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Correlation energies (CEs) for two-electron atom ground states have been computed as a 
function of the dimensionality of space D. The classical limit D --+ 00 and hyperquantum limit 
D--+ 1 are qualitatively different and especially easy to solve. In hydrogenic units, the CE for 
any two-electron atom is found to be roughly 35% smaller than the real-world value in the 
D--+ 00 limit, and about 70% larger in the D--+ I limit. Between the limits the CE varies almost 
linearly in 1/D. Accurate approximations to real CEs may therefore be obtained by linear 
interpolation or extrapolation from the much more easily evaluated dimensional limits. We 
give two explicit procedures, each of which yields CEs accurate to about I %; this is 
comparable to the best available configuration interaction calculations. Steps toward the 
generalization of these procedures to larger atoms are also discussed. 

I. INTRODUCTION 

Most electronic structure calculations performed today 
employ the self-consistent field (SCF) method, and there­
fore omit the correlation energy. I In the SCF approach each 
electron is assumed to move independently in the average 
field of the other electrons. Each electron is described by an 
orbital, or one-electron wave function, and the system as a 
whole is described by a configuration, or assignment of elec­
trons to orbitals. The correlation energy (CE) is the differ­
ence between the exact energy (excluding relativistic ef­
fects) and the optimal SCF energy, which is the Hartree­
Fock (HF) limit. The CE is typically a small fraction of the 
total energy, but of the same order of magnitude as the ener­
gies involved in chemical phenomena. Depending on the ap­
plication, therefore, it mayor may not be safe to ignore it. If 
the electronic state does not change much, as in the optimiz­
ation of a molecular geometry, SCF calculations will often 
suffice. On the other hand, the CE will usUally be a major 
factor in phenomena where the electronic state does change, 
such as ionizations and dissociations.2 

The main reason that most calculations are performed 
at the SCF level is simply that CBs are very difficult to calcu­
late. In the most common procedure, the single configura­
tion of the SCF wave function is combined with a number of 
others. Although this method of configuration interaction 
(CI) can in principle yield the full correlation energy, in 
practice it requires a very large number of configurations to 
do a good job. This is because the "correlation holes" in the 
exact wave functions created by the instantaneous electron­
electron repulsions are very difficult to model using a basis of 
SCF wave functions. I 

Quantitative knowledge of atomic CBs remains surpris­
ingly limited. Although accurate SCF wave functions and 
energies have been computed for all atoms,3 approximate 
CBs are known only as far as argon. CI calculations have 
been performed for first row atoms (up to Z = 10).4 The 
errors, due to incompleteness of the basis set, are 3%-5%. 
For second row atoms (up to Z = 18), CEs have been ob­
tained by utilizing experimental data in conjuction with SCF 

calculations.5 The uncertainties, which in this case are due to 
the relativistic corrections, are 5%-10%. For larger atoms 
(beyond Z = 18) the only available CEs are based either on 
extrapolation from values for smaller atoms,6 or else on ap­
proximations such as the electron gas model. 7 The values 
yielded by these two procedures differ by a factor of 2 or 
more.6.S 

In this paper we examine a new approach to atomic cor­
relation energies which exploits dimensional continuation 
methods recently applied to two-electron atoms.9-16 The 
motivating idea is to generalize to spaces of dimensionality 
D :;l: 3, do calculations wherever they are easy, and then work 
back to D = 3. Two cases in which many problems can be 
expected to simplify are D = 1 and the D ..... 00 limit. For 
Coulomb problems the first of these is more correctly desig­
nated the D --+ 1 limit, and is even easier to solve than might 
be anticipated from the restriction to one degree of freedom. 
The simplest dimensional variant, however, will generally be 
the D ..... 00 limit. 

In Sec. II we examine the nature of the limits D ..... 00 and 
D ..... 1, and give explicit results for two-electron atom CBs in 
these limits. Section III presents the results for other dimen­
sions, as revealed by computer calculation. In Sec. IV we 
explore the physics underlying the observed behavior, and in 
Sec. V utilize this to motivate two very simple methods for 
extracting real-world CBs from the dimensional limits. We 
also show why these two schemes work so much better than 
the customary approach used with dimensional continu­
ation, namely the 1/D expansion.9-12 Finally, in Sec. VI we 
discuss briefly the encouraging prospects for generalization 
of these methods to larger atoms. 

II. DIMENSIONAL LIMITS 

We consider the ground state of a two-electron atom of 
nuclear charge Z in a space of dimensionality D. We assume 
a Hamiltonian identical in form to that for D = 3, but with 
Laplacians and Euclidean distances now understood to be 
those appropriate to D-dimensional space. D ..... 00 and D-l 
constitute singular limits for this problem. In order to obtain 
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finite atomic energies and sizes in the two limits, we employ 
scaled variables. Appropriate units are [2Z I (D - 1)]2 har­
tree for energies and D(D - 1 )/2Z bohr radii for distances. 
The D-dimensional Hamiltonian in these units is 

HD = -..!..c52[V~ + Vn +..!.. (1-15) 
2 2 

X [ -..!.. -..!.. + .A..], (1) 
PI P2 PI2 

with 15 = 1/D and A = 1/Z. We observe that the coefficient 
of the kinetic terms vanishes in the limit D ..... 00, and that of 
the potential terms in the limit D ..... 1. However, careful ex­
amination of the limits reveals that in neither case do the 
terms simply drop out. 

A. The classical limit, D- ()() 

The reason that the Laplacians in H D do not drop out in 
the D ..... 00 limit is that they give rise to terms of order D 2 

which cancel out the coefficient 1/ D 2. These contributions 
come from centrifugal terms having D 2 in place of the usual 
L 2, and arise because the D-dimensional volume element 
works against "tight" configurations in the same way that 
angular momentum does. The volume element is 
pf-Ipf-I sinD

-
2 0, where the three variables are the 

lengths of the two electron-nucleus vectors and the angle 
between them. When this is incorporated to simplify the La­
placians, the terms in the limiting Hamiltonian which sur­
vive constitute an effective potential, which for S states is 

V", =..!.. U
2 
+~] ++..!.. [_..!.._..!..+.A..]. 

8 LPI P2 sm 0 2 PI P2 PI2 
(2) 

The minimum of this potential defines the exact solution for 
the D ..... 00 limit.9-12 This localization into a well-defined 
configuration is quite general and is the reason for calling 
D ..... 00 a classical limit. 

In this case the limiting configuration has the two elec­
trons at fixed distances from the nucleus, with an angle 
somewhat greater than 90· (and increasing with A) between 
them. For A <Ao=0.814 39, the configuration has isosceles 
symmetry, and the exact energy may be evaluated explicitly 
aslS 

E = _1_2...A2+_1_[A4+A(A2+128)3/2]. 
'" 32 2048 

(3) 

For A >Ao, and in particular for the hydride ion, the mini­
mum energy configuration is asymmetric, with one electron 
closer to the nucleus than the other; Eq. (3) no longer gives 
the minimum energy but rather corresponds to a saddle 
point between two equivalent minima. 

In the Hartree-Fock approximation the assumed form 
for the wave function precludes any explicit 0 dependence. 
The angle is therefore determined solely by a geometrical 
factor, the term sinD

-
2 0 in the volume element. This fixes 

the angle at 90·. Minimization of the effective potential un­
der this constraint givesl7 

(4) 

This pertains to A<A~=1.13137, where the minimum 
configuration has isosceles symmetry. 

The CE in the D .... 00 limit, aE 00 , is now given by the 
difference ofEqs. (3) and (4). For the neutral atom (A = 1/ 
2) this is about 0.99% of the total energy, distinctly smaller 
than the corresponding D = 3 value of 1.45%. Although 
these percentages vary somewhat with the nuclear charge, 
their ratio remains fairly constant (between 0.67 and 0.69) 
over the full range of two-electron atoms. 

B. The hyperquantum limit, D-1 

In this limit no terms in the potential survive except 
perhaps when an interparticle coordinate vanishes, thereby 
causing one of the Coulomb terms to diverge. Care in taking 
the limit shows that each potential term is in fact a delta 
function of unit strength, so that the D .... 1 limit of the Ham­
iltonian is 18 

HI = -..!.. [~+~] - c5(PI) - c5(P2) + Ac5(PI2)' 
2 api ap~ 

(5) 

A single electron in a delta function potential has only one 
bound state, and this is classically forbidden except at the 
singularity. Since HI describes two such electrons perturbed 
only by a purely repulsive interelectron term, it has at most 
one bound state, and this is classically forbidden except on a 
set of measure zero (P1P2 = 0). It is thus appropriate to call 
D .... l a hyperquantum limit. 

The D ..... 1 limit is not quite as easy to solve as the D .... 00 

limit, but is still much simpler than the D = 3 problem for 
two reasons. First, the restriction of the physics to a line 
eliminates all angular variables. Thus, HI depends only on 
the two radial coordinates. Second, the delta functions sim­
plify the solution of the Schrodinger equation. For the two­
electron atom this allows both the exact and HF versions of 
the problem to be reduced to one variable. The exact solution 
has been obtainedl9 as a series expansion, 

EI = -1 +..!..A - [2._~]A2 
2 8 311" 

+ [_1 __ _ 5_]A 3 _ '" (6) 
61T 128 ' 

whereas the HF solution has been obtained explicitly,20 

~ = - 1 + yt - M 2. (7) 

The CE in theD ..... 1 limit, aEI , is now given by the differ­
ence between Eqs. (6) and (7). In this case the CE for the 
neutral atom (A = 1/2) is about 2.28% of the total energy, 
considerably larger than the D = 3 value. In fact, the ratio 
aE II aE3 falls between 1.70 and 1.72 for almost all two-elec­
tronatoms. 

c. Dependence on nuclear charge 

Upon taking the difference of either Eqs. (3) and (4) or 
Eqs. (6) and (7) to obtain the CE, the terms of order A ° and 
A I cancel, so the CE begins at order A 2. That this is a general 
result, independent of D, may be seen as follows: For A .... O 
the D-dimensional Hamiltonian H D in Eq. (1) is separable, 
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so the exact and HF wave functions must be identical in this 
limit. The corresponding energies will therefore agree to first 
order in A, and their difference will vanish to that order. 

III. CALCULATIONS FOR 1 <D< co 

To examine two-electron atom CBs between the dimen­
sional limits, we have utilized computer programs which 
generate accurate approximations to the exact and HF ener­
gies for arbitrary values of D. The algorithms were obtained 
by generalizing appropriate three-dimensional methods, 
namely the precise variational approach pioneered by Hyl­
leraas and perfected by Pekeris, and the Hartree-Fock­
Roothaan algorithm. These generalizations have been pre­
sented elsewhere. 16 

CBs were computed for a wide range of spatial dimen­
sionalities D and nuclear charges Z. The problem can be 
formulated for arbitrary real values of these parameters, but 
we consider here only the domain 1 <D< co, 1 <Z < co • 
(Two-electron atoms are unbound for Z much less than uni­
ty, formally unnormalizable for D less than unity,18 and 
computationally difficult in either case. 16) Table I gives CBs 
for selected values of D and Z. 

We view the CE as a function of the inverse parameters 
8 = 1/ D and A = 1/Z. As we see from Eq. (1), these are 
natural perturbation parameters for the problem, 8 measur­
ing the departure from the classical limit and A measuring 
the strength of the interelectron repulsion. Also, these pa­
rameters collapse the domain of interest to a finite one, 

0<8< 1, O<A< 1. Figure 1 gives a contour plot of the CE as a 
function of 8 and A. (Because of the basic A 2 dependence of 
the CE, the values have been normalized by A 2. Values are 
not plotted for combinations of the parameters which yield 
no bound state, because CBs cannot be defined there.) 

Figure 1 reveals a variation of the CE with 8 and A which 
is surprisingly regular, considering the range of physics in­
volved. The variation is monotonic, and in fact quite linear, 
with respect to each parameter. To large extent the two func­
tional dependencies factor, and we consider them separately. 

For any fixed value of the dimensionality, the variation 
with respect to A of the CE as plotted in Fig. 1 is quite mod­
est. Its magnitude decreases with A, but in general by only 
about 25% between A = 0 and A = 1. This generalizes the 
observation that the CBs of real two-electron atoms are all 
roughly the same as that of helium, though they do increase 
slightly with nuclear charge. 21 

Our main concern in this paper is the variation of the CE 
with respect to 8. This is more pronounced than that with 
respect to A, but also more regular. In Fig. 2 the CBs are 
plotted as a function of 8 for several values of the nuclear 
charge. Each curve is normalized by theD~ co value. We see 
that in each case the CE increases almost linearly with 8 by a 
factor of roughly 2.5 between the D-+ co and D-+ 1 limits. 

To quantify the linearity, we consider the vertical devia­
tions of each curve from a straight line drawn between its 
endpoints. These nonlinearities are plotted in Fig. 3. They 
are most pronounced for high D and low Z. This is the do­
main of weakly bound states adjoining the blank region of 

TABLE I. Correlation energies for D-dimensional two-electron atom ground states.· 

D Z=1 Z= 1.2 Z= 1.5 Z=2 Z=3 Z=6 

1 - 0.063877 - 0.046 307 - 0.030 849 - 0.D18 014 9 - 0.008 2910 - 0.002 141 47 
12/11 - 0.060 5139 - 0.029 252 8 -0.0170941 -0.0078735 - 0.002 035 31 
6/5 - 0.057169 8 - 0.041452 6 -0.0276377 - 0.016158 7 -0.0074479 - 0.00192679 
4/3 -0.0538753 -0.0260128 - 0.015 2121 - 0.007 01520 - 0.001816150 
3/2 - 0.050667 6 -0.0366208 -0.0243877 - 0.014 2591 - 0.006 577 48 - 0.001703786 
12/7 -0.0475924 -0.0227740 - 0.013 305 55 - 0.006137 18 - 0.001590 290 

2 -0.04467 - 0.031 973 58 - 0.021 18450 - 0.012 358400 - 0.005 697 353 - 0.001 4764308 
12/5 - 0.019 631523 - 0.011 424 879 7 - 0.005 2614984 - 0.001 363 1469 

3 - 0.027 689 00 - 0.D18 123 1510 - 0.010 511 095 36 - 0.004 833 134 58 - 0.00125149239 
4 - 0.016 654 397 9 - 0.009 618 568475 - 0.004 414 782700 - 0.001 142473 112 

24/5 - 0.009177 769 781 - 0.004 209 360 445 - 0.001 089 1667234 
6 - 0.0237 - 0.D15 1865323 - 0.008 736 537476 - 0.004 005 688 625 - 0.001 036666 1320 
8 -0.0144190659 - 0.008 288 641631 - 0.003 802 358 950 - 0.000 984 845 340 9 

48/5 - 0.008 059 078 454 - 0.003 700 092 198 - 0.000 9591074372 
12 - 0.013587341 2 - 0.007 823 282 359 - 0.003 596 847 433 - 0.000 933 414 362 6 
16 - 0.013 127644 4 - 0.007 578 586 023 - 0.003 492 030 723 - 0.000 907 692 854 8 

96/5 - 0.007 451 807533 - 0.003 438 800 927 - 0.000 894 7932118 
24 - 0.012 619 9591 - 0.007 321327916 - 0.003 384 873 469 - 0.000 881 849 873 9 
32 - 0.012 340 763 5 - 0.007186444 327 - 0.003330115684 - 0.000 868 847 682 4 

192/5 - 0.007 117 090 292 - 0.003 302 378 758 - 0.000 862 319 363 0 
48 - 0.012 038681 5 - 0.007 046 298 865 - 0.003 274 375 563 - 0.000 855 769 957 7 
64 - 0.006 973 93003 - 0.003 246083 535 - 0.000 849 197 134 4 
96 - 0.D11 706 889 8 - 0.006 899 826 23 - 0.003217478469 - 0.000 842 598 493 4 
192 - 0.006 823 809 18 - 0.003 188 534395 - 0.000 835 971 539 7 
00 - 0.D11 335 076 35 - 0.006 745 675 875 - 0.003 159223481 - 0.000 829 313 7160 

• Units are [2Z / (D - 1) J 2 hartree. Values were computed using generalizations to D-dimensional space of the Hylleraas-Pekeris and Hartree-Fock algor-
ithms presented in Ref. 16. 
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FIG. 1. Correlation energies for ground states of two-electron atoms as a 
function of the inverse spatial dimensionality 6 = 1/D and inverse nuclear 
charge..t = 1/Z. Units are [2/(D - 1) f hartree. Real atoms fall on the 
vertical section 6 = 1/3 and neutral ones on the horizontal section..t = 1/2. 
Atoms in the vicinity ofthe infinite-dimensional hydride ion (top left cor­
ner) have no bound states, so correlation energies cannot be calculated for 
them. 
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FIG. 2. Dimension..c:Jependence of two-electron atom correlation energies 
for several values of the nuclear charge. Each curve is normalized by its 
D- 00 limit, which is thedifferenceofEqs. (3) and (4). Real atoms fall on 
the vertical section 6 = 1/3. For Z>2 the curves are linear to about 1 part in 
100. 

spontaneous ionization in Fig. 1. The focal point for the non­
linear behavior appears to be the symmetry breaking at 
8 = 0, A = Ao mentioned above. This transition at Z == 1.23 
from a symmetric classical limit structure to an asymmetric 
one has its most significant effects at large but finite D. This 
may be seen by considering the expansion of the energy in 
powers of 8 and A. For small enough 8 the energy is deter­
mined by the intercept (the classical limit D -+ 00 ) and slope 
(the first-order semiclassical correction, or 1/ D term). The 
symmetry breaking has a very mild effect on the classical 
limit itself. The effect is proportional to (A-Ao)2, which 
yields a discontinuity in the curvature at Ao. The effect of the 
symmetry breaking on the semiclassical correction term is 
much more serious. IS Here it is proportional to (A - Ao) 1/2, 

which assumes infinite slope at Ao. The effects of this term 
can be seen clearly in Fig. 3. As Z is decreased, the initial 
slopes are increasingly dominated by the square root branch 
point at Z == 1.23, and this appears to destroy the otherwise 
smooth behavior. 

IV. ORIGINS OF LINEARITY 

We have seen that the deviations from linearity with 
respect to 1/ D become larger at small Z. On an absolute 
scale, however, they remain small. In fact, the nonlinearities 
remain less than 2% of the total correlation energy for all 
neutral atoms and positive ions (l<D< 00,2<Z< 00). We 
consider now the origins of this strikingly regular behavior. 
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Z=3 
0.0000 ~=:~~:.:.:..------=---­

~--="=~::: .. ....................... 
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...... 

-0.0008+-__.--r--_....,..-_-r-_--,.-_--1 
0.0 0.2 0.4 0.6 0.8 1.0 

6=1/D 

FIG. 3. Nonlinearities of the curves in Fig. 2 on an expanded scale. These 
are defined as the deviations of the curves from straight lines drawn between 
their endpoints (the classical limit D_ 00 and the hyperquantum limit 
D-l ). Nonlinearities are most pronounced at high D and small Z, which is 
the domain of weakly bound atoms. 
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The CE for neutral atoms is plotted as a function of 8 in 
Fig.4( a), and the exact and HF energies (of which the CE is 
the difference) in Fig. 4(b). All three quantities show 
smooth and monotonic dependence on the dimensionality. 
As the difference of two much larger quantities, the CE 
might be expected to magnify any irregularities in the behav­
ior of the total energies. As we have seen, however, the CE is 
highly linear. 

The linearity results from a high degree of cancellation 
between the nonlinear components of the two total energies. 
This is made clear in Fig. 5, where the nonlinearities of the 
curves in Fig. 4 are plotted. Roughly speaking, the nonlin­
earities in the exact and HF energies cancel to 1 part in 100. 
Since these were already only about 1/100 of the total ener­
gies, the nonlinearities in the CE are a factor of Hr smaller 
than the total energy. 

A. Perturbation analysis 

To understand this cancellation we turn to a perturba­
tion treatment in it At the end of Sec. II, we noted that for 
any D the exact and HF wave functions agree to zeroth order 
in A, and the corresponding energies to first order. In this 
simple observation we have an explanation for most of the 
cancellation observed in Fig. 5, because most of the nonlin­
earity in 8 of the exact and HF energies is due to their com­
mon first-order term. It has been calculated explicitly as 18 

(a) 
0.00 . t---- _ _ Correta.hon ---------

-0.02 --------.. 

(b) 
'W 

-0.66 
CI) 
CI) 
~ .... 
~ 
a:I 
~ 

N 

f N~ .......... -->. 
QD 
~ 
CI) 

s:= 
~ 

-0.80 

(c) 

0.0 0.2 0.4 0.6 0.8 1.0 

6=1/D 

FIG. 4. Contributions to the energies of neutral two-electron atoms as a 
function of {j = liD: (a) the correlation energy; (b) exact and Hartree­
Fock energies, with their dilference (the correlation energy) shaded; (c) 
same, but with the first-order interelectron repulsion energy eliminated. 

r(D+l)r(g?+PA 
reD + Vr(g? + 1) 

=_1_ [1-]...8 +_9_ 82 +~83 _ "']A. (8) 
v'2 8 128 1024 

It is the terms of order 82 and higher which account for most 
of the bow in the two total energy curves. This may be seen 
by comparing the (b) and (c) panels of Figs. 4 and 5, which 
are identical except for the fact that the first-order term has 
been subtracted out in the (c) panels. 

Comparing now panels (a) and (c), we see thatthere is 
still some cancellation of nonlinearities to be accounted for, 
so we tum to higher orders inA. Explicit formulas analogous 
to Eq. (8) are no longer available, but accurate coefficients 
are available for several dimensionalities, 15,18 and with these 
we can make a limited term-by-term assessment of linearity. 
This is done in Fig. 6. Dots indicate exact coefficients (solid 
for positive values and open for negative), and lines indicate 
coefficients linearly interpolated between the D ... 00 and 
D ... 1 limit values; note that curvature in the lines is due 
solely to the use of a logarithmic scale. Table II gives the first 
six A-expansion coefficients for the limiting cases, Table III 
those for D = 3, and Table IV those for the two leading 
terms ofthe 1/ D expansion. 
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FIG. S. Nonlinearities of the curves in Fig. 4 on an expanded scale. The near 
linearity of the correlation energy (a) results from cancellation of nonlin­
earities in the exact and HF energies (b). Most but not all of the nonlineari. 
ties which cancel may be attributed to the first-order intere1ectron repulsion 
term (c). 
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o 1/2 1 0 

6=1/D 
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o 

1/2 

6=1/D 

1 

FIG. 6. Perturbation analysis of the dimension-dependence of the total and 
correlation energies of two-electron atoms. The nonvanishing coefficients 
through fourth order in A. = liZ are plotted. Filled and open circles denote 
positive and negative coefficients, respectively. Solid lines indicate values 
obtained by linear interpolation between the D .... 00 andD .... I limits (Table 
II). Absence of the first two terms (A. ° and A. 1) and a high degree of linearity 
in the next two (A. 2 and A. 3) help to account for the observed linearity ofthe 
correlation energy. 

At order A 2, which is the lowest order for the CE, the 
coefficients appear to behave quite linearly. At D = 3 there is 
agreement to the nearest 0.001 between exact and interpolat­
ed values for all three energies. At order A. 3, this kind of 
agreement is found for the CE, but not quite for the exact and 
HF energies. There is apparently again some cancellation 
taking place. At higher orders in the perturbation expansion 
there is no sign of interpolability in the coefficients at all; not 
even the signs are predicted correctly. 

Although the linearity of individual coefficients extends 
at most to third order in A, the first few terms of the expan-

TABLE II. Expansions in A = liZ for dimensional limit energies.· 

AO AI A2 A3 

E~ -1.0 0.707107 - 0.156 25 0.008286 
~F -1.0 0.707107 -0.125 0.0 

t:..E~ 0.0 0.0 - 0.03125 0.008286 

EI -1.0 0.5 -0.162793 0.013 989 
~F -1.0 0.5 -0.083333 0.0 

t:..EI 0.0 0.0 -0.079460 0.013 989 

sion dominate the behavior, and it may be checked that the 
coefficient behavior suggested by the limited data in Fig. 6 is 
quite consistent with the more detailed results of the preced­
ing figures. Therefore the observed linearity in B of the CE 
may be attributed to that of its A. 2 and A. 3 terms. 

We do not yet have a complete explanation for the regu­
larity of these lowest-order coefficients, but can make a cou­
ple of observations which may help in providing one. First, 
the two terms in question (second and third order in the 
energy) are those which arise from the first-order correction 
to the wave function. In particular, for the CE they arise 
from the first-order error in the HF wave function (which 
was exact at zeroth order). Second, we note that at the dy­
namicallevel these terms constitute the lowest-order effect 
of the fluctuation potential, which is essentially the differ­
ence between the exact (instantaneous) and HF (averaged) 
forms of the interelectron repulsion.22 It may be relevant 
that the fluctuation potential, unlike the Coulomb potentials 
from which it is derived, is of relatively short range. 

B. Symmetry breaking 

Examination of the perturbation expansions in A. can 
also give some insight into the partial breakdown oflinearity 
in the domain of weakly-bound state (large D and small Z). 
It was pointed out that this could be attributed at least in part 
to the effects of the symmetry breaking at Z == 1.23, where 
the D .... 00 classical limit switches from a symmetric to an 
asymmetric structure. A sharp transition occurs only at the 
point (8,A.) = (O,A.o), but an examination of the perturba­
tion series reveals how the effects are felt elsewhere. 

In Fig. 7 the A. perturbation expansions for the CE are 
plotted through 20th order for several values of D. For the 
dimensional limits the coefficients were obtained from the 
formulas in Sec. II (explicit values through order A. 5 are giv­
en in Table II). For D = 3 the coefficients were obtained 
from numerically determined exact23 and Hartree-Fock24•25 

series (Table III); the HF series was extrapolated from fifth 
to 20th order. For large D we have simply utilized the expan­
sion15

•
17 for the liD term (Table IV}; because this converges 

so poorly compared to the D .... 00 limit, it will completely 
dominate the expansion for any large but finite D. 

From Fig. 7 we see that in general the convergence gets 
worse as the dimensionality is increased, except that the 

A4 AS 

0.000488 0.000016 
0.0 0.0 
0.000488 0.000016 

0.001643 0.000017 
0.0 0.0 
0.001643 0.000017 

• Units are [2Z / (D - 1)]2 hartree. The series for E" was obtained by expanding Eq. (3). That for E I was taken 
from Rosenthal, Ref. 19. The HF coefficients are given directly by Eqs. (4) and (7). 
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TABLE III. Expansions in A = 1/Z for exact and interpolated D = 3 energies. a 

AO AI A2 A 3 A4 AS 

E3 -1.0 0.625 -0.157666 0.008699 - 0.000 889 -0.001036 
fjlF -1.0 0.625 -0.111003 -0.001055 -0.000460 -0.000208 

~E3 0.0 0.0 -0.046663 0.009754 -0.000429 - 0.000 828 

Eu -1.0 0.638071 - 0.158 431 0.010 187 0.000873 0.000016 

err -1.0 0.638071 -0.111111 0.0 0.0 0.0 

~Eu 0.0 0.0 -0.047320 0.010 187 0.000 873 0.000016 

aTheseries for E3 was computed by Midtdal (Ref. 23), and that for fjlF by Linderberg (Ref. 24) and Coulson 
and Hibbert (Ref. 25). Coefficients for Eu and err were obtained by interpolating linearly in 1/ D between the 
corresponding quantities in Table II. 

D ... 00 limit itself yields the most well-behaved series of all. 
The convergence properties of each series are determined by 
the distance from the origin to the nearest singularity A * in 
the complex A plane. Using 1..1. *1 = lO-m, where m is the 
slope of the large-order tail of the series, one finds that this 
distance is roughly 11.3 for D --+ 00, 2.7 for D --+ I, 1.1 for 
D = 3, and 0.8 for large but finite D. The last of these is 
actually ..1.0 =0.81439, the point of symmetry breaking. IS 

The poor convergence at large D is due to the proximity of 
this singularity to the origin. 

If one considers only the dimensiona11imits and the real 
world (D = 1,3,(0), as we did earlier in this section, then the 
large-order behavior of the series is not very important. This 
is because the CE is determined primarily by the lowest­
order terms, at least for typical values of the nuclear charge, 
and these fall outside the asymptotic regime. One can see 
from Fig. 7, however, that for large D the asymptotic behav­
ior sets in already at low order. In fact, it gives the second 
nonvanishing term (A 3) the "wrong" sign. It may be 
checked that the effect of this is to give CBs at highD and low 
Z which are slightly larger in magnitude than one might 
expect, based on values elsewhere. This is precisely what was 
observed in Fig. 3. 

V. APPLICATIONS 

There is important and interesting physics underlying 
the irregularities we have been discussing, but we repeat that 
on an absolute scale they remain small. The CE is still a 
highly linear function of ~ = liD. In this section we utilize 
this linearity to motivate two simple procedures for obtain­
ing real-world results from the dimensional1imits. 

A. Linear Interpolation 

The first procedure is linear interpolation (LI) between 
the D--+ 00 and D ... l1imiting values. This corresponds pre­
cisely to neglecting the nonlinearities plotted in Figs. 3 and 5, 
since these were defined as the vertical deviations from 
straight lines drawn between the two limits. For the CE this 
procedure gives 

~€LI = (1 - ~)~€oo + ~~€l 
= (1 - ~)(€oo -~) + ~(€l - ~), (9) 

where the four limit values are given in Eqs. (3 )-( 7). 
Linear interpolation predicts real two-electron atom 

CBs to within about 1 %. This does not compare with those 
obtained from the best Hartr~Fock26 and Hylleraas-Pe-

TABLE IV. Expansions in A = liZ for the first two terms in the 1/ D expansion. a 

AO AI A2 A 3 A4 AS 

-1 1 5 3 3 
E~ ~ 32 256\12 2048 131 072\12 

~F -1 1 1 0 0 0 
~ 8 

~E~ 0 0 1 3 3 
32 256\12 2048 131072\12 

0 
3 31 1015 990 383 21 135 161 

EI/D 
8\12 1536 24576\12 28311 552 452 984 832\12 

~];, 0 
3 3 27 837 6669 

- 8\12 --- ---
128 1024\12 65536 524288\12 

~EI/D 0 0 67 367 628799 15 373 145 
1536 24576\12 28311 552 452 984 832\12 

'TheseriesforE~ and~F were obtained from Eqs. (3) and (4). ThatforEl/D comes from Ref. 15, andfor~];, 
from Ref. 17. 
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FIG. 7. Perturbation series coefficients through 20th order for several val­
ues of D. Filled and open symbols again denote positive and negative coeffi­
cients, respectively. The convergence properties of each series are deter­
mined by the singularity in the complex A plane closest to the origin; the 
closer the singularity, the worse the convergence. For large but finite D the 
poor convergence results from the symmetry breaking at Ao=0.814 3~. 

keris27 calculations, which are several orders of magnitude 
more accurate. These calculations, however, are atypical. 
Only for a handful of systems (e.g., Li, Be, and H2) are CBs 
known well enough to talk meaningfully about I % accura­
cy. The very high accuracy achieved for two-electron atoms 
results from unique features: these systems are the simplest 
for which a CE can be defined, and benefit from special 
methods that have been extensively developed.27 

Because the methods discussed in this paper are not lim­
ited by these features, we make comparison to generally ap­
plicable methods of calculating CBs,28 and in particular to 
configuration interaction (CI). In Fig. 8 the best available 
CI energies for two-electron atoms29-35 are compared with 
those predicted by linear interpolation. In general the two 
methods give results of comparable accuracy. For positive 
ions (A. < 112) the interpolated energies are more accurate, 
although unlike those given by CI they are not upper 
bounds. For negative ions (A. > 112) the interpolation meth­
od becomes less accurate. For the neutral atom (A. = 112) 
both the interpolated value and the best CI calculation are 
very close to the true energy. In the case of CI this is the 
result of great computational effort,35 while in the case of LI 
it may be regarded as fortuitous. 

B. Planar extrapolation 

For the second method of obtaining real-world CBs we 
utilize the behavior only at and near D ..... 00 • Instead of inter­
polating linearly between two values (the classical limit 
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FIG. 8. Correlation energies of real two-electron atoms obtained by config­
uration interaction (CI), by linear interpolation (LI), by planar extrapola­
tion (PE), and by essentially exact means. All CI calculations on ions and 
the two best calculations on the neutral atom are plotted. LI values were 
obtained from Eq. (9), and PE values from Eq. (10). Advantages ofPE 
over LI are its wider applicability, smaller maximum errors, and even 
greater simplicity. 

D - 00 and the hyperquantum limit D ..... 1), we now extrapo­
late linearly using a value and a slope (the classical limit 
D- 00 and the semiclassical correction term liD). As just 
described, the method would be simply the liD expansion 
carried to first order. This method, which will be discussed 
in detail below, gives fairly poor results because the symme­
try breaking imposes a small radius of convergence on the 1/ 
D term. We now show how this problem can be avoided. 

In general1/D series are asymptotic. The best approxi­
mation to the sum of such a series is obtained by truncating it 
just before the term of smallest magnitude. If we write the 
CE formally as a double sum, fl.E = 1: c",,,c5"'A. ", we see that 
we can obtain two results, depending on which variable is 
summed first. Because the series is not convergent in 15, the 
two results will in general be different. 

The usual method of 1/ D expansions corresponds to 
summing on A. first. This is because each A expansion is indi­
vidually convergent, and therefore gets summed to infinte 
order. Problems arise when this happens, because the full 
effects of the high-order "tails" of the A. expansions, like that 
of the 1/ D term in Fig. 7, are present in the final result. The 
quantitative effects of this inclusion will be demonstrated 
below. 

By summing on 15 first the tails of the A. expansions are 
cut out. In fact, for all but the lowest two orders inA., the 1/ D 
series diverges from the very first term (as is strongly sug­
gested by Fig. 7), and the best approximation to the sum is 
zero. Furthermore, numerically determined 1/ D series36 in-
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dicate that at lowest order two terms survive, and at the next 
order only one. Referring to Table IV, we therefore find that 
the optimally truncated approximation to the CE is simply 

[ 
1 3 67] 2 AEpE = --+--A---8 A . 

32 256v1 1536 
( 10) 

The designation "PE" stands for planar extrapolation, be­
cause this truncation corresponds to assuming that the sur­
face plotted in Fig. I may be approximated by a plane deter­
mined by the behavior at the origin. In fact, Eq. (10) 
describes the plane tangent to the true energy surface at the 
origin. Real-world CEs predicted by such planar extrapola­
tion are compared to CI and LI values in Fig. 8. Once again 
the accuracy obtained is comparable to that of CI. 

Comparing now the two dimensional continuation 
methods discussed so far, we see in Fig. 8 that overall they 
achieve similar accuracy. However, PE has several advan­
tages over LI. First, PE is immediately applicable to the full 
range of two-electron atoms, whereas LI is presently limited 
by Eq. (3) to atoms which have symmetric classical limits. 
Second, the maximum errors are less for PE. And third, PE 
is simpler; among other things, this means that it may gener­
alize more easily. (The PE values also seem to give an upper 
bound, but there is no apparent reason for this.) 

We caution that not enough terms of the perturbation 
expansions are known to say for sure what the optimal 
asymptotic truncation is. We can only say that on the basis of 
limited data Eq. (10) appears to be it, at least for D = 3. 
Actually, adding a term or two from Table IV does not 
change the qualitative agreement with experiment-in fact 
some terms even help. The important point is that the ad­
verse e1fects of the high-order tails of the expansions are 
excluded by this method. We now consider what happens 
when they are not. 

C. 1/ D expansions 

The straightforward calculation of the classical limit 
D-+ 00 and semiclassical correction terms in powers of liD, 
without regard to convergence until the final summation, 
gives the usual liD expansion.9-12 Formally, this approach 
corresponds to reversing the order of summation in the dou­
ble sum over 8 and A. 

The first three partial sums of the liD expansion are 
plotted in Fig. 9, along with several reference curves. The 
one-term sum is just the D-- 00 limit itself, while the next 
two partial sums were obtained by adding in tum the first­
and second-order semiclassical corrections to that limit. In 
the figure the optimal asymptotic truncation, which is the 
partial sum obtained by truncating the series before the term 
smallest in magnitude, is indicated by a heavier line. 

A couple of features of the liD expansion mentioned 
above are apparent in Fig. 9. First is its asymptotic charac­
ter. Depending on the nuclear charge either the first or sec­
ond partial sum gives the best energy; the third- and higher­
order partial sums are uniformly worse. Second is the 
profound e1fect of the symmetry breaking on the liD term. 
Although the square root branch point lies far o1f-sca1e, its 
e1fects are apparent. Except at high Z, it renders the liD 
expansion useless for predictive purposes. 13 
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FlO. 9. Correlation energies obtained from the liD expansion at several 
orders, along with more accurate results for comparison. The optimal 
asymptotic approximation at each value of Z is indicated by the heaviest 
line. The 1/ D expansion performs poorly because the transition from a sym­
metric to an asymmetric classical limit structure at A.o=O.8l4 39 renders 
the semiclassical expansion nonanalytic there. LI and PE are similar in spir­
it to the liD expansion, but work much better because each in its own way 
avoids the disruptive effects of the symmetry breaking. 

Roughly speaking, the semiclassical 11 D expansion fails 
because of refractory behavior associated with the region of 
small Z and large but finiteD. The success of the two alterna­
tive approaches discussed earlier in this section may be attri­
buted to the fact that each avoids this region in its own way. 
Thus, the linear interpolation method avoids the e1fects of 
large but finite D by utilizing only the two dimensional limits 
D __ 00 and D-- 1. The planar extrapolation method, on the 
other hand, avoids the e1fects of small Zby truncating the 1/ 
Z expansion at low order. 

VI. DISCUSSION 

The stimulus for this work was a review of liD expan­
sions which utilized the two-electron atom as an example.9 

In the usual form, the expansion gave poor results for the 
total energy, but it was found1s that rescaling and interpola­
tion using the known D -- 1 limit greatly improved the accu­
racy. As we have just seen, the correlation energy serves as a 
much more stringent test, and even the rescaled 1/D expan­
sion works poorly here. The difficulty lies in the semiclassi­
cal portion of the expansion, which becomes singular at 
Ao::O.81439 because of the transition to an asymmetric 
classical limit structure. 

Nevertheless, the CE is a remarkably well-behaved 
function. Numerical calculations reveal that it varies almost 
linearly with 8 = 1/ D over the range 1 <;.D<;. 00. Some char-
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acteristic irregularities arising from the symmetry breaking 
can be seen on close examination, especially in the vicinity of 
the transition (large D and small Z), but these effects are 
small on an absolute scale. The overall regularity of the be­
havior suggests that 1/D expansions may not be the most 
effective way to utilize dimensional continuation. In this pa­
per we have introduced two alternative methods which, like 
the 1/D expansion, utilize only easily calculated dimension­
allimit quantities, but yield far more accurate real-world 
predictions. The first method (linear interpolation) utilizes 
only the classical limit D- 00 and the hyperquantum limit 
D-l, thereby avoiding entirely the troublesome semiclassi­
cal expansion in powers of 1/D. The even simpler second 
method (planar extrapolation) utilizes the 1/ D expansion as 
a starting point, but by asymptotically truncating at each 
order of 1/Z it excises the undesirable effects of the symme­
try-breaking transition. Both methods give CEs accurate to 
about 1%. 

For any system other than a two-electron atom this kind 
of accuracy would almost certainly exceed that currently 
available, because methods which are generally applicable to 
the calculation of CBs converge extremely slowly. Some par­
tial results for larger atoms indicate that the generalization 
of the methods described in Sec. V will be both accessible and 
accurate.37 So far only the D - 00 limit (the term which the 
two methods have in common) has been calculated fully, but 
it is clear that the 1/ D term can be calculated explicitly as 
well. The D- 00 limit by itself can be used to obtain predic­
tions for D = 3 exact and Hartree-Fock energies which are 
accurate to a few percent for all atoms. As in the two-elec­
tron case, however, there is a high degree of cancellation 
between the exact and HF errors, so that CBs are predicted 
much more accurately. Typically they are underestimated 
by 0-2 e V. For second-row atoms, which are the largest ones 
for which reasonably accurate reference values are available, 
one obtains between 90% and 100% of the true CBs. 

In extending the methods of this paper to larger atoms, 
the most formidable problem may eventually be not their 
derivation, but rather their assessment. This will be more 
difficult for larger atoms for several reasons. First is the una­
vailability of calculations except for D = 1,3,00. This will 
make it hard to quantify linearity. Second is the fact that for 
large atoms not even D = 3 correlation energies are avail­
able. Reasonably accurate ( ± 10%) experimental values 
are available only through argon, and theoretical values only 
through neon. Finally, there is the fact that 1/Z expansions 
like those used in Sec. IV have been calculated only for two­
electron atoms. 

The two-electron atom is the simplest many-body sys­
tem, and as such has always served as a test case for elec­
tronic structure methods. It is the natural first step in the 
application of dimensional continuation methods. The sec­
ond step, already underway, is the application of these meth­
ods to a range of more complex systems which have already 
been studied by conventional means. This will give some idea 

of what can be expected in general from dimensional con­
tinuation methods. If they prove successful here, then the 
third step will be their application to systems for which other 
methods have proven too difficult to apply, or have failed. 
The simplicity of the new approach makes this a realistic 
prospect. 
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