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Coherent intramolecular multiple scattering by free molecules has been investigated extensively in the 
literature. Scant attention has been paid to incoherent intermolecular multiple scattering, however, a 
potentially serious problem under some circumstances. Therefore, a treatment of this probler.n has be~~ 
carried out, taking advantage of simplifications afforded by the predominance of forward scattenng. Exp.hclt 
expressions of elementary form are derived for the differential cross sections corres~ndin~ to double, ~nple, 
and higher scatterings, and for the fractional contribution of each to the total IntensIty. Il~ustrattve 
calculations are presented for electrons diffracted at various sample pressures encountered In a recent 
diffraction study of collisionally assisted laser pumping of SF 6' 

I. INTRODUCTION 

Electrons are scattered by matter many orders of 
magnitude more strongly than are x rays or neutrons. 
This is sometimes a great advantage in diffraction 
studies of atomic and molecular structure (e. g., of low 
density vapors or exceedingly thin films) but it may also 
be a source of difficulty. Coherent intrasample multi­
ple scattering effects observed with x-rays only when 
crystalline samples approach macrodimensions1 can be 
seen in the scattering of electrons by individual mole­
cules. 2,3 Although a large body of literature exists on 
this subject including practical treatments3 for gas­
phase electron diffraction, little attention has been given 
to the potentially serious problem of incoherent inter­
molecular multiple scattering in gas-phase diffraction. 
Although some experimental and theoretical work has 
been published on small angle electron multiple scat­
tering in delocalized gas samples, 4 we are aware of no 
general treatment applicable to, and assessing poten­
tial errors in, gas-phase studies of molecular struc­
ture. A useful beginning was made by the Karles three 
decades ago5 based on empirical measurements ap­
plicable to a particular nozzle and sample. Since that 
time experimentalists have continued to be guided by 
rules-of-thumb checked by only occasional comparisons 
between structures determined by gas-phase electron 
diffraction and structures derived by spectroscopy. 

It turns out that a substantial amount of multiple 
scattering can be encountered under conditions not dif­
fering radically from those sometimes used. There­
fore it is appropriate to examine theoretically and ex­
perimentally the degree of multiple scattering to be 
expected under speCified conditions and to establish the 
influence of this scattering on the molecular parameters 
derived by the standard procedures. The theoretical 
information needed to carry out such a study has long 
been known. It consists of atomic cross sections, dif­
ferential 6 and integrated, 1 for electrons in the energy 
range normally used. The incentive prompting the pre­
sent research was the desirability of probing laser-
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pumped molecules by electron diffraction, 8.9 under col­
lisional conditions with vapor densities exceeding those 
normally adopted in structure studies. 

A practical theoretical treatment of intermolecular 
multiple scattering is developed in the present paper 
in a form convenient for comparing with experiment. 
An experimental test is reported in the following paper. 10 

II. THEORETICAL DEVELOPMENT 

A. Single scattering 

For the present purposes effects of chemical binding 
on charge distribution can be disregarded and the ex­
pectation value of the differential cross section for 
electrons singly scattered by a free molecule can be 
expressed in terms of the independent atom model as 

( t) 

where the superscript denotes single scattering and 
s = (41T/'\) sin(O/2). AtomiC scattering can be written, 
in the semikinematic approximation, \1 as 

91(s) == L [1ft 12 + (4/a8s4)SIJ (2) 
j 

in the usual notation, and molecular scattering, as 

(3) 

To simplify the treatment, we absorb the phase shift 
factor cos A.1)iJ into an effective mean-square amplitude 
l~, taking 

cos A.1)I! exp( - lj2JS2/2)::: exp( -1;s2 /2) (4) 

if A1)I! is not large. 

In the case of vapor molecules the averageintermolecu­
lar distances are so large and random that the above 
asymptotic (Fraunhofer) expressions can be used to de­
scribe radiation scattered by upstream molecules and 
encountering downstream molecules. Near-field 
(Fresnel diffraction) effects need not be conSidered. 
A full treatment, then, would begin by following the 
course of radiation scattered once and incident upon 
other molecules. Each scattered ray would be followed 

J. Chem. Phys. 78(12), 15June 1983 0021-9606/83/127159-06$02.10 © 1983 American Institute of Physics 7159 



7160 L. S. Bartell and A. Jin: Scattering of electrons. I. Theory 

as it experienced a rescattering by a new molecule 
through a new angle at with a probability distribution 
governed by Eqs. (1)-(4). Keeping a quantitative ac­
count of the net intensity distribution after these and sub­
sequent scatterings would be an undertaking of enormous 
complexity. The problem can be considerably simpli­
fied, however, when it is recognized that the scattering 
is predominantly in the forward direction and that the 
diffraction information sought occurs at scattering angles 
that are not large. It is reasonable to adopt a small 
angle approximation, used also by the Karles, 5 in which 
the Cartesian coordinates x and y of an electron striking 
the detector after experiencing a single scattering can be 
related to the momentum transfer components Sx and Sv 

by 

x = (>"L/27T)8, (5a) 

and 

Y = (>..L/27T)S. , (5b) 

where 8
2 = s; + s~ and L is the sample-to-detector dis­

tance. In the following we shall regard the connection 
between the Cartesian coordinates and components of 
s to be so direct that we shall lay aside precision in 
notation and use 9(s) and 9(x, y) interchangeably. 

A further device (which, while complicating the single­
scattering equations, greatly simplifies the multiple­
scattering integrals) is to represent the terms in Eqs. 
(2) and (3) as sums over Gaussians, or 

9). ,., L Ln exp( - cns2) (6a) 
n 

,., L Ln exp( - bn(x2 + y2) ] (6b) 
n 

and 

\ fl \ if, 1'" L M", exp( - dms2
) 

(7a) 

m 

,., L: M", exp[ -gm(X2 + ill , (7b) 

'" 
where the forms of s]. (s) and I fll I f j I are well approxi­
mated if enough Gaussians are involved. According to 
Eqs. (5a) and (5b) the constants in Eqs. (6) and (7) 

are related by 

bn = (27T/AL)2cn (8a) 

and 

(Bb) 

B. Multiple scattering integrals 

Inspection of Fig. 1 should make it clear that if an 
electron scattered by molecule 1 and on its way to (XI> 

YI) at the detector strikes a second molecule, the 
expectation value of the intensity scattered by molecule 
2 is proportional to 

[s.:<x, -XI, YJ - Y.) + S;(X, - xI> y, - Yin 

in our small-angle approximation. [Note that indices i 
and j bear no relation to those of Eqs. (2)-(4).] Ac­
cordingly, the differential cross section for double scat­
tering, averaged over the incident directions of the ini-

y 

~z 
X 

MOLl 

FIG. 1. Schematic illustration of a ray scattered by molecule 
1 and rescattered by molecule 2. In the absence of a second 
scattering. the ray would have struck the detector (photo plate) 
at x/t YI. 

tial scattering, is proportional to the integral 

ID(s) = 1:1 .. '" [S.l(XI'YI) +S;(XI,YI)]j 

x [91 (XJ - XI' Y1 - YI) +s;(x, - XI> YJ - YI) hdxJ dYI , 
(9) 

where the integration limits, while nonphysical, are 
consistent with the small angle model in its Gaussian 
representation. When the multiplication expressed in 
the integrand of Eq. (9) is carried out, it is apparent 
that the integral can be written as 

ID(s) =IAtA2 +IAjM2 + IlItA2 + III jll 2 • (10) 

Component IA jA2 is a smooth, double scattered atomic 
background falling less steeply than 91(8), while IA 1M2 

and 1M lAZ contribute molecular interference features that 
are weaker than those of S;(8). The last term IMjM2 , 

which should be minor, is hereafter neglected. Inte­
gration of the first term immediately yields 

The cross terms are 

= LLL MmL,IJ~n , 
k '" " 

where 

G!n = Lo" f .... exp( - ~k)(SinSRk)/SRkdxl dYI 

for the kth internuclear distance r k = rlj of Eq. (13). 
with 

~k = [gm + (21T/AL)2l~ /2] k(X~ + y~) 

(11) 

(12) 

( 13) 

+ bm[(x
J 

_Xj)2 + (y, - YI)2] (14) 

and 

(15) 

Integral G~n can be evaluated with the aid of auxiliary 
formulas published elsewhere12 with the result 
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" _ (>-..L)2 [Cn(Q!n - Cn)s2] Glftn -1T 2 exp Q" 1T Iftn 

( ) -1. [CnSr" ....!.L 
x cnsr" sm Q" - 2 mn CnS 

where Q!n = (en + dm + ~l~)". 

Higher-order scatterings can be treated in exactly 
analogous ways. For example, the principal triple 
scattering integrals are 

lAI A2A3(x '" y ,,) 

or 

and 

IAIA2113(x", y,,) 

(17) 

(18) 

= £ .. I. .... lAIkJ.(X"y,)9:'(X"-x,,y,,-y,)dx,dy, (19) 

or 

(20) 

(21) 

with 

and 

C. Cross sections for multiple scattering 

In the previous section we established the integrals 
governing the angular dependence of the differential 
cross sections for multiple scattering. In this section 
we evaluate K 2, K 3, etc., the constants converting the 
integrals into differential cross sections. According to 

~ (s) = K?!AI A2(S) , 

sI(s) = K.JAj A2A3(s) , etc. , 

(22) 

(23) 

where superscripts D and T refer to double and triple 
scattering. It is taken for granted that each scattering, 
whether first, second, ••• , nth, etc., has the same 

integrated atomic cross section, or 

= 0, 

where 

dO= sin8d8d4> 

= (>-../21T)2s ds d4> 

and where, via Eq. (6), 

0= 1T(>-../21T)2 L L. / Cn • 

• 
Accordingly, the Kn are 

K2= f" 91(s)Sds/J"IAtA2(S)SdS 
o 0 

= (oL2t l 
, 

K3= f" 91(S)Sds/l" IAI A2A;j(S)SdS 
o 0 

= (oL2t 2 
, 

etc., where 0 can be evaluated from Eq. (25). Ob­
viously, KI is unity. 

(24) 

(25) 

(26) 

(27) 

Differential cross sections for molecular multiple 
scattering can be written as 

9~(s) = 2K?!A
j
Il

2
(S) , (28) 

9~ (s) = 3K31AI AzIl3(s) , (29) 

etc., where the multiplicities 2, 3, etc., arise because 

lAllIz = 111'1>2 ' 

lAIA2113 = lAjll2A3 = llllA2A3 

which equalities can be demonstrated by changing vari­
ables, e. g., x, -x, = X,. etc. in the integrands involved, 
and noting the equivalence of form. 

D. Apportionment of multiple scattering 

In the foregoing we have developed the differential 
cross sections for successive scatterings, all of which 
lead to the same ratio of integrated nth-scattered flux 
to incident [(n - l)th scattered] flux. At a given pOint 
in the sample, however, the flux of once-scattered 
electrons is different from that of unscattered elec­
trons, and the flux of twice-scattered electrons is yet 
different. Furthermore, the apportionment of flux inci­
dent upon a given point in the sample between unscat­
tered, once-scattered, tWice-scattered, etc., radiation 
varies with position in the sample. The most elemen­
tary way to take this into account and to maintain flux 
conservation (which is not maintained in the usual Born 
kinematic approximation) is to take advantage of further 
simplifications offered by the small angle approxima­
tion. Let us consider the attenuation of the unscattered 
radiation as the beam progresses through the sample, 
and the attenuation of the singly scattered radiation by 
a second scattering, and of doubly scattered radiation 
by a third scattering, etc. as functions only of z, along 
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the incident directions. Ultimately, of course, after 
many scatterings, an electron has lost a sense of the 
direction from which it came and the z direction has no 
more relevance than any other direction. Suppose then, 
at any distance z, that fo(z) is the fraction of electrons 
having reached that point that have suffered no scat­
tering, that it (z) is the fraction having suffered one 
scattering, h(z) the fraction having suffered two scat­
terings, and so on. Conservation requires that 

(30) 

The differential equations governing the fractions fn(z) 
are 

dfo/dz= -aIPfo, 

dfd dz = al pfo - a2 pfl , 

dh /dz = a2 pft - a3ph , 

(31) 

(32) 

(33) 

etc., where the an are the scattering cross sections of 
Eq, (24), all henceforth taken as equal, and p stands 
for the number density of gas molecules at z. To sim­
plify notation let us write pz in place of f~ p(z) dz (a 
substitution that would be rigorous if the gas density 
were a step function). 

The solutions of the above differential equations are 

fo(z) = e-ap
& , 

ft(a) = apz-ap. , 

(34) 

(35) 

(36) 

which satisfy Eq. (30), as well. Upon leaving the sam­
ple the fractions are 

fn = [N ~ / n I ] e-N 
t , 

where 

N t = a j"" p(z)dz. 
-"" 

(37) 

(38) 

The total numher of scatterings, on the average, ex­
perienced by a given electron in traversing the sample 
is, then, 

., .. 
L nfn = L n [N ~ / n I] e-N 

t 
n.O n.O 

(39) 

Atomic cross sections are available7 and, hence, a is 
calculable for molecules. Moreover, p(z} is readily 
measurable for gas jets. Therefore it is simple to de­
termine Nt. In order for the conventional kinematic 
treatment to apply it might seem necessary for Nt to be 
much smaller than unity. It turns out that, in practice, 
Nt is often not that small. NeVertheless, as we shall 
see, the application of kinematic equations to structure 
analysis may lead to reasonably satisfactory results 
even in some cases with Nt as high as several scat­
terings per electron. 

Putting the foregoing relations together, we obtain for 
the combined intensity distribution 

(da/dO) net ~9'(s) 

( -I[..s D T = I-fo) fl1r(S) + 12 9 (S) + f3 9 (S) + ••• J, 
(40) 

where the factor (1 - fot I enters to recover the integrated 
cross section from Eq. (40) inasmuch as the sum offn 
from 1 to 00 is (1 - fo). . 

Finally, the quantity corresponding most closely to 
that determined experimentally in practical structure 
determinations is M(s), the ratio of the "molecular" 
interference terms 9' A/(s) to the smooth "atomic" back­
ground 9 A (s) drawn through the interference oscilla­
tions. In the present treatment, this "reduced intensity 
function" is evidently 

M( ) - its; + h~ + fas;, + ••• 
s - S D T itgA + hgA + fagA + '" 

(41) 

It is convenient to express this quotient as MS (s), 
MSD(s), ~DT(S), etc., depending upon whether the 
sums are truncated at Single, double, or triple, etc., 
scattering. Physical intuition (confirmed by numerical 
calculations) leads one to expect that higher-order 
molecular terms 9.11(S) become weaker and more chaotic 
the higher the order while the atomic terms 9'A(S) begin 
to become less strongly peaked in the forward direction. 

III. NUMERICAL ILLUSTRATIONS 

We report here some illustrative results based on 
conditions encountered in a study of laser-pumped SF 6' 

The nozzle chosen, with an i. d. of 0.012 cm, is sub­
stantially finer than that of conventional studies (i. d. 
of, say, 0.036 cm) and gives a throughput at a given 
pressure roughly 1 to 2 orders of magnitude lower, 
depending upon whether the flow is supersonically 
choked (high pressure limit) or viscous. The dis­
tribution p(z) of the gas jet at the electron beam was 
measured as described elsewhere8 and found to be 
very nearly of the form 

p(z) = Pm(1 +bz2
}-2 (42) 

with b approximately [1270 - 0.138 P(Torr)] cm-2 0,041 
cm from the nozzle tip where the electron beam crosses 
the jet. From Eq, (42) can be calculated the "area 
density" of molecules, 

TABLE I. Cross sections and constants for differential cross 
sectionsa for 40 kV electrons scattered by an SFs molecule. 

n Ln1cn 103 en M~F Idn 103 d~F M~F Idn 103 d~F 

0 753.90 ]04 49.94 155.58 4.93 202.98 
170.88 753.94 49,10 45.02 25.08 78.60 

2 279.12 155.91 24.17 10.81 25.71 28.00 

3 328.13 44,42 7.48 2.20 10.56 7.68 

4 165.20 8.74 1.61 0.40 3.48 1.39 

'2 cro1 ... =0.19 A cr •• oJ ;0. 29 1\.2 

aLn in A, Mn in A2, cn' dn in A-2, Constants based on scattering 
factors of Ref. 6. Total elastic and inelastic cross sections 
are from Ref. 7. Coefficients Lo and Co are highly arbitrary. 
They do not influence differential cross sections in the observ­
able range of scattering angles but augment the other constants 
to reproduce the total cross section .. 
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TABLE n. Mean number of scatterings Nt per electron and 
fractions of electrons having undergone 0, I, 2, and 3 scatter­
ings at various sample pressures inside 0.012 em nozzle. 

P (Torr) Nt' Nf b lob 11 b tzb 13b,c 

760 0,44 0.24 0.789 0.190 0,023 0.002 
2000 0.98 0.55 0.579 0,316 0, 086 0.016 
4000 1.72 0.96 0.385 0,368 0.176 0.056 

aFrom Eq. (38) with total u= 0.486 A 2 from Ref. 7. 
t>aased on u'" O. 270 A 2 calculated by deleting the very small 
angle Lo component, See the text. 

CTabulated value based on Eq. (37) but value used in calcula­
tions for Figs. 1-4 was 1-10 -it -12 because treatment was 
only carried through triple scattering. 

f'" p(z) dz = rrPm/2bl/2 • 
_00 

(43) 

Center-line density Pm can be determined from mea­
surements of the gas throughput Q through the nozzle 
with the aid of the expression 

(44) 

where Pm is in molecules/cm3
, x is the distance from 

the nozzle tip in cm, Q is in Torrcm3/s, and v(x) is 
the velocity of the gas jet in cm/s. An algorithm to 
compute Q from nozzle dimensions and gas pressures 
is reported elsewhere. 9 It gave results in close ac­
cord with our experiments. 

In this preliminary investigation of multiple scat­
tering no effort was made to obtain GaUSSian fits of 
great precision for Eqs. (6) and (7) and only a few 
terms were resorted to. Constants for the molecule 
SF 6 are listed in Table I. They yield accuracies for 
gA (s) of ± 4% inside s = 12, and of ± 10% inside s = 17.5. 
The products I i, I I i j I are accurate to ± 4% inside s = 19 
and ± 10% inside s = 35. Ratios Ln / cn and Mn /dn are 
tabulated in place of Ln and Mn to give a better indication 
of relative contributions to cross sections. 

The mean number of scatterings Nt per electron is 

-
C 

FIG. 2. Atomic intensity distributions ~l (5) for (a) single scat­
tering, (b) double scattering, and (c) triple scattering, each di­
vided by,,~ (5) for single scattering to convey distinctions more 
clearly. Constant Lo has been deleted. 

1.2..----------------. 
a 

FIG. 3. Molecular differential cross sectionsc'Jz, (5) for (a) sin­
gle scattering, (b) double scattering, and (c) triple scattering, 
each divided by J7A (5) for single scattering to make visual assess­
ment simpler. Double-scattering and triple-scattering curves 
are multiplied by 8 and 64, respectively, to render them easily 
visible in the same plot. 

shown in Table II as a function of sample pressure ap­
plied to the micronozzle. A second number of scatter­
ings N't is also tabulated. It is calculated by deleting 
the component Lo which is predominantly inelastic and 
of consequence only at extremely small scattering 
angles. Effects of L o, then, are almost indistinguish­
able from those of the incident unscattered beam and 
serve only to augment Nt and the in in an unimportant 
way. Fractions of unscattered, once scattered, twice 
scattered, etc., electrons based on N't are also listed. 

Atomic and molecular differential croSS sections, all 
di vided by g 1 (s) to make comparisons more readily 
comprehenSible, are plotted in Figs. 2 and 3. From 
this information it is immediately obvious what effect 
multiple scattering will have on the reduced molecular 
intensity curve, 

As the sample pressure and, hence, the higher-order 
in fractions increase, the denominator will grow relative 
to the numerator, and will grow at large scattering 
angles relative to smaller scattering angles. This will 
tend to wash out the molecular interference terms 
(reducing the so-called "index of resolution") and in­
crease their damping as if by increased amplitudes 
of molecular Vibration. Small phase shifts to the in­
terference oscillations will also be introduced. 

Whether an approach as Simplified as the present 
treatment can give a realistic representation of the 
actual effect of multiple scattering is tested with experi­
mental data in the following paper. 
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