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A method for the determination of complete exciton band structures in molecular crystals is given. Pair­
wise exciton interactions are derived from resonance-pair data using an exciton "superexchange" approach. 
Koster and Slater's impurity cluster formulation is found to be applicable to nontrivial interchange sym­
metry systems, within the "restricted Frenkel-Davydov" theory. The derivation starts from the recent 
general formulation for isotopically mixed crystals of arbitrary concentrations. The resonance pair states 
are given by the second-order self-energy of the mixed crystal Green's function. General symmetry argu­
ments and moment sum rules have been worked out for resonance pairs. It is demonstrated for naphthalene-Its 
resonance pairs in naphthalene-ds that superexchange corrections are not only inevitable for the 'E2• pair 
states but that they can also be utilized to assign experimental pairwise interactions to definite crystal 
directions, i.e., specific pairs. The naphthalene first singlet excited state 0-0 vibronic exciton band is success­
fully described by the "restricted Frenkel-Da vydov" dispersion relation: 

.(k±) = ~ "lIe exp(ik·Re)± ~ Mi exp (ik·Ri) , 

where e=a, b, c, (a+c) and i=t(a+b), [!(a+b)+c]. Three sets of M's that are consistent with 
all resonance-pair and monomer mixed crystal data are tabulated. The only one consistent with a multipole 
expansion gives for the Me's and Mis, respectively, -0.6, -3.9, -3.7, 6.1, and 18.0,2.0 cm-I . This point 
multipole expansion is safely limited to nonnearest-neighbor interactions and truncated beyond transition 
octopoles (Qs"=7 and Qssc=72 AS). The translational shift is -4.S±4 cm- I , and the hot-band density­
of-states function has been independently reproduced from the mixed crystal data, indicating that exciton­
phonon coupling is small. The results are compared with ab initio calculations and new criteria for theoretical 
computations are suggested. 

1. INTRODUCTION 

We report here a determination of the complete 
exciton band in a molecular crystal, a method of 
assigning resonance pair data to specific pairwise in­
teractions, and a confirmation of our recently derived 
density-of-states function. -

The lowest excited states of molecular crystals are 
generallyexcitonic (tight-binding excitation) in nature. 
The Frenkel-Davydov theoryl of these excitonic states 
depicts the energies of crystal eigenstates as a function 
of quasimomentumhk. Within this theoretical frame­
work, the most important parameters are pairwise 
interactions. Most of the investigations in this field 
in the last decade have been involved with experi­
mental determinations of related properties such as 
Davydov splittings, impurity states, band-to-band 
transitions, and exciton migration2 while the direct 
attack on these parameters was limited to rough ab 
ini Ii 0 cakula tions. 3 

Recently, Hanson4 investigated the fine structure 
around the "monomer" transition of some naphtha­
lene-hs in ds mixed crystals, with concentrations rang­
ing from a few thousandths of a percent to a few per­
cent. He successfully identified some "resonance pair" 
("dimer") absorption lines from their characteristic 
concentration dependence and polarization. Since the 
dimer splittings are, in the deep trap limit, deter­
mined solely by the interaction of the pair, Hanson 
obtained directly what may be termed "uncorrected" 
intermolecular interaction terms with both magnitude 
and sign. 

Our recent experiments" on heavily doped mixed 
crystals of naphthalenes show that, at large energy 
gaps, cluster states similar to those reported by Hanson 
exist even at higher guest concentrations. As a matter 
of fact, the spectral features have been interpreted 
semiquantitatively in terms of Hanson's "isolated 
cluster states" at low concentrations plus a broadening 
due to the interactions among the "islands of guests." 
Therefore, the studies of these "isolated clusters" not 
only provide a possible means of elucidating inter­
molecular interactions but also form a basis toward a 
better understanding of more complex disordered 
systems. 

In a recent paper, Hong and Robinson6 (HR) pre­
sented a Green's function formulation for mixed 
crystals involving multiple-branched exciton bands as 
an extension of Yonezawa and Matsubara's7 original 
work on electrons in a random lattice. The spirit of 
this formulation is different from that of the ordinary 
Koster and SlaterS method in that it allows (in fact, 
it "requires," for statistical purposes) an arbitrarily 
large number of guests to be present as long as the 
concentration is held constant. A rigorous expression 
of the true propagator for mixed crystals of all con­
centrations was given as an infinite expansion in terms 
of the free propagator. In this paper, we will use the 
previous results as a starting point and examine the 
behavior of the mixed crystal Green's function at the 
dilute and infinitely dilute mixed crystal limit. It will 
be shown that the equations governing the energies of 
cluster (pair) states are formally the same as those 
of Koster and Slater's formalism.s However, the present 
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formulation has the advantage that all the possible 
cluster states are contained in a single expression, with 
proper weighing factors denoting the probability of 
finding these clusters. Moment expansions and sum 
rules are derived too. Symmetry rules for resonance 
pairs are given and discussed, with emphasis on the 
naphthalene-type crystal. 

Actual calculations are performed on the energies 
of resonance pairs in the naphthalene-deuteronaph­
thalene systems. Since the deepest trap available by 
isotopic substitution is only l1S cm-I, corresponding 
to naphthalene-hs in naphthalene-ds (compared with 
a bandwidth of 160 cm-1) a large generalized quasi­
resonance effect was found (involving guest-host-guest 
interactions). The effect not only alters the magnitude 
of the splitting but also in some cases actually reverses 
the ordering of the levels predicted by a first-order 
argument. 

The concept of exciton superexchange is introduced 
to further emphasize the above effect and a simple 
model is presented. A trial and error method has also 
been adopted to the study of resonance pairs of naph­
thalene-hs in naphthalene-ds, using Hanson's data4 and 
previous results of Davydov splittings and monomer 
quasiresonance2f as experimental checks. Because of 
the ambiguity involved in the assignments of the 
translationally equivalent pairs, several sets of inter­
action parameters were found. Attempts were also 
made to choose the best set consistent with the octopole 
model by Craig and Walmsley,9 except for the explicit 
exclusion of nearest neighbors. It was found that one 
and only one set of interactions can be fitted, the unique 
octopole parameters being Qa1c =7 A.3 and Qa3c =72 A.3. 

A comparison with previous ab initio calculations 
finds the latter still open to question. On the other 
hand, the recently determined experimental density­
of-states function is found to be quite reliable, indicating 
that exciton-phonon coupling is of secondary im­
portance in these systems. An empirical "site" approach 
to the pairwise interactions is discussed. 

II. THEORY 

A. Koster and Slater Equations and the 
Exciton Self-Energies 

The energy eigenstates of one guest (monomer) and 
two guests (dimer) embedded in a host lattice were 
first treated by Koster and Slater.s The monomer 

+(&+@+ ... 
FIG. 1. Diagrams representing the expansion of the exciton 

self-energy in terms of the free propagator CoCk) [compare Eq. 
(4b) ]. 

energy E(1) and the dimer energies l~+, E_ can be 
obtained by solving the following determinantslO ,6: 

for monomer: 

1-A J [po(E')dE'/(E-E')]=O; (1a) 

for dimer: 

I Po(E')dE' 
1-A 

(E-E') I PR(E') dE' 
-A 

(E-E') 

I PR(E') dE' 
-A 

(E-E') 
1-AI Po(E')dE' 

(E-E') 

=0, (1b) 

where A is the trap depth and po(E') and PR(E') are 
the diagonal and off-diagonal density-of-states func­
tions, respectivelyY For example, for crystalline naph­
thalene in its IB2u state, with two molecules per unit 
cell, it has been shown that,6,lOb within the restricted 
Frenkellimit,2b Po and PR can be written as 

+ "E o[E'-e(k-)]}, (2a) 
k-

and 

PR(E') = N-l("E exp(ik+· R)o[E' -e(k+)] 
k+ 

± "E exp(ilr·R)o[E'-e(k-)]}, (2b) 
k-

where e(k+) and e(k-) are the pure crystal exciton 
energies of the plus (Au) and the minus (Bu) exciton 
branch, respectively.12 N is the total number of mole­
cules or states and R is the distance between the two 
molecules. The upper sign must be used for the trans­
lationally equivalent pair and the lower sign must be 
used for the interchange equivalent pair.13 Equations 
(1) can be easily solved to yield the following expres­
sions for R(1) and E+, R_: 

J (po(E')dE'/[R(1)-R']) = 1/ A, (3a) 

J ([Po(E')±PR(E')]dE'/(R±-E')}=1/A. (3b) 

These are the familiar Koster and Slater relations. 
In a more general approach, we may consider n 

guests, with n being large enough so that statistical 
averaging is a valid process (this is almost guaranteed, 
considering the actual number of guest molecules 
present even in a very dilute mixed crystal), It has 
been shown by HR that, within the restricted Frenkel 
limit, the mixed crystal Green's function can be written 
in Dyson's14 form asl5a 

(G(k»= Go(k)+Go(k)~ (k) (G(k», (4a) 
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and 

k' 

k' k" 

k' 

x 8 (k1- k2+ks- k)Go(kl)Go(k2)Go(ks) 

+ (A/N)WP4 (c) L L L Go(k')Go(k")Go(k"')+···, 
k' k" kill 

(4b) 

where c= n/ N IS the mole fraction of the impurity 
molecules and 

(4c) 

is the pure crystal Green's function. Here (G (k) is 
the mixed crystal Green's function. Any summation 
Lk includes all the k states in all the branches. ~(k) 
is the exciton self-energy and Pp (c) is a polynomial 
given by the following generating function l6 ; 

<Xl Pp(c)xp 
10g(1-c+ce")= L --. 

v~1 v! 
(5 ) 

The presence of 8, which will be defined below, is 
peculiar to the problem of multiple-branched exciton 
bands. As was stressed by HR, the "selection rules" 
for exciton scattering by impurities in multiple­
branched exciton bands contain not only the conserva­
tion of quasimomentum (associated with translational 
symmetry) but also the retention of interchange sym­
metry13b (associated with factor group symmetry). 
Mathematically, we have l7 

8(PI+Pz+Ps+··· +Ps) 

=8 (PI+pZ+PS+ ... +Ps)H[ (-l)m], (6) 

where PI = k - k', P2 = k' - k", etc., are the momentum 
transfers between the impurities and the "exciton" 
in each encounter. H[ (_1)m] is the Heaviside step 
function and m is the number of times an exciton is 
scattered from one branch of the band to the other; so 

H[( -l)m]=o, 

H[(-l)m]=l, 

if m=odd, 

if m=even. 

A diagrammatic method in which each expansion 
term is represented by a diagram in momentum space 
has been developed by Edwardsl8 and by Klauder.19 

Equation (4b) can be depicted diagrammatically in 
Fig. U 5b We have represented the free exciton propaga­
tor GoCk) by a horizontal line. Each vertex is associated 
with a polynomial p. (c), where v equals the number of 
interaction lines connecting the impurity (represented 
by a cross) and the exciton propagator line. Each 
interaction line is associated with a momentum transfer 

2::, 
(a) 

(6) 

FIG. 2. (a) Diagrams included in the first-order self-energy 
part l:J (k) which yields the single-impurity level. (b) Diagrams 
included in the second-order self-energy part 1;2(k) which yields 
the resonance pair levels. 

P and since the net momentulll transfer to a single 
impurity is zero, each vertex also carries a delta func­
tion [8 in Eq. (6)]. The expansion can thus be written 
down easily by enumerating all the possible diagrams. 

The advantage of using the Green's function for­
malism is apparently its great versatility. First, the 
host and the guest are treated on equal footings so 
that the dual symmetry is retained. zo Furthermore, it 
is a unified theory which is valid for the pure crystal 
on one extreme, for the dilute mixed crystal on the 
other (this is the problem treated in this paper), and 
for the heavily doped mixed crystals in between.6 In 
the following, we will examine the behavior of the 
mixed crystal Green's function in the limit of infinite 
dilution. It will be demonstrated that in this limit the 
Green's function contains poles which correspond to 
the monomer state and also to the "isolated" pair 
(dimer) states. 

1. Monomers 

In order to locate the "isolated cluster states" in­
cluding monomers, dimers, etc., we have to sum up 
diagrams involving one vertex, two vertices, etc., in 
Fig. 1. At low concentration of guests, the problem is 
simplified because the polynomial Pp(c)--->O for all v 
when c--->O. We limit our discussions to monomers and 
pairs and define ~l and ~2 as shown diagrammatically 
in Fig. 2. Diagrams that are reducible such as the 
fourth one in Fig. 1 are of no concern here. Although 
the particular diagram has two vertices it actually 
represents the interactions between two different mono­
mers. Physically such diagrams are responsible for the 
broadening of the monomer absorption line. 

It is evident that when c approaches zero, the 
monomer partial sum is 

~l= (Ll/N)iYc[l+LlGo(Jn+LlzGoZ(E)+···] 

= cLl/[l- LlGo (m], 

where 

Gocm = l/N L GoCk') 
k' 

"".' 
= 1/1VCL Go(k+)+ L GoCk-)]; 

k+ k-

or, using Eqs. (2a) and (4c), we have 

GoCE) = J [po(J~')dF'/ (J~- j~')]. 

(7a) 

(7b) 
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Notice that ~1 has no k dependence. Furthermore, 
from Eqs. (4a) and (4c) we have 

(G(k)= l/[Go(k)-L ~ (k)J 

=1/[E-~(k)-~(k)J, (8) 

or taking the imaginary part of each side, 

Im~(k) 

Im(G(k»= [E-~(k)-Re~(k)]2+[Im~(k)]2' (9) 

Since at low concentration ~(k) is very small, we can 
put2l 

Im(G(k) )c~dm~ (k)/[E-~ (k)J2. (10) 

In other words, the poles of (G(k) outside the band 
are the same as the poles of ~ (k) and the residues 
of these two functions at their common poles are re­
lated through Eq. (10). 

It follows immediately from Eqs. (7a) and (10) that 
the monomer energy, E(l), must satisfy (~---+~1) 

l-~Go(E)=O 

or 
f {po(E')dE' /[E(l)-E'JI = 1/ ~ 

which is the familiar Koster and Slater equation (3a). 
The optical spectrum can also be obtained by using 

the following relationships6: 

hO (E) = 7r-1 Im(G(k+=O), 
and 

I.cO(E)=7r-1 Im(G(k-=O). (lla) 

For convenience, we will work with h(E(1) and 
I ac(E (1), defined as the total intensity attributable 
to the monomer impurity integrated over the neighbor­
hood ~ of E (1): 

Cllb) 

(a) 

K 

(b) 

K2 K-

_ FIG. 3. Possible scattering routes given by 8(k-kJ+k2-k3) X 
o(kJ-k.+ka-k) according to our definition of the delta func­
tions. Terms to be summed are those in Ca) and terms not to be 
summed are those in (b). 

(0) (b) 

FIG. 4. Ca) Typical diagrams included in ~2(k). For con­
venience, diagrams of this type were summed up to form the 
partial sum that is represented by the first diagram in Fig. 5. 
(b) Typical diagrams included in ~.(k). For convenience, dia­
grams of this type were summed up to form the partial sum 
that is represented by the second diagram in Fig. 5. 

From Eqs. (10), (lla), and (11b), we found that 

l
E (I)+' Im~1 (k+=O)dE' 

I b (E(1)=7r-1 - ---'-,,----'--
E(l)-. [E -~bJ2 

res~l[ E' = E( 1) J 

[E(1)-~bJ2 
(12a) 

where ~b=~(k+=O). Since ~1 is k independent (and 
branch independent), ~1 (k+= 0) = ~1 (k-= 0), we have 
similarly 

res~I(E' = E(l» 
l.c(E(l»= [E(1)-~.cJ2' (12b) 

where ~ac=~(k-=O). The polarization ratio P(b/ac), 
which is simply equal to h·l}Jb 12/lac'l }Jae 12, can be 
rewritten as 

P(b/ac)= [E(1)-~aeJ2'1 }Jb 12/[E(1)-~bJ2'1 }Jae 12, 

(12c) 

where }Jb and }Jae are the transition moments to the 
two Davydov components. This result has come to 
be known as the Rashba effect.22 

Furthermore, the residue of ~1 at E(l) can be 
evaluated from Eq. (7a) and substituted into Eq. (12). 
We find that 

h(E(1) = {1/[£(1 )-~bJ21 /[ (d/dE) (~1-1 )JE~E(I) 

C (j Po (E' )dE' )-1 
= [I~ (1) - ~bJ2 [l~ (1) - E'J2 

= {c~2/[E(1)-~bJ21[dE(1)/d~J, 
and 

These results were also derived by Craig and Philpott, lOa 

based on the Koster and Slater formalism. 

2. Pm:rs 

Let us now turn to the pair problem. ~2 is k de­
pendent and much more complicated to derive. The 
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L2=~+~+~ 

+4};+~+ ... 
FIG. S. Diagrams representing the expansion of ~2(k) in terms 

of partial sums. 

following procedure is an adaptation of Yonezawa 
and Matsubara's7b method to the multiple-branched 
exciton band. First, we examine the first diagram in 
Fig. 2(b) [or, equivalently, the fifth term in Eq. 
(4b)]. Our definition of the delta function 8 in Eq. (6) 
imposes certain restrictions with regard to the inter­
change symmetries of the states involved in the scat­
tering. For this particular diagram, the implication of 
Eq. (6) is clear from Fig. 3. It is noted that only those 
scattering routes included in Fig. 3 (a) are to be summed 
over although all the routes would be legitimate from 
a simple momentum consideration. 

We define: 

(14a) 

Notice that, from Eq. (14a) and Eq. (2), we have 

fl(O)/N =Go(E) 

= J [po(E')dR'/CR-E')], 

fl (Re)/N = J [PHe(E!)dJ~' / (H- N)], 

f2(R i )/N= J [pHi(E')dE'/(F-l~')], (14b) 

where Re is the pair distance between two transla­
tionally equivalent molecules and Ri is the pair dis­
tance between two interchange equivalent molecules. 

The first diagram in Fig. 2 (b) can be rewritten in 
terms of fl(Re) and f2(R i ) [putting Pp(c)=c for 
small c], 

(A/N)W2C2 L L L 8(k-kl+k2- k3)8(kl-k2+k3-k)Go(kl)Go(k2)Go(k3) 
kl k2 k3 

= (A/N)Wc2[L exp(-ik±·Re)fl(Re) IflCRe) 12± L exp(-ik±.Ri )f2(Ri ) If2(R i ) 12]. (15) 
Re Ri 

The upper sign should be used if the initial states are in the plus branch (I k+)'s) and the lower sign should be 
used if they are in the minus branch (I k-)'s). In deriving this, we have used the following equality: 

L exp[-i(k-kl+kz-k3)·Re]+ (-l)m L exp[ -i(k-kl+k2-k3)·Ri]=N8(k-kl+k2-k3), (16) 
Re Ri 

where 8 and m have been defined in Eq. (6). 
Next we consider the third diagram in Fig. 2 (b) (the second and fourth diagrams are actually variations of the 

same type, generalized from the first diagram, ~Iide infra). This term can also be rewritten in terms of fl and fz: 

(A/N)5JV2c2 L L L L 8(k-kl+kz-k3+k4-k)8(kl-k2+k3-k4)Go(kl)Go(k2)Go(kJ)Go(k4) 

Re Ri 

In general, it is easy to see that terms represented by diagrams of the type in Fig. 4(a) [these would include, for 
example, the second and the fourth diagrams of Fig. 2(b)] can be written as 

(A/N)WCZ[L exp (-ik±. Re)/I (Re) I /I (Re) /2 
He 

Ri 

where S=Sl+S2, t=/1+/2 [in reference to Fig. 4(a)J arc the total numbers of interaction lines associated with 
each guest. Similarly, for diagrams of the type given in Fig. 4 (b ), we have 

(19) 
Re Ri 

where S=Sl+SZ+S3 and 1=/1+/2. These expressions can be derived from Eqs. (14) and (16). 
It is apparent that diagrams with the same values of S and I but different values of Sl, S2, S3, 11, 12, etc., are actually 

equal and can be lumped together. The problem is, then, to calculate the number of possible partitions of S or I 
interaction lines into two or three groups. This general problem was treated by Yonezawa and Matsubara.7b 

We will use their results here. If we denote the number of all possible partitions of S interaction lines into r groups 
as Bs,r, we have 

Bs,r= (s-l)!j(s-r)!(r-1)!, (20) 
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or, alternatively, Bs,r can be given by a generating function: 

-- = L: B s ,rx8. ( x)r '" 
1-x 8~r 

(21) 

Infinite sums over all diagrams of the type represented in Fig. 4(a) or 4(b) can now be performed with the 
aid of Eqs. (20) and (21). Denoting these sums as 52,2 or 5 3 ,2 (subscripts referring to the number of groups of 
interaction lines associated with the 1st and the 2nd guest, respectively), we have, from Eq, (18), 

52,2= (MN)Wc2[L: exp(-ik±·Re )!I(Re) 1 heRe) 12± L: exp(-ik±.R.)h(Ri ) 1 h(R.) 12J 
Re Ri 

'" '" X {L: Bs ,{ (MN)h(0)Js-21 IL: Bt,2[(MN)!1(0)Jt-21 
8=2 t=2 

Re Ri 

X {(MN)/[1- (Ll/N)h(0)JI4. (22a) 
Similarly, from Eq. (19), 

'" '" 53,2= (Ll/N)5NclL: 1 heRe) 14+ L: 1 h(Ri ) 14JIL: Bs ,3[(MN)!1(0)Js-31 {L: B t,{(Ll/N)h(0)Jt-21 
Re Ri 8=3 

=Nc2[L: 1 !1(Re ) 14+ L: 1 h(R.) 14J{ (MN)/[1- (Ll/N)!I(O)JP· (22b) 
Re Ri 

These two partial sums are represented by the first two diagrams in Fig, S where the second-order self-energy, ~2, 
is wri Uen as a sum of these partial sums (each one of them, in turn, is an infinite sum). 

From the above discussion, a generalization can now be made concerning other partial sums in Fig. S. In general, 
the odd-numbered partial sums [i.e" the (2r-3)th diagrams in Fig. S, for r~2J contain terms of the type: 

(MN)2TNc2[L: exp(-ik±·Re)h(Re) 1 !1(Re ) 12(r-1) 

Re 
± L: exp(-ik±·R.)h(R,) 1 h(R.) 1 2(r-I)J[(MN)h(O)],-r[(Ll/N)h(O)Jt-T, (23a) 

Ri 

which are summed to give 

5r,r=Nc2[L: exp(-ik±·Re)h(Re) 1 !1(Re ) 1
2(T-l) 

Re 

(23b) 

Similarly, the even-numbered partial sums [corresponding to the (2r- 2)th diagram in Fig. SJ contain terms 
of the type: 

Re Ri 

which are summed, again, to give 

(24b) 

We are now in a position to perform the summation in Fig. 5. So, finally, we have 

'" (Ll/N)Wc2 

~2(k±)= E2 (5r,r+5r+1,T) = [1- (MN)h(O)]3 

X (L: exp(-ik±·Re)h(Re) 1 !1(Re) 12[1- (Ll/N)h(O)J+ (MN) 1 heRe) 14 

Re [1- (Ll/N)h(O)JL 1 (MN)!I(Re ) 12 

" ±exp(-ik±·Ri )!2(R i ) 1 !2(R i ) 12[1- (MN)!I(O)J+ (MN) 1 h(R i ) 14) 
+ t [1- (MN)h(O)JL 1 (Ll/N)fz(R i ) 12 . 

(25 ) 

It can be seen that for general k+ and k-, the second-order self-energy contains poles which correspond to the 
energy states of resonance pairs with varying separations (Re and Ri). Furthermore, these pairs are equally 
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probable (c2 dependence). At the poles, the following equations are satisfied: For translationally equivalent pairs, 

[1- (MN)fr(O)]L 1 (~/N)Jl(Re) 1
2 =0, (26a) 

and for interchange equivalent pairs, 

[1- (~/N)Jl(O)]L 1 (MN)/z(R i ) 1
2=0. (26b) 

As we noted earlier,ll heRe) andJ2(R i ) are usually real. The solutions to Eqs. (26a) and (26b) are then 

Jl (O)/N±Jl (Re)/N = 1/ ~ (27a) 
and 

h (O)/N±/z(Ri)/N = 1/~. (27b) 

The equivalence between Eqs. (27a), (27b), and Eq. (3b) can be easily established through Eq. (14b). 
As for the optical spectrum, we simply put k±= O. Thus for translationally equh'alent pairs, we have from Eq. (25) 

k k (~/N)WC2Jl(Re) 1 Jl(Re) 12 

~2( +=0)=~2( -=0)= [1- (~/N)Jl(On{[I- (~/N)Jl(O)]-[(MN)Jl(Re)]1 ' (28a) 

so that only one state l~+ is optically allowed. Again, Jl is real and at the pole, we have 

(28b) 

The spectral functions h and lac which have been discussed before in connection with the optical properties of 
the monomer can also be found through Eqs. (12a) and (28). We have 

h(R )= 1 [_~ (~)]~1 
+ [E+-fb]2 dE ~2 E=E+ 

= c2 (1 [pO (E')+PR, (E')]dE')-1 
[H+-fb]2 (E-E')2 

= {c2~2/[R+-fh]21 (dE+/d~). 
Similarly, 

lac(E+)= {c2~2/[E+-fac]21 (dR+/d~). 

The polarization ratio P(b/ac) is simply [comparing Eq. (12c)] 

P(b/ac)=[(R+-€ae)/(E+-fh)]2(I!lh 12/1 !lac j2). 

(29a) 

(29b) 

(29c) 

For interchange equivalent pairs, the situation is slightly different. ~2(k+=0) and ~2(k-=0) are, in this case, 
no longer the same. From Eq. (25) we note that ~2(k+=0) has a pole at E+, whereas ~2(k-=0) has a pole at IL 
In other words, both E+ and H~ are optically allmoed and uniquely and oppositely polarized. We have 

The corresponding spectral functions h, lac are found to be 

h(E+)= {c2/[E+-fb]21 If [po(E')+PR, (E')]dR'/[E+-E']21-1 

= {c2~2/[E+-fbJ21 (dE+/d~), 

lac (E~) = {c2/[IL -fac]21 {f [po(E')- PRo (E') JdE' /[E~ - E'J2I-1 

= {C2LW[E_-faeJ21 (rilL/dM· 

The doublet polarization ratio can be defined, in this case, as 

P(b/ac)=[h(E+H!lb 12J/[Iae(E~H !lac 12J, 
which is simply 

(30a) 

(30b) 

(31a) 

(31b) 

(31c) 

It is noted that, in the limit of small resonance splittings [E+~E~~E(I), i.e., when the doublet is not resolved 
experimentally], Eqs. (29c) and (31c) are all reduced to the familiar Rashba relation [Eq. (12c)]. 



EXCITON BAND STRUCTURE OF NAPHTHALENE 731 

In summary, we have demonstrated that the general formalism of HR contains, in the limit of infinite dilution, 
all the "elementary" (or "isolated") cluster states of Koster and Slater in a single expression, with proper weighing 
factors denoting the probabilities of finding such clusters. It has the appeal of being adaptable to various impurity 
problems. In the next section, we shall discuss some of the symmetry properties pertaining to the resonance pair 
problem. While the discussion above, and below, is specifically geared to the naphthalene problem, i.e., a mono­
clinic crystal with two equivalent molecules per primitive unit cell, it is obviously directly applicable to any 
crystal in which the interchange groupI3b is of order 2. This happens to be the most common case, by far, for mo­
lecular crystals. 

B. Symmetry Properties of Resonance Pairs 

When considering the symmetry properties of the resonance pairs, it is important to distinguish between trans­
lationally equivalent and interchange equivalent pairs. I3 For translationally equivalent pairs, in centrosym­
metric crystals like naphthalene, one can show rigorously from group theory that the two molecules of the iso­
lated pair are in exact resonance. However, for interchange-equivalent pairs that involve a screw axis or a glide 
plane, i.e., in naphthalene, there exists only "pseudoresonance," i.e., resonance only within certain approximations. 

Consider a centrosymmetric crystal with one translation ally equivalent pair (all other guests are either remotely 
located or distributed in a way that will permit us to speak of a "local symmetry" of the guest pair). While such 
a crystal does not retain its translational symmetry, it always retains one inversion center, situated halfway in­
between the two molecules. This is obviously true for the nearest neighbor pair. A little reflection will show that 
it is also true for general translational pairs. This center of inversion assures us that the true mixed crystal solu­
tions are either gerade or ungerade with respect to inversion. Obviously only the ungerade state is optically al­
lowed with respect to a dipole transition from or to the ground state. 

The facts that (1) we have a genuine resonance pair and (2) one state is optically allowed and the other 
forbidden are purely based on group theoretical arguments and, therefore, are independent of the model used. 
For example, in the crudest oriented gas model, we can write the wavefunctions as 

<P (:) =2-I/2(tPA±tPn), 

where tPA, tPn are simply the free-molecule wavefunctions. Notice that in the transport conventionI3b tPfI is related 
to tPA by a translation rather than an inversion. When the static interactions between the guest and host are taken 
into account, we have an "oriented site" model in which tPA and tPn now become the site functions. In the more 
sophisticated model presented in Sec. II the dynamic interactions were introduced. Because of the excitation 
delocalization, tPA now contains half of all the localized site functions in the crystal; the other half, constituting 
tPn, is again related by the same inversion. It is expected that if we remove the constraint of short-range inter­
actions associated with the "restricted Frenkel limit," the abovementioned description should still hold. Also, 
obviously only the ungerade states are "optically allowed." 

The one quantity which does depend on the model used is the polarization ratio of the allowed component 
P (bl ae). In the "oriented gas model" the polarization ratio for the pair is equal to that of one molecule. In the 
"oriented site model" the polarization ratios for monomer and dimer are still the same (but not equal to that 
of the free molecule). Finally, when the superexchange effect is introduced, even that is no longer true [compare 
Eqs. (12c) and (29c)]. 

Strictly speaking, an interchange equivalent pair is not a "resonance pair." Note that even for an interchange 
pair fixed in space, the resonance is removed by mutual polarization (a screw axis or a glide plane is not a point 
symmetry element). However, it is common practice to assume that the mutual guest-guest and guest-host 
polarization is isotope independent in an isotopically mixed crystal and therefore equal. It is within this context 
that we speak of interchange pairs as "resonance pairs." The concept2e of "ideal mixed crystal" properly contains 
such an assumption for guest monomers and is easily generalized to dimers. 

Once the "resonance" condition is restored, we can always write our wavefunctions as 

<P (:J = 2-1
/
2 (tPA±tPB) , 

whether we use the "oriented gas" or the "oriented site" models. tPA and tPn are either free molecule or site func­
tions. Since tPn is derived from tPA by an interchange operation, the resultant transition moments will be either 
parallel to the monoclinic axis (b) or perpendicular to it (ae). In other words, the two dimer lines are uniquely 
and oppositely polarized. We have shown earlier that this is true even when dynamic interactions are introduced 
in a way consistent with the "restricted Frenkel limit" [compare Eq. (31)]. In the following discussion, we shall 
explore, from the symmetry point of view, the implication of such an approximation, especially with respect to 
the polarization and selection rules in the mixed crystal. 
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Within the "restricted Frenkel limit," the eigenfunctions of the pure crystal take the simple form2C 

1 k±)=N-1/2[L: exp(ikoRa) 1 a)± L: exp(ikoRfj) 1 J3)], 
Ra Rp 

rather than the most general form 

1 k!)=N-1/2[A!(k) L: exp(ikoRa) 1 a)+B!(k) L: exp(ikoRfj) 1 J3)] 
Ra Rp 

with 
1 A!(k) 1

2+ 1 B!(k) 1
2= 1 and f= 1,2. 

(32a) 

(32b) 

It is well known that eigenfunctions of a system can only be determined to within an arbitrary phase factor ei</>. 

If we rewrite Eq. (32a) as 

1 k±)=N-I/2(L: exp(ikoRa) 1 a)± L: exp[ik o (T-Ra)] 1 J3)), (33a) 
Ra Ra 

where T is the displacement vector from the corner of the unit cell to the interchange equivalent site, then it 
is apparent that 

1 k±)=exp(ik oT/2) 1 k p ±), (33b) 
where 

1 k p ±)=N-1/2(L: exp[ik o (Ra -T/2)] 1 a)± L: exp[ik o (T/2- Ra)] 1 J3)} 
Ra Ra 

=N-1/2[L: exp(ikoRn) 1 a)± L: exp(-ikoRn) 1 J3)], (33c) 
Rn Rn 

where we have replaced (R-T/2) with Rn. The 1 k p ±) must also be eigenfunctions of the pure crystal. It is also 
known that, in the absence of magnetic interactions, eigenstates 1 k±) and 1 - k±) are doubly degenerate; so 
are 1 k p±) and 1- k p±). Linear combinations can now be constructed to yield symmetric and antisymmetric wave­
functions (with respect to "inversion" at the point R=T/2): 

I 
(2/N)1/2[L: cos(koRn) 1 a)+ L: cos(koRn) 1 J3)]1 

2-1/2(1 k p+)± 1 - k p+») = Rn Rn 

i(2/N)1/2[L: sin(koRn) 1 a)- L: sin(koRn) 1 J3)] 
Rn Rn 

and (34) 

Rn Rn 

This is a property peculiar to the eigenfunctions in the "restricted" Frenkel formalism. From the symmetry 
point of view, we can argue that, in this limit, we are essentially ignoring some of the orientational dependence 
of the pairwise interactions. In other words, the molecules are being considered temporarily as geometric points 
occupying the lattice sites. (This is with the reservation that we still distinguish between translation ally equiv­
alent molecules and interchange equivalent molecules by, say, painting them in different colors. This distinction 
is necessary since f/JA and f/Jn are oriented differently in space although they may be related by some symmetry 
operations. In addition, this distinction also prevents the system from collapsing into a one-molecule-per-unit­
cell case with reduced cell dimensions.) It is immediatelv inferred that, within this limit, as far as the exciton 
amplitudes are concerned, we do have a center of inversia"n at T/2, as reflected in the eigenfunctions of Eq. (34). 
We call this pseudointerchange symmetry "pseudoinversion." 

Now, consider an interchange pair at R=O and R=T. Since the "resonance" condition is guaranteed by the 
isotope independence of the static interactions, the perturbation is totally symmetric with respect to the "pseudo­
inversion." This assures us that our mixed crystal wavefunctions possess a definite symmetry under such an 
inversion operation. Furthermore, the optically active states of the pure crystal, k+=0 or k-=O, are always 
symmetric or antisymmetric with respect to the same pseudoinversion. This is so because the eigenfunctions of 
the k=O states always have the form of Eq. (32a), even in the general Frenkel case. It is immediately clear that 
our mixed crystal wavefunctions will be either mixed with k+=O or r=O but never with both. In other words, 
the "symmet~ic" and "antisymmetric" states have transitions that are uniquely polarized, as indicated in Eq. (30). 

It is well known that the pseudoinversion symmetry does not exist in the general Frenkel case, neither in the 
pure crystal (k=O is an exception) nor in the mixed crystal. It is expected that interchange pairs in this case 
will have mixed polarizations. Experimentally, it is probably interesting to investigate how large such an effect 
is by observing dimers in molecular crystals where long-range interactions are important, such as anthracene. 
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c. Moment Expansion Method and Sum Rules 

The moment expansion method which has been quite useful in the discussion of single impurity states23 also 
finds its place in the resonance pair problem. In addition to its practical use in the deep trap limit, this method 
also serves to demonstrate the interplay of pairwise interactions in forming the resultant resonance pair splitting 
(vide infra). 

The integral in the off-diagonal element in Eq. (1) can be expanded in terms of various moments of the off-
diagonal density-of-states function PR(E'), 

f 
PR(E')dE' ( mR(l) mR(2) mR(3) mR(n) ) 
'----'--'-- =E-I mR(O)+ -- + -- + -- + ... + -- + ... 
(E-E') E £2 E3 En ' 

(35 ) 

where 

It is evident from Eq. (2) that the moments can also be written as 

mR(n)=N-I[L ~(k+)n exp(ik+·R)± L ~(k-)n exp(ik-·R)]. (36) 
k+ k-

The sign depends on whether it is a translational pair or an interchange pair. The exciton dispersion relation is 
especially simple within the "restricted Frenkel limit," 

~(k±)= L Ma exp(ik.Ra)± L M{3 exp(ik·R{3), (37) 
Ra Rp 

where M" and M{3 are translationally equivalent and interchange equivalent interactions, respectively. If we sub­
stitute Eq. (37) into Eq. (36) we find that 

mR(n)= L M IM 2M 3•· ·Mn, 
In} 

(38) 

where M I, M 2, M 3 , ••• , Mn are pairwise interactions between the molecule at the origin and the molecules at 
RI, R2, R3, ••• , Rn , respectively. These n vectors must satisfy the condition that RI+R2+R3+·· ·+Rn=R. 
The summation LIn} must be carried over all possible sets of M's that satisfy the above relation. A simple topo­
logical interpretation of Eq. (38) would be the following: Given n steps, determine all the possible routes in 
going from one guest of the resonance pair to the other. The rule is such that we can move from one molecule 
to the other if they are connected via a nonnegligible interaction; form the product of all the M's involved in each 
route and sum over all the possible products, one for each possible route. It is easy to see that mR(O) = 0, mR(l) = M R, 
etc. Equations (35) and (38) will enable us to examine explicitly how the resonance pair splittings depend on the 
pairwise interactions and the trap depth. 

A sum rule can also be derived by noting that 

L f PRa(E')dE' =N-I (L LRa exp(ik+·Ra) + L LRa eXP(ik-.Ra») 
Ra (E-E') k+ E-~(k+) k- E-~(k-) 

f (E')dF' 
=t([E-~(k+=O)J-I+[E-~(k-=O)]-I) - pOE~ F/ ~ (39a) 

Similarly, 

L f PRpCE')dE' = "V-I (L LRp exp(ik+·R{3) _ L LRp eXP(ik-.R,s») 
Rp (E-E') k+ E-~(k+) k- E-~(k-) 

= t( [E-~ (k+=O)J-L [E-~(k-=O)J-I). (39b) 

In deriving these rules, we have used the closure properties of the pure crystal eigenfunctions. Furthermore, 
when the resonance pair splitting is small compared to the trap depth, we can expand Eq. (lb) at E(l), the 
monomer energy. Equation (lb) becomes24 

Ll[E- E (l)J J [po (E')dE' / (E(l)- E')2J= ±Ll J [PR (E')dE' / (E- E')J, 
or 

E-E 1 _± J [PR(E')dE'/(E-E')J 
[ ()J- J cPo(E')dE'/(E(1)-E')2J· 

(40) 
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We concentrate on the plus state and put E+-E(l)=SR. We also assume that the right-hand side of Eq. (40) is 
slow varying and hence can be approximated by substituting E(l) for E+. We have, from Eq. (3a), 

S _ J [PR(E')dE'/(E(l)-E')J 

R- J [po (E')dE'/ (E(l)- N)2J 

= Ll2[dE(1)/dLlJ J [PR(E')dE'/(E(l)-E')]. (41 ) 

From Eqs. (39) and (41), we have the sum rule, 

L: SR. = Ll2[dE (1 )/dLlJ (t{ [E(1) - e (k+=O)J-I+[E (1) -e(k-=O)J-I) - Ll-I) 
R. 

and 
L: SR~= Ll2[dE (1)/ dLlJ! I [E(l )-e(k+=O) J-I- [E(l)-e(k-= O)J-I). (42) 
Rp 

Notice that in the deep trap limit we have the expected results, 

and 

III. RESONANCE PAIRS AND INTERACTIONS IN 
IB 2u NAPHTHALENE 

A. Pairwise Interactions and Dimer Splittings 

As shown in the previous sections, resonance pair 
splittings (the SR'S) become equal to the pairwise 
interactions (the MR's) in the deep trap limit. Ex­
perimental results in this limit will, therefore, yield 
both the sign and the magnitude of the latter quan­
tities. However, in practice, there are two difficulties: 
(1) The deep trap limit cannot be readily reached by 
isotopic substitutions, such as in the present case of 
the naphthalenes (maximum trap depth = 115 cm-I). 
(2) Within the restricted Frenkel theory, one can use 
the polarization data to distinguish between transla­
tionally equivalent and interchange equivalent dimers; 
however, within the same category, there is no simple 
criterion for assigning a particular absorption to a 
particular dimer. The second difficulty can be tackled 
by reducing the trap depth and introducing the quasi­
resonance effects. As our results will later demon­
strate, at least partial assignments can thus be achieved. 
As for the first difficulty, other related data, such as 
density-of-states functions, single impurity levels, etc., 
will have to be used as criteria if the deep trap data 
are not available. 

The fact that only a few absorption lines attributable 
to resonance pairs were observed4 in naphthalene-hs in 
naphthalene-ds indicates that intermolecular inter­
actions in the IB2u excited state do fall off very rapidly. 
Restricted Frenkel theory is thus expected to be ade­
quate. When intermolecular distances alone are con­
sidered, the leading interaction terms are those listed 
in Table 1. The corresponding exciton dispersion rela-

tion can be written as20a 

e(k±) = 2Ma cos (k· a)+ 2Mb cos(k· b )+2Mc cos (k· c) 

+2Ma+c[cos (k· a) cos(k. c)- sin (k· a) sin(k· c) J 

±(4MI2 cos[k. (a/2)J cos[k· (b/2)J+4M12, 

X{cos(k·c) cos[k· (a/2)J cos[k· (b/2)J 

-sin(k·c) sin[k· (a/2)J cos[k· (b/2)J}), (43) 

where M12 designates the pair interaction for R= 
Ha+b), M 12, for R=Ha+b)+c, etc. 

A trial and error method can be devised to obtain 
several sets of M's consistent with Hanson's4 experi­
mental data by using Eq. (43) and Eqs. (1) and (2). 
In doing this, it is especially gratifying that only one 
interchange equivalent dimer was identified spectro­
scopically in IB2u naphthalene and obviously assigned 
to the nearest-neighbor pair, R=Ha+b). This fact 
not only removes any possible ambiguities concerning 
the interchange equivalent dimers but also enables us 
to distinguish one subgroup of translationally equiv­
alent dimers from the other as will be clear from the 
following discussions. Alongside the large M12 term 
we also assigned a small M 12, term, adjusted such 
that their sum gives the right Davydov splittingY 

To proceed with our calculations, we assigned, quite 
arbitrarily, the four known translationally equivalent 
dimer splittings: -7.9, -5.1, -3.3, and 3.7 cm-I to 
the four possible dimers (R= a, R= b, R= c, and 
R=a+c). In principle, there are 24 possible assign­
ments, each representing a distinct physical situation. 
However, within our simplified model where the inter­
actions have been truncated, the interchange of Me 
and Ma+e fails to produce a new physical entity.25b 



TABLE I. Possible assignments of pairwise interactions and dimer splittings in the lB2u excited state of naphthalene. 

Set 1<1 
-----------------

Classification Positione A Me Scale! S""d" oh 

IE pairs' !(a+b) 5.10 18.0 15.0 15.3 -3.0 
(a+b)+c 7.89 2.0 

TE pairsb a 8.24 f-0.6(i -5.0 -5.1 -4.4 
b 6.00 (-3.9J -8.0 -7.9 -4.1 
c 8.66 J 6.1( 4.0 3.7 -2.1 
a+c 7.96 (-3.7f -3.5 3.3 0.2 

Translational shift -4.2 

a Interchange eq uivalent pairs. 
b Translationally equivalent pair~. 
C The positions of the second molecule of the pair with respect to the first \vhich is at the origin. 
d All in units of em-I. 
e J1 = pairwise interactions. 

Set 2 Set 3 
--------------------

M Sc.le S""d 0 M Se.l. S.,,·d 

18.0 14.7 15.3 -3.3 18.0 14.2 15.3 
1.0 1.0 

J -4. 3( -7.5 -7.9 -3.2 f -1.2( -4.8; -5.1 

( 1. 9) 
-3.2 -3.3 -5.1 

11.6{ 
-3.4 -3.3 

{-6.1 -5.2 -5.1 0.9 -8.9 -7.9 -7.9 
6.0 4.0 3.7 -2.0 6.0J 4.1 3.7 

-5.0 -5.0 

f SC81~=ca1culated energies of the plus state of climer-calculated energy of the monomer. 
v; S ass'd =observed energy of the plus state of dimer -observed energy of the monomer. 
h ~ = (Scale - Jl) or the exciton superexchange term, see text. 
i Braces here indicates that two rows can be exchanged. See discussion in the text. 
; These values were misquoted in Phys. Rev. Letters 25, 1030 (1970). 

0 

-3.8 

-3.6; 
-5.0 

1.0 
-1.9 

tr1 
~ 
(') 
...... 
>-3 
o 
Z 

to 
>­
Z 
tj 

CfJ 

>-3 
:;d 

~ 
(') 

>-3 
c: 
:;d 

tr1 

o 
TABLE II. Other possible assignments of pairwise interactions and dimer splittings' (rejected because of poor agreements with monomer energies and density-of-states function). >Tj 

Set 4 
-----------------

Classification Position A M Scale S""d Il M 

IE pairs !(a+b) 5.10 21.0 14.5 15.3 -6.5 21.3 
!(a+b)+c 7.89 -1.0 -1.5 

TE pairs a 8.24 J-O.l( -5.0 -5.1 -4.9 f-3.5( 
b 6.00 ( 10.7 f 4.0 3.7 -6.7 

11l·2{ c 8.66 J -8.8( -7.5 -7.9 1.3 -6.0 
a+c 7.96 (-2.8J -3.0 -3.3 -0.2 -3.0f 

Translational shift -2.0 -2.6 

• All headings here are similar to those of Table 1. 

Set 5 

Scale S ... ·d 0 M 

15.0 15.3 -6.0 22.0 
-2 

-8.0 -7.9 -4.5 ) 12.0( 
3.5 3.7 -7.7 2.4f 

-5.5 -5.1 0.9 -7.0 l 
-3.3 -3.3 -0.3 (-10.1f 

-5.4 

Set 6 

Sosle S ... ·d 

15.0 15.3 

3.7 3.7 
-3.0 -3.3 
-5.5 -5.1 
-8.3 -7.9 

Il 

-7.0 

-8.3 
-5.4 

1.5 
1.8 

z 
>­
"d 

ll: 
>-3 
ll: 
>­
t" 
tr1 
Z 
M 

--> 
(;.:0 
c.n 
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FIG. 6. (a) to (c): The IB," 
naphthalene dimer energies plotted 
as functions of the reciprocal trap 
depth (1/ Ll). Solid curves are for 
E+ and dashed curves are for E_. 
:"J otice that the corresponding 
curve for monomer energy, E (1) , 
is also included (dotted line) III 

Fig. (a). The intermolecular exci­
ton interaction parameters used 
here are those of Set 1 in 
Tahle 1. The two vertical dotted 
lines represent the hand edges 
which happen to coincide with the 
two Davydov components. (f) 
The density-of-states function 
plotted with the same parameters. 
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Furthermore, because of the large M12 involved, the 
interchange of Ma and Mb also results in roughly the 
same result.15b \Vhen these two facts are taken into ac­
count, we are left with only six possible assignments. 
A total of 16000 points in the Brillouin zone were 
included in the calculation. The convergence was very 
good. Normally four or five iterations are needed before 
we have a satisfactory set. 

All above six sets are listed in Tables I and II. It 
can be seen that in each case "quasiresonance" inter­
actions between the host and the guest are not negli­
gible. The first-order calculations by Hanson4a are 
certainly inadequate. The "quasiresonance" effects on 
the dimer splittings (as shown by the a's in Tables 

\ , 
0 50 100 

ENERGY (em-I) 

I and II) are especially pronounced in the case of the 
a and b dimers. Due to the large interchange inter­
action term, M 12, and hence the large degree of excita­
tion de localization to the host, the final dimer splittings 
are determined as much by the indirect couplings via 
the host molecules as by the direct coupling between 
the guest molecules themselves. In analogy to the spin 
delocalization phenomena in the discussion of mag­
netic states26 of solids, we call this effect "exciton 
superexchange. " 

To illustrate this superexchange effect, we have 
calculated the Ihs of Eq. (3) as a function of energy 
shown in Fig. 6. Notice that, according to Eq. (3), 
such curves give directly E+ (the solid curves) and lL 
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(the dotted curves) as a function of reciprocal trap 
depths. The interaction parameters used were those 
of Set 1 in Table 1. The E+ and E_ curves in Figs. 
6(a) and 6(e) can be described as "well behaved" in 
the sense that, for all the bound states (outside the 
band), E+ is always higher (lower) in energy when 
the interaction between the guests is positive (nega­
tive). In other words, S always has the same sign 
as M, although the magnitude may be different. An 
extreme case is illustrated by the curves in Figs. 6 (b) 
and 6 (c). On the one hand, bound states below the 
band are marked by a splitting much larger than the 
direct coupling and, on the other, level crossing actually 
occurs for states above the band. S can be different 
from M both in magnitude and sign. The curves in 
Fig. 6 (d) are considered as a border line case. 

In Figs. 7(a) and 7(b), more conventional energy vs 
trap-depth plots are given for R = a and R =! (a + b ). 
Again it shows the dramatic superexchange effect on the 
a dimer splitting: At a trap depth of +200 cm-I, E+ is 
still higher in energy than l~'_ although M = -0.6 cm-I] 

It is concluded that the superexchange effects must 
be carefully checked in interpreting the dimer spectra. 
As shown in our calculations, the pairwise interactions 
inferred from simple first-order arguments may be 
erroneous both in magnitude and in sign. On the other 
hand, because of the specific nature of the superex­
change interactions, this effect can now be utilized to 
assign a given spectral feature to a given pair, as is 
discussed in detail below. 27 

B. Exciton Superexchange and Moment 
Expansion Method 

To gain some insights about the nature of exciton 
superexchange, we consider here a simple model, con­
sisting of two guests and two hosts. We assume that 
the specific guest-guest and host-host interactions are 
small whereas guest-host interactions are large. Re­
ferring to the naphthalene crystal structure, we notice 
that this simple model closely represents, say, a reso­
nance pair mode of one molecule at the origin and 
another at R=a together with two host molecules at 
R= 1/2(a+ b) and R= 1/2(a- b). Consistent with our 
assumption, we put Ma=Mb=O. The secular deter­
minant has the following form; 

G-I~ 0 MI2 Ml2 

0 G-E Ml2 MI2 
=0, 

Ml2 MI2 H-E 0 

MI2 Ml2 0 H-E 

where G and H are excitation energies for guest and 
host, respectively. 

General solutions to matrices of this type have been 
discussed before.28 In the present simple case the four 
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FIG. 7. The IB2u dimer energies plotted as functions of the 
trap depth (Do). Solid, dashed, and dotted curves are for E+, E_, 
and E(1), respectively. The dimer separations are: (a) R= a 
and (b) R=Ha+b). The interaction parameters used here are 
the same as those in Fig. 6. 

eigenstates have energies given by 

E+ H = H+!~+! (~2+ 16MI22)1/2, 

E_H=H, 

E_G=G, 

E+ G = G- !~-! (~2+ 16MI22)1/2, 

with ~= G- H as trap depth. The corresponding eigen­
functions are 

\f!+ H = 2-1/2[ (1- rr )1/2 (cpHI+ cpH2)+rr (cpGI+cpG2)], 

\f!_H= (1/v'2)(cpHI-cpH2), 

\f!_G= (1/\12) (cpG1-cpG2) , 

\f!+ G = 2-1/2[ - (1- rr )112 (cpGI+cpG2)+rr (cpHI+cpH2)], 

where cpGI, cpG2, cpHI, and cpH2 are localized excitation 
functions for guests (GI and G2) and host (HI, H2), 
respectively, and 

2MI2 
rr=---____ ------------::::---

{4MI22+[H~2+ 16MI22)1/2-!~]2}1/2 . 

The exciton superexchange (es) term, which is exactly 
1/2 (E+ G_ ILG) in this case, because the 1st-order 
splitting is zero, is simply 

oes= -l~-l (~2+ 16MI22)1/2. 

For example, in a mixed crystal of CIOHs in ClODs 
(~= -115 cm-I and M12~20 cm-I ), this quantity 
amounts to 
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FIG. 8. The off-diagonal density-of­
states function PR(E') (dots) and the 
corresponding integral f[PR(E')dE' / 
(E- E')]. The interaction param­
eters used here are the same as those 
in Fig. 6. Notice that for R= a the 
integral is positive for positive energy 
although Ma is negative. This is why 
in Figs. 6 and 7 we have "level 
crossing" for the a dimer in this 
region. 
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TABLE III. Various moments of PR(E') as calculated from Set 1 for resonance pairs in crystalline naphthalene. 

Resonance 
pairs mR(I) 1I!R(2) X 10-2 1/!R(3) X 10-4 1IIR(4)XlO-6 

!(a+b) 17.8 -1.69 5.74 -1.27 
a -0.6 5.93 -0.99 2.70 
b -3.9 6.50 -1.75 2.99 
c 6.1 1.40 1.58 0.59 
a+c -3.7 1.38 -0.58 0.90 

which compares well with more exact results of Tables 
I and II. The extent of de localization can also be esti­
mated by evaluating (T2: 

(T2~O.I, 

a relatively small quantity indeed. 
We have discussed above a simple manifestation of 

exciton superexchange with a four-body model. The 
situation is, of course, more complicated if the whole 
crystal is considered. Here the moment expansion 
method discussed in Sec. II.C is most appropriate. 
In Fig. 8 we again use our first set of parameters to 
plot PR, the off-diagonal density-of-states function, and 
the corresponding integral f [PR(E')dB'1 (E- E')]. 

mR(') X lO-s mR(6) X 10-10 mR(7) X 10-12 1IIR(S) X 10-14 1Iln(9) X 10-16 

2.40 -0.81 1.14 -0.49 0.60 
-0.76 1. 31 -0.51 0.68 -0.32 
-1.02 1.45 -0.62 0.76 -0.38 

0.54 0.27 0.19 0.14 0.07 
-0.24 0.50 -0.15 0.29 -0.11 

The same electrostatic analogy29 can be made as in 
the case of Po (the pure crystal density-of-states func­
tion). If PR is considered as the charge distribution 
(both positive and negative charges are present in 
this case), then the integral is nothing but the poten­
tial. Through Eq. (35), this potential can be expanded 
in powers of liE. The leading term, mR(l) I E2 [since 
mR(O)/E is invariably equal to zeroJ, gives the first­
order splitting and the higher-order terms will be the 
"superexchange" contributions. 

The first term in the superexchange contributions 
to the dimer splitting is mR(2/) E3. According to Eq. 
(38), we can write down the following expressions for 
various dimers in naphthalene: 

a dimer 

b dimer 

m" (2) = 2M 122+ 2M eM n+e, 

mh(Z) = 2Ml2Z+2MlZ'z, 

c dimer 

a+c dimer 

Ha+b) dimer 

me (2) = 2M aM a+e+ 4M 12M 12', 

ma+c(Z)= 2M aMc+4MlZMl2', 

ml/2(a+b)(Z) = 2M12M a+2MIZMb+Ma+cM12,+2MIZ,Mc' 

It is immediately clear that a and b dimers have 
large superexchange contributions due to M12z, whereas 
c and a+c dimers are relatively uneffected. These 
results are qualitatively in agreement with our cal­
culated results in Tables I and II. 

We have tabulated in Table III some of the lower­
order superexchange contributions for naphthalene-Its 
in naphthalene-ds. It is exactly this poor convergence 
in the power expansion (or equivalently large super­
exchange contribution) that made it necessary in this 
case to use the exact method [Eq. (3)J in interpreting 
dimer data for IB2u naphthalenes. Note, for instance, 
that for the Ha+ b) pair the third moment is larger 
than the second, which is reasonable due to the large 
size of the 2M123 term. 

C. Pairwise Interactions, Pure Crystal Density of States 
Function, and Monomer Energies 

As far as comparisons with dimer splittings in naph­
thalene-Its in naphthalene-ds are concerned, our above­
mention~d six sets of pair interactions are equally 
good. FIgure 9 shows how we generate these six sets 

of parameters from Hanson's data.4 It should be 
pointed out that each set predicts very different dimer 
splittings at the deep trap limit (where S=M). There­
fore, if deep trap data were available for naphthalene, 
we could readily distinguish between dimers in the 
ab plane and dimers outside of it, thanks to the 
large M12 term (compare M and S values in Tables I 
and II). However, the distinction between a and b 
dimers (or between the a+c and c dimers25b ) would 
still require very accurate data and also more refined 
calculations with more interactions. The important 
point demonstrated here is how one can use the super­
exchange effect to aid the assignments of dimer data, 
which would otherwise be very difficult. 

Physically, we have a situation where one can apply 
an "anisotropic" environmental perturbation (i.e., the 
superexchange) to the coupled oscillators (i.e., the 
dimer). Depending on the magnitude of the anisotropy, 
partial or total assignments can be achieved. Another 
important point is that all six sets predict a very small 
translational shift. The experimental (hot band) trans­
lational shift of about -2±10 cm- l for IB2u naphtha-
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FIG. 9. A schematic diagram for the pairwise interactions 
tabulated in Table I and II. The top one represents the dimer 
lines of Hanson. 4. The dotted lines connect all the pairwise 
interactions generated from the same dimer lines due to different 
assignments (Sets 1-6 in Tables I, II). This diagram also re­
presents for each assignment the possible dimer absorption lines 
in the deep-trap limit, with the monomer line at the origin 
(E=O). 

lene2f is thus independently verified from the dimer 
data. The large discrepancy Hanson4 observed is simply 
a result of not correcting for the superexchange effect. 
In fact, we feel justified to place this important quantity 
in an even narrower bracket of -4.S±4 cm-I . 

In an attempt to narrow down the choice among 
possible interaction parameters, we have calculated 
both the pure crystal density-of-states function and 
the single-impurity levels for all the six sets in Tables 
I and II. For single-impurity levels, 16000 points in 
the Brillouin zone were used as before, whereas for 
density-of-states functions the number was increased 
to 432 000, with a l-cm- I mesh. These results are 
shown in Figs. 10 (b )-10 (d) and Figs. 11 (a )-11 (c). 
Figure lO(a) shows the density-of-states function using 
the uncorrected parameters. The agreement is rather 
poor. On the contrary, the three sets included in Table I 
give excellent agreement with the experimental hot­
band data. The other three sets which all contain one 
large positive (translationally equivalent) interaction 
term ("-'10 cm-I ) give density-of-states functions that 
are well extended beyond the higher Davydov com­
ponents, as shown in Figs. 11 (a)-l1 (c). From the 
density-of-states functions alone, the experimental evi­
dence seems to discriminate against the last three sets. 

It has been argued2f,23b that, because of the unknown 
phonon contribution to the density-of-states function, 
the hot-band results are not without uncertainties. It 
is also known2f ,23b that investigations on single im­
purity levels arc void of such complications. To have 
an independent criterion we have thus calculated the 
monomer energies for all these six sets. The results 
are shown in Fig. 12. It should be noted that we have 
lined up the lowest Davydov components found experi­
mentally with those predicted by each of the six sets 
of parameters. Since the ac component of the host can 

be determined experimentally with great accuracy, the 
experimental guest levels plotted in Fig. 12 are all 
measured relative to the ac component of the host. 
This scheme is slightly different from the previous one 
(Figs. 10, 11) which uses the band center as the com­
mon datum. This was done to avoid any prejudice 
with regard to the absolute position of the band center 
and also to conform with previous work on the same 
subject. 2f ,23b 
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FIG. 10. Density-of-states functions calculated with the inter­
action parameters given by (a) Hanson,'" (b) Set 1, (c) Set 2, 
(d) Set 3. The last three sets are those in Table 1. The super­
imposed solid curve is the experimental2d (hot-band) density­
of-states function (dashed part uncertain due to experimental 
difficulties). In each case both the experimental and the cal­
culated band centers are placed at the origin. The vertical dotted 
lines in (a) are the experimental Davydov components. For (a), 
(b), (cl, and (d) the calculated Davydov components coincide 
with the upper and lower band edges. 
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From Fig. 12 we can see that for impurities below 
the band, there is actually very little difference among 
all six sets. However, for impurities above the band, 
only the first three sets give bound states for the trap 
depths investigated experimentally. In the region where 
three bound states were observed experimentally, none 
of the last three sets predicts any bound states. This 
second criterion therefore unequivocally rules out these 
last three sets. 

By the above process of successive elimination, we 
are left with three sets of intermolecular interaction 
parameters which agree with: (1) Davydov splitting, 
(2) the experimental (hot-band) density-of-states 
function, (3) the monomer energies, (4) the resonance 
pair data. In other words, as far as experimental data 
are available and can be checked, our three sets are 
consistent with them all. To further discriminate among 
these sets additional resonance pair data for other trap 
depths would certainly be helpful. As for the deep 
trap limit, suitable vibronic bands may provide the 
answers.30 

Although our search for pairwise interactions is in­
complete, nevertheless, we can set some limits within 
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FIG. 11. Density-of-states function calculated with the inter­
action parameters given by (a) Set 4, (b) Set 5, (c) Set 6 in 
Table II. The conventions used here are the same as those of 
Fig. 10. Since the calculated Davydov components do not coincide 
with the band edges they are shown here as solid vertical arrows. 
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FIG. 12. The monomer energies plotted as a function of the 
reciprocal trap depth (1/6.). The solid circles are the experi­
mental values2f and the open circles are the values calculated in 
Ref. 2 (f) , using the experimental density-of-states function. The 
numbers given correspond to the set numbers Cfable I and II). 
Since the results from Sets 1 to ,) are quite similar, only the 
curve for Set No.1 is shown. For impurities below the band the 
results for all sets are quite similar and bracketed within the 
curves for Set 1 and Set 5. For impurities ahove the hand, Sets 
4 to 6 yield no bound states in the region investigated experi­
mentally, and this is indicated hy dotted lines in the figure. The 
arrows are the ac and b Davydov components calculated from 
Set 1. Notice that the conventions used here are different from 
those in Figs. 10 and 11. Here the calculated and experimental 
bands are superimposed at the ac Davydov component (see text) 
rather than at the band center. 

which the actual density-of-states function must lie . 
Figure 13 shows such limits as defined by the density­
of-states function of Fig. lO(b)-lO(d). It can be seen 
that the experimental (hot-band) density-of-states 
function does lie within these limits,31a considering ex­
perimental errors. The fact that all three sets yield 
density-of-states functions similar to the experimental 
one is gratifying. It should be noted that had any such 
set yielded a different density-of-states function, the 
choice among the sets would be diffi.cult and the validity 
of the experimental density-of-states function could 
not be checked conclusively. This is due to the fact 
that phonons have practically no effect on impurity 
levels but they always contribute to a hot-band transi­
tion to some extent. Any discrepancies in the density­
of-states function observed in this case would have 
been attributable to phonon participation. In reality 
our experimental evidence indicates otherwise. Figure 
13 clearly demonstrates that phonons make little or no 
contribution to the corrected band-to-band transition 
in IB2u naphthalene. This is probably why the experi­
mental density-of-states function has been, up till now, 
the best one available: It has been successful in ac­
counting for the monomer energies and even for 
heavily doped mixed crystals,5,6 despite all the doubts 
concerning the role played by the phonons.31b 
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FIG. 13. Calculated and experimental l B2u naphthalene exciton 
density-of-states functions. The cross-hatched area represents the 
outer bounds of a superposition of the three functions derived 
from the three sets in Table I (compare Fig. 10). The solid curve 
is the experimental density-of-states function,'d with the high­
energy edge truncated due to large experimental uncertainties. 
Dashed lines represent the experimental Davydov components. 
The calculated and experimental curves have been superimposed 
at the band center (E-O). 

Finally, we would like to add some comments on 
the sum rule developed in Sec. II.c. Eq. (42) can be 
regarded as a relation between the sum of dimer 
splittings and the quasiresonance shift of the monomer 
energy. For example, in the case of naphthalene-ks in 
naphthalene-ds, it is known2f that E(1) =31542 cm-I

, 

dE(1)/dl::. can be estimated to be approximately 0.7, 
and 1::.= -115 cm-I . For the host (naphthalene-ds) 
f(k-=0)=31587 cm- I and f(k+=0)=31 751 cm-I . 

From these experimental values we get roughly 

and 

L SRa= -43 cm- I 

Ra 

L SR~=80 cm- I
. 

R~ 

Experimentally, Ranson's data4 give, respectively, 
-25.3 cn,1 and 61.2 cm-I . Since the assumption of 
dimer splittings being small compared to the trap 
depth is not completely justified in this case, a dis­
crepancy is expected. Furthermore the experimental 
values do not include more distant, and hence smaller, 
pair interactions. 

D. Pairwise Interactions and Octupole Model 

In the past, many attempts have been made by 
various authorsS2 to discuss the intermolecular exciton 
interactions in the spirit of the point multipole ex­
pansion. These efforts were probably inspired by the 
prospect of being able to express the exciton interactions 
in terms of a relatively small number of multipole 
parameters which can, hopefully, be transferred from 
system to system (like from CIORS in ClODs to CIORS 
in durene). The obvious drawback is the poor con­
vergence of such an expansion as it is used in solids 
where molecules are in proximity. Craig and Walmsley9 
used this technique for IB2u naphthalene by fitting 

the octupole parameters with the Davydov splitting 
(and the polarization ratio). Since the Davydov split­
ting is mostly accounted for by the interaction M12 

between the nearest interchange-equivalent molecules, 
this raises a serious question about convergence. It is 
believed here that, if the octopole model is to work, 
we have a better chance of fitting the octopole param­
eters with the interactions between more distant, trans­
lationally equivalent, molecules. In doing this we are, 
of course, sacrificing the experimental accuracy associ­
ated with the measurement of larger interaction terms 
for a theoretically more justified expansion, i.e., one 
with a better convergence. 

The octopole-octopole interactions for translationally 
equivalent pairs can be conveniently derived from the 
procedures discussed by Buckingham.s3a In order to 
check any possible electron overlap, we have projected 
the molecules from the crystallographic coordinates 
to the molecular Cartesian coordinates. Figure 14 shows 
such a projection. The translationally equivalent mole­
cules are either well staggered or have a large plane­
to-plane distance. We included in our calculations all 
the lower order multipole parameters: Qlle, Q3 1e , and Qic. 
The (transition dipole) Qllc is known9 to be about 
0.03 A. The whole possible ranges of Q31e and Qa3C, 
as suggested by Craig and Walmsley,9 have been 
covered (including also all the possible relative signs 
between Qllc, Qalc, and Qic). For each set of octopole 
parameters, the rms of the deviations between the 
calculated and the experimental Ma, Mb, Me, and llfa+c 
was tabulated and compared. The Franck-Condon 
factor for the 0-0 transition of IB2u naphthalene was 
explicitly included. The experimental sets of M a , M b, 

Me, and M a+c consist of all the 24 sets (six sets from 
Tables I and II and all the possible permutations in­
volving the exchanges Ma~Mb and Me~Ma+c). It is 
somewhat unexpected that there is only one set of 
interactions (M's) which can be meaningfully fitted 
with such a model. As tabulated in Table IV, one 
possible choice from set 1 can be nicelv generated with 
multipole parameters of Q,'c=O.03 A: Qa'c =7 AS, and 
Q33c = 72 A3. 

It is not clear whether the above nice fit has any 
significance}3b The same parameters obviously will not 

FIG. 14. Projections of naphthalene molecules in one sublattice 
of a naphthalene crystal on.to the m.olecular pla~e. (right-hand 
side) and the plane perpendIcular to It .and c~n~am.mg the short 
molecular axis (left-hand side) . The UnIt cell IS mdlcated by the 
dashed lines. Carbon skeletons are drawn to scale. 
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fit the Davydov splitting (which has been fitted by 100'r-----------------.. 

Craig and Walmsley with Q31c =9 A.3, Q33c=-12 A.3). 
On the other hand, it can always be argued that for 
the short-range, nearest-neighbor interaction (M12 ), 

which is the major contribution to the Davydov split­
ting, the validity of the truncated point multipole 
expansion is rather questionable. We have attempted 
to transfer these parameters to the naphthalene-in­
durene system. Some preliminary dimer data34 obtained 
in this laboratory do not compare favorably with the 
theoretical values. However, the experimental values 
are by no means final, the site field differs and, besides, 
here we also encounter the problem of molecules in 
proximity (the b dimer being only 5.77 A. apart). 

E. Experimental and Ab Initio Methods 

Before any comparison between our "experimental" 
results and those of "ab initio" calculations is made, a 
word of caution is necessary. Our "first-order" exciton 
formalism for pure crystals is based on zeroth-order 
"site" functions while the only computations available 
were done with zeroth-order approximate molecular 
functions. One should therefore only compare final 
results. Furthermore, our numerical results are for 
the 0-0 vibronic exciton band, not for the entire 
electronic band, and for intercomparison one has to 
use a Franck-Condon factor of about 160/195. 

Greer et aPe claim that their configuration inter-
action ("charge transfer") terms do contribute most 
of the experimental site shift. However, the roles of 
the Franck-Condon factors in modifying the "effective" 
site shift were not at all clear in their paper. On the 
one hand, an "effective" Franck-Condon factor of 0.6 
was introduced for benzene to get agreement with 
experiments while, on the other hand, it was implicitly 
as~umed to be unity for naphthalene. The important 
pomt to note here is that if such a factor were formally 
mtroduced for naphthalene, it would have affected the 
contribution of the charge transfer states to the 
Davydov splitting and, consequently, reduced the mag­
nitude of the adjustable octopole parameters. 

TABLE IV. The pairwise interactions as fitted with the multipole 
parameters: Q1 '0=0.03 A, Q310=7 A3, Q33'=72 A3. 

Pairwise interaction 

Set 1 a -0.6 -3.9 -3.7 6.1 
Over-all electronic 

interactionsb -0.73 -4.8 -4.5 7.4 
Octopole model -0.37 -4.6 -3.9 7.8 
Deviation' 0.80 

: Taken from Table I. notice the permutation of J1 a and J[ a+c. 

Corrected for the Franck-Condon factor of 160/195 for the 0-0 
transition. 

C Sum of the squares of the differences between the second and the 
third rows. 

50 

--;-e 
ri u 
-« 

)-
(l) 

0 

a: z 
1&1 5 
z III 
1&1 N 

iii 

-50 

dca,b,t 

-100,'----------'---------
... /d ... /2d 

K-

FIG. 15. The energy dispersion for the 0-0 exciton band of 
naphthalene IB2u state along the three Brillouin zone axes. The 
band center is at the origin. The parameters used here are taken 
from Table IV. 

The differences between the octopole parameters of 
Greer et al. and those of Craig and Walmsley9 are 
quite insignificant. These parameters would, in both 
cases, be considered as too large compared with com­
puted free molecule values. In our approach, we deal 
with "renormalized" molecular site functions which 
include, by definition, some of the higher-order con­
figuration interaction contributions of the molecular 
function approach. These site states could, in principle, 
have octopole moments that are considerably different 
from the molecular values. It should be emphasized 
that a small site shift does not preclude a much larger 
moment distortion due to the same site (environmental) 
effect. In addition, we do not trust the accuracy of 
presently available 1r-electron-only naphthalene wave­
functions, especially when it comes to the calculation 
of properties that depend crucially on the details of 
the "tail end" of these functions. Such properties 
would include intermolecular interactions in general 
and higher-order transition moments in particular. One 
final point is that the octopole moments of Greer 
et at. are not really ab initio values. Similarly to those 
obtained by Craig and Walmsley, these moments were 
derived by fitting the experimental Davydov splitting. 
As we have mentioned earlier, this procedure essentially 
involves the fitting of multi pole expansion parameters 
to the nearest neighbor pairwise interaction. This prob­
ably results in poor convergence, due to charge overlap. 

In order to facilitate a comparison between our 



744 H.-K. HONG AND R. KOPELMAN 

results and those of Greer et al. we have calculated 
(Fig. 15) some dispersion curves (for the same special 
k values given by Greer) using our dispersion relation 
[Eq. (43)J with our set of pairwise interactions from 
Table IV. Our curves differ significantly from those 
in Greer's Fig. 3, although the latter have been fitted 
to match the Davydov splitting (k=O). As the 
Davydov splitting is only determined by interchange 
equivalent interactions, it is not surprising that the 
largest discrepancies between the curves occur at the 
boundary of the Brillouin zone, where the translational 
equivalent interaction terms are dominant. It should 
also be noted that our translational shift is -4.5±4 
cm-t, compared with an "experimental" value3•1 of 
+ 10 cm-! given by Greer et al. 

In our opinion, future ab initio calculations should 
be aimed at the direct evaluation of pair interactions, 
which can be directly subjected to experimental in­
vestigations as we have demonstrated here. Our "ex­
perimental" deep-trap values should provide a chal­
lenging and meaningful criterion for evaluating the 
qualities of wavefunctions used in ab initio calcula­
tions. Until such high-quality wavefunctions are avail­
able, one may aim at improving and increasing the 
list of empirically known intermolecular pairwise in­
teractions, with emphasis on both the radial and the 
angular dependence. 

IV. SUMMARY 

The purpose of this paper can be summarized as 
follows: (a) In the broader aspect, we have demon­
strated how the multiple-scattering formalism de­
veloped previously for the multiple-branched exciton 
band behaves at the low concentration limit. The de­
tailed structure of the average Green's function was 
further analyzed and its physical meaning was further 
exposed. (b) The resonance pair problem was treated 
within the framework of the "restricted Frenkel 
theory." The energy eigenstates and the optical proper­
ties were discussed together with some symmetry 
properties pertaining to the pairs. (c) Specifically, 
energy states of naphthalene-lz8 resonance pairs in 
naphthalene-d8 were calculated with a six-parameter 
modeL It was shown that quasiresonance interactions 
cannot be neglected. This leads to the introduction 
of the concept of exciton superexchange which, in 
this case, largely overwhelms the direct excitation ex­
change for some translationally equivalent pairs. It was 
also demonstrated how this superexchange effect can 
be utilized in assigning the resonance pair spectra. 
(d) Six sets of intermolecular interaction parameters 
were obtained. It was found that three of these also 
give a density-of-states function consistent with the 
hot-band data and the monomer energies derived ex­
perimentally. Therefore, all the experimental data 
presently available can be explained by these param­
eters. (e) It was also concluded that phonons have 
little effect on the "experimental density-of-states func-

tion". The latter represents, to a large extent, the 
"true" exciton band profile. (f) The octopole model 
was also tested, not by fitting the Davydov splitting 
but by fitting the pairwise interactions with the ex­
clusion of nearest neighbors. A unique fit gives octopole 
parameters of Q3!c= 7 Aa and Qic= 72 A3. However, it 
was emphasized that this might be a fortuitous result. 
(g) A method for determining the complete exciton 
band structure is now available for the "restricted 
Frenkel-Davydov" case and has been demonstrated 
for the first excited singlet state of naphthalene. 
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