 

with the boundary condition 

niDikm(a)fmi(r., ro) = 0, r8 E S. (2.2) 

Here, ni is (the ith component of) the inward normal to 
the region V with boundary Sand 

Dikm(a) == lt5i1,om + !-'(t5imOk + t5kmo;), (2.3) 

The infinite-space Green's function Gil satisfies 
Eq. (2.1) with V including all space: 

-w2pGi!(r, r') = 0kDik>n(a)Gm/(r, r') + t5i/t5(r - r'), 

all r, r'. (2.4) 

We now proceed in a standard way to multiply Eq. 
(2.4) by hi' Eq. (2.1) by Gil' and subtract. Using the 
easily verified identity 

GilGkDikmfmi - hiokDikmGm! 

= (l;[GkIDikmfmi - h;DikmGma, (2.5) 
we find 

GiI(t, r /)t5i,t5(t - ro) - h;(r, ro)t5i!t5(r - r/) 

+ 0i[Gkl(r, r/)Dikm(a)Jm;(r, ro) 

- fk;(r, rO)Dikm(a)Gm/(r, r')] = O. (2.6) 

X· Dk1m(a')Gm;(r', r). (2.9) 

A method for determining hi(r, ro) is clear from 
Eq. (2.9). Indeed, our problem clearly reduces to 
finding fli (r., ro); and, by taking the limit of Eq. (2.9) 
as r -- r., we obtain an integral equation which may 
be solved for f!i(r., ro). 

Specializing to the case in which V is the half-space 
X3 ~ 0, we denote the half-space Green's function by 
gii: 

gi;(r, ro) = Gilr, ro) + J df'glj(f', 0; ro) 

X [Ds/m(a')Gm;(r', r)]"'3'=O' (2.10) 

A certain amount of care is required in taking the 
limit X3 -- 0 of Eq. (2.10), since the integrand is 
singular on S. In fact, if we define 

1:sll(r, r') == Ds/m(a)Gmlr, r'), (2.11) 

then it easily follows from Eq. (2.4) that 

1:3/lr, 0+ ; 1',0) -1:s/;(r, 0- ; f', 0) 

= -t5Iit5(r - f'). (2.12) 

Thus, we define the "principal value" 

1:~Ii(r, f') == H1:s!;(r, 0+; f" 0) + 1:sli(r, 0- ; f',0)]. 

(2.13) 

Now let Xa -- 0 in Eq. (2.10). Using Eqs. (2.12) and 
(2.13), the result may be written as 

!gilr, 0; ro) = Gil', 0; ro) + S?P, ro), (2.14) 

where 

S?,(r, fo) == J df'g!l'I, 0; to)1:~Ii(1', f). (2.15) 

Equations (2.10) and (2.14) are the basic relations by 
means of which our problem is to be solved. 

Solution of the Integral Equation 

Because of the translation invariance of Go;. 
l:g/P' ,f) depends only on the difference f' - r. It 
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follows that the 2-dimensional Fourier transform of In Eqs. (2.26), we have introduced the abbreviations 
Eq. (2.14), 2 -2 2 

KI.t = k - k l •t • (2.27) 

reduces to the purely algebraic equations 

[lbi! + H:I(k)Jgli(i<, 0; ro) = Gi;(k, 0; ro). (2.17) 

Here, we have introduced a less cumbersome notation 
for tgli(O; k): 

H~/(k) == UHdk, 0+) + Hil(k, 0-)J, (2.18) 

where 

Hil(k, xa) == -liro 

dkae-ik9aJ31:.a/i (k; r' = 0). (2.19) 
27T -ro 

[The minus sign is occasioned by Eq. (2.8).J It is con­
venient to note here the identity 

Hi/(k, 0+) = H~/(k) - lbil , (2.20) 

which follows from Eqs. (2.12) and (2.13) and which 
will be useful below. 

Equation (2.17) has the solution 

gli(k, 0; ro) = IIA-1 1l zi Gu(k, 0; ro), (2.21) 

where II A-!II is the matrix inverse to 

II A IIi! = lbil + H~z(k). (2.22) 

We obtain H?z from the known! fact that 

J"I - , _ eik
•
r
,( kik j k~bij - kik;) 

v;;(k, r ) - 2 k2 k2 + k2 k2 ' 
wp - Z - t 

(2.23) 

where 
k~ = WZpl(A + 2p,), kt

2 = w 2plp, (2.24) 

and from Eq. (2.13). A straightforward computation 
yields 

27Tiw2pHik = Ak~bak[(kj - ba;ka)Iol + baj1izl 

+ p,{2(k~ - k:) 

where2 

X [(kk - bakka)(k j - ba;ka)I2 

+ (k; - bajka)bakla + (kk - bakka)ba;Ia 

+ bSkbajI4] + k:[t5s;(kk - bskks)Iot 

+ bakb3ilt + bkjluJ), (2.25) 

I (k~ x ) - .!!.- e-K1 ,.laJ31 
Ol,t , 3 - , 

K 1•t 

I (k ) - :r::' -KI •• laJal > 0 1I.t ,xa - ,/7Te ,Xa < , 
J2(k, xa) = [i7T/(k~ - k~)J(e-KdaJal_ e-K,'aJ31), 
Ja(k, xa) = [7T/(k; - km(Kle-ICllaJal - Kte-IC,laJal), 

Iik, xJ = [=Fi7T/(k; - km(K~e-ICllaJ.1 - K;e-K,laJal), 

xa ~ O. (2.26) 

From Eqs. (2.18), (2.25), and (2.26), we have 

o - -2). -2 
H;;(k) = taCk ,balki - baika) + tb(k )bai(k j - bsjks), 

where 
(2.28) 

a(k2
) = -i[AKt - (A + 2p,)Kd/(A + 2p,)KlKz + Kt), 

(2.29) 

b(k2
) = i[AKt - (A + 2p,)KZ]/(A + 2p,)KtCKz + /(t), 

whence 
(2.30) 

(2.31) 

=;::J 
(2.32) 

Equations (2.10), (2.21), and (2.32) provide the 
desired half-space Green's function. It is conveniently 
written in the form 

(2.33) 
where 

-1 
Silr, ro) = --2 

(27T) 

X f dk exp ( - ik . I)Hiz(k, xa) 

X IIA-111zm Gmik, 0; ro)' (2.34) 

3. APPLICATION OF THE HALF-SPACE 
GREEN'S FUNCTION 

We demonstrate the usefulness of the Green's 
function obtained above by applying it to the solution 
of an idealized problem similar to that considered by 
Case and Colwell. That is, we provide an integral 
formulation by means of which the radiation field 
from a small radiating cavity may be computed. As in 
Ref. 1, the problem is simplified by assuming to be 
given certain quantities which could in theory be 
determined (by solving an integral equation). Our 
refinement here consists, of course, in taking the earth 
to be a homogeneous half-space, rather than an 
infinite medium. It is to the effect of this refinement, 
i.e., to the difference between the half-space solution 
and thti solution of Case and Colwell, that we gener­
ally confine our attention. 
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General Formulation 

Let V be the half-space as in Sec. 2, with the ex­
clusion of a small cavity, located on or "above" S, 
with boundary B. Note that, ifr = (Xl' X 2 , x3) is with­
in B, then X3 ~ O. We wish to determine the functions 
u;(r) which satisfy 

-w2pui(r) = 0kDik".u".(r), rEV, (3.1) 

with the boundary conditions 

rES, (3.2) 

That is, the normal component of the stress is to 
vanish on the surface of the earth and to be prescribed 
on the surface of the cavity. 

Following a procedure closely analogous to that of 
Eqs. (2.1)-(2.9), it is a simple matter to show that 
Eqs. (3.1)-(3.3) may be restated in the form 

uj(r) = Ld2rB[gi;(rB , r)Fi(rB) 

- u;(rB)nkDki".g".;(rB, r)]. (3.4) 

Given the geometry of B, we could now, of course, let 
r ---+- rB and attempt to solve the resulting integral 
equation for ui(rB) (as in Sec. 2). Instead, we take a 
more practical approach, paralleling that of Case and 
Colwell, and assume the u;(rB) to be known. But first 
it is convenient to isolate the effects of the surface S, 
with which effects we are exclusively concerned below. 
Let u}O)(r) satisfy 

u~O)(r) = f/2rB[G;j(rB, r)F;(rB) 

- u;(rB)nkDikmG mlrB' r)]. (3.5) 

u}O) is precisely the solution investigated by Case and 
Colwell. Here, we are interested in the functions 

vlr) == ulr) - u~O)(r). (3.6) 

It is clear from Eqs. (2.33) and (3.5) that these are to 
be determined from 

vir) = Ld2rB[S;,crB , r)F;(rB) 

- ui(rB)nkDkimS".lrB, r)], (3.7) 

where Sij is given by Eq. (2.34). 
Our problem is solved by Eq. (3.7). The remainder 

of this paper is concerned with bringing this equation 
into an explicit form directly suitable for evaluation. 

The Case of a Source on the Surface 

We consider first a situation in which the com­
plexities of Eqs. (3.7) and (2.34) are considerably 
reduced: When the source cavity B is on the earth's 
surface S. That is, 

rB=(XlB,X2B'0+). (3.8) 

[The + sign is necessary because of the discontinuity 
of the integrand in Eq. (3.7) on S-cf. Eqs. (2.26). 
Note that our original differential Eq. (3.1) holds only 
for X3 ~ 0.] Recalling the identity (2.20) and Eq. 
(2.22), we see that the integrand of Eq. (2.34) here 
takes the form 

Hil(k, 0+) IIA-III I ". G".lk, 0; r) 

= [lIAllil - bil ] IIA-Ili lm Gmlk. 0; r) (3.9) 

= -Bim(k)G".lk. 0; r), (3.10) 

where we have introduced the quantities 

Bi". = IIA-III;m - bim • (3.11) 

The Bij are most conveniently given in matrix form: 

[

-abk: abklk2 -akl] 
IIBII = 2 ~2 abklk2 -abki -ak2 . (3.12) 

1 - abk 
-bkl -bk2 0 

The "surface-effects Green's function" is now given by 

1 
SU(rB' r) = --2 

(27T) 

X J dk exp (-if· rB)Bi".(k)G".,(k, 0; r). 

(3.13) 

Heretofore, we have been dealing with the total 
elastic disturbance. We now wish to compute the 
effects of the radiation field only. This may be accom­
plished,! assuming the origin of coordinates to be 
within B, by replacing in our formulation the exact 
infinite-space Green's function 

by its asymptotic form for Irl » Ir'l: 

(3.15) 
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where f == rllrl. Because of the very simple dependence 
upon r' in Eq. (3.15), there is no difficulty in obtaining 
the Fourier transform needed for Eq. (3.13): 

~ - -(277)2 1 [ (- ') ~ ~ ikzr Gilk, 0; r) = --2- - b k - kz- uiu;e 
477W p r r 

- b( k - kt ;)(k~bi; + 0io;)eiktr J. 
(3.16) 

Here, of course, 

b(k - kz.t{r/r» == b(k1 - kz. t(x1/r»b(k2 - kZ.tCx2/r» 
(3.17) 

and, since Eq. (3.16) is exact with regard to the radia­
tion field, we have omitted the error term. 

From Eq. (3.16), we see that the integral of Eq. 
(3.13) is entirely trivial. The result is conveniently 
written as 

SH(r', r) = S:;(r) exp (-ikzr. r') 

+ S!;(r) exp (-iktf' r'), (3.18) 

where 

(3.19) 

(3.20) 

and, similarly, 

If we also define the (known) vector quantities 

f~·z(f) == L d2r'F;(r') exp (-ikt.zf. r') (3.22) 

az == a( k~ ':) 
\ r 

and the symmetrized tensors 

T;/ == t L d2r'[u;(r')n;(r') + ni(r')u;(r')] 

X exp (-ikt.zr. r'), (3.23) 

then it requires only some elementary manipulations 
to write Eq. (3.7) in the form 

v;(r) = S:;(r)f!(r) 

+ ikz[J.rmS~;(r)T~n(r) + 2,ur;T:k(r)S~i(r») 
+ SL(r)f!(r) 

+ ikt[J.rmS~;(r)T~n(r) + 2,uri Tik(r)Si;(r»). 

(3.24) 

Note, from Eqs. (3.20), (3.21), and (3.24) (which are 
exact for the radiation field), that the transverse and 
longitudinal waves are unmixed when the source is on 
the surface. 

We could now proceed, as in Ref. 1, to make the 
small source approximation (r' E R ==> kur' « 1) and 
expand the exponentials in Eqs. (3.22) and (3.23): 

exp (-ikt.zr. r') = 1 - ikt.zf· r' + .. '. (3.25) 

Since this calculation would proceed exactly as in 
Ref. 1, we omit it, and instead consider the explicit 
form of the matrices S!jt. 

Consider first the longitudinal terms. According to 
Eq. (3.20), our first task is to substitute klfr for k in 
the matrix Rim' This entails the substitution [cf. Eqs. 
(2.27)] 

K Z = ikz cos 0, Kt = i(k: - k~ sin2 0)1, (3.26) 

where 0 is the angle between r and the positive z axis, 
and we have chosen the signs in Eqs. (3.26) essentially 
by means of a radiation condition (that we have 
chosen them correctly will become clear below). 
Using Eqs. (3.26) we compute 

C~[(C~ - C~ sin2 0)1 - Ct cos 0] - 2C~(C~ - C~ sin2 0)* 
(3.27) 

= - wCz cos O[Ct cos 0 + (C~ - C~ sin2 0)1] 

where the C's are the velocities of the longitudinal and transverse modes: 

C~ = (J. + 2p.)/ p. C~ = p./ p. (3.28) 

Similarly, 

bz == b( k~ ::) 
C~Ct[(C~ - C~ sin2 0)1 - Ct cos 0] - 2C~(C~ - C~ sin2 0)1 

= 
wCzCC~ - C~ sin2 O)l[(C~ - C~ sin2 0)1 + Ct cos 0] 

(3.29) 
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The matrix product in Eq. (3.20) is now easily computed and we find 

a1f1i\f3 

azf~f3 
b1f2 sin2 () 

-at(btktflf2 + flf2f3) 

at(btc: - f~C3) 

btf2f: 

(3.30) 

CICt[(C; - C~ sin2 ()f - Cl cos ()] + 2C~ cos () 
at = f t ' (3.32) 

w(C~ - C~ sin 2 
() [(C; - C7 sin2 

() + Cl cos ()] 

b
t 

= _ CzCt[(C~ - C~ sin2 
()f -Cl cos ()] + 2C~ cos () 

wCz cos ()[(C; - C~ sin2 ()t + Cz cos ()] 
(3.33) 

Actually, Eqs. (3.32) and (3.33) are correct only for 
() < ()e, where ()e is the angle at which the radicand 
vanishes: 

sin2 ee == C~(C~ = ft(A + 2ft). (3.34) 

For () > ()e' we must modify (3.32) and (3.33) by the 
replacement 

(C; - C: sin 2 ()t -+ i(C7 sin2 e - C;)t. (3.35) 

Equations (3.24) and (3.27)-(3.35) provide an 
exact description of the surface corrections at any 
point r to the radiation field from a surface source. 
We observe from (3.27)-(3.35) that 

(i) the matrices IIB(kz.ilr)11 are independent of w; 
thus, the inverse Fourier transform with respect to 
time is essentially as trivial here as it wasl in the in­
finite medium case; 

(ii) no radiation due to the surface appears (i.e., the 
radiation field of Ui coincides with that of u~O» on the 
axis f = 0; 

(iii) there may also occur, depending upon the rela­
tive magnitudes of J. and ft, cone-shaped regions on 
which either the longitudinal or the transverse parts of 
the radiation field due to the surface vanish. Specifi­
cally, we find from Eqs. (3.27) and (3.29) that IISt l1 is 
zero on the cone (which mayor may not be physical) 

cos () = A/2ft (3.36) 

and, similarly, from Eqs. (3.32) and (3.33), that the 
transverse terms do not appear on 

cos () = (J. + 2ft)/4ft. (3.37) 

We conclude our discussion of the case of a source 
on the earth's surface by considering the effects 

observed at a point r which is also on that surface. 
(The result here is atypically simple.) Thus, we set 

r = (Xl' X 2 , 0), () = !7T (3.38) 

and find, from Eqs. (3.27)-(3.33) that a z and ht are 
infinite. It follows immediately that 

and 
(3.39) 

o 
~). (3.~) 

Thus, the longitudinal waves on the surface are just 
as in the infinite medium case, while the transverse 
modes are modified by the correction term 

V;(Xl' X2, 0) 

k; eiktr 

= ---- (2bki - fJi) 
47TW

2p r 

x {fi(f) + ikt[AckT;nCc) + 2ftfnT;k(f)]}, (3.41) 

where i,j, k = 1,2 only and Va = O. 

The Case of a Source in the Earth's Interior 

While no serious difficulties occur in using Eq. 
(3.7) to determine the surface effects due to a source 
buried within the earth, it is not possible in the case to 
write the equation in any substantially simplified form. 
[This is because the identity (2.20) is no longer appli­
cable.] Therefore, we confine our attention here mainly 
to isolating the radiation field. 

In this regard, a minor difficulty is seen to occur. 
Equation (3.15), which we previously used to deter­
mine the radiation part of the field, is true for r » r', 
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but no such inequality holds if the source is deeply 
buried and if, as we have stipulated in Sec. 2, our origin 
of coordinates is on the surface S. Hence, first of all, 
we affect on Eq. (3.7) a displacement of the origin 
by a distance R in the Xa direction. Since the only 
relevant quantity which is not invariant under such a 
displacement is Hi/(ic, X3)' this modification is easily 
accomplished. We let [cf. Eq. (2.34)] 

Ri;(r', r) == -\ Jdk exp (-ik' f') 
(27T) 

x Hi/(ic, x~ + R) IIA-11l 1m Gm;{k, 0; r). 

(3.42) 

Then we can conveniently compute the radiation due 
to the surface S from Eq. (3.7) with SiJ replaced by 
Rij : 

v;(r) = Ld2r'[Rdr', r)FtCr') 

- utCr')nkDkim(8')Rm;(r', r)]. (3.43) 

Equation (3.16) is now directly applicable (i.e., we 
may again assume the origin is within B), and we find 
that for the radiation field, Eq. (3.42) reduces to 

X Hi/( kt ;, x~ + R) IIA-
1

( k = kt ;)IL. 
(3.44) 

Here we recall 

IIA-1 (k = kl.tCf/r»lIlm = ~/m - IIB(kl,t(fjr»II'm' 
(3.45) 

where the IIBII matrices are given by Eq. (3.12), with 
Eqs. (3.27), (3.29), (3.32), and (3.33). The quantities 
Hi! are obtained by making the appropriate substitu­
tion (k -+- k,.tCf/r» in Eq. (2.25); for example, a fairly 
typical longitudinal matrix element is readily found to 
be 

Hl1(kl;'X~ + R) 
= :~( k~{exp [ -ik, :3 (X~ + R)] 

(3.46) 

The other elements Hi; are similarly trivial to deter­
mine but lengthy to reproduce and it seems hardly 
worthwhile to exhibit them here. We leave our formu­
lation ofEqs. (3.43)-(3.46) with the following remarks: 

(i) for a small, deep source (R» x~), we might 
approximate by setting x~ equal to .zero in Eq. (3.46). 
Unfortunately, this does not yield any major com­
putational simplification. In fact, the only apparent 
situation in which the complexities of Ri; are drasti­
cally reduced is that for· which f = 0, i.e., when the 
observation point is directly above the source (it is 
easily verified that, in this case, most of the quantities 
R;; vanish); 

(ii) unlike the case of a surface source, the surface 
correction to the radiation from an interior source 
cannot be separated into terms propagating purely at 
the velocities of Eqs. (3.28) [cf. the square-root ex­
ponents in Eq. (3.46)]; 

(iii) finally, it is clear from Eq. (3.46) that we chose 
the signs properly in Eqs. (3.26). 

4. CONCLUSION 

Equation (3.7) gives a prescription, based on the 
half-space Green's function presented by Eqs. (2.33) 
and (2.34), for calculating the elastic disturbance due 
to the earth's surface when an arbitrary source is 
embedded on or within that surface. (The earth is 
idealized as a homogeneous half-space.) We have 
examined the consequences ofEq. (3.7) in some detail, 
especially in the case of a source on the surface, and 
shown in general how the radiation part of the field is 
to be distinguished. In the combination of our results 
with those of Ref. 1, a fairly complete prescription for 
the elastic half-space problem is obtained. 
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• The correspondence between the (~) signs and the (I, t) sub­
scripts in Eqs. (2.26) is such that the 1 goes with the upper (-) sign. 
Note also that the subscripts on kf and k: are not coordinate sub­
scripts [cf. Eq. (2.24)] and therefore are not summed over. 


