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Intrinsic bistability has been observed experimentally and attributed to the effect on the 
potential profile from stored charge in the quantum well through Poisson's equation. This 
effect leads to two possible current states corresponding to a single voltage within the negative 
resistance region. In this letter a simulation method is presented which clearly shows bistability 
in the current-voltage curve of a resonant tunneling diode. This method self-consistently 
combines a Thomas-Fermi equilibrium model for the electron concentrations outside the 
double-barrier structure with a quantum calculation for the concentration inside the structure. 

Experimental results have been presented 1,2 indicating 
that resonant tunneling diodes exhibit intrinsic bistability 
when biased within the negative resistance region of the cur­
rent-voltage (I- V) curve. It has also been shown3 that ob­
served bistabilities may be due to device-circuit oscillations, 
i.e., dynamic bistable effects. Intrinsic bistability has been 
observed theoretically4,5 using a sequential tunneling model 
where expressions for tunneling current between an energy 
continuum and a quantum wen are combined with Poisson's 
equation. 

In this letter, a self-consistent model for calculating the 
dc behavior of resonant tunneling diodes is presented. The 
contact regions outside the double-barrier structure are 
treated using a Thomas-Fermi equilibrium model, i.e., con­
stant Fermi levels within each region and equilibrium Fer­
mi-Dirac statistics arc assumed. Within the double-barrier 
structure, electron concentrations are obtained from the 
time-independent Schrodinger equation using the methods 
of Ref. 6. The concentrations obtained inside the device are 
then self-consistently coupled to the Thomas-Fermi model 
through matching conditions connecting the two contact re­
gions. 

Results for a particular IIlo.5.1GaoA7As-Ino.52Alo.4gAs­
Inl).s3 GaO.47 As structure arc presented which dearly show 
bistability in the dc J- V curve. It is shown that the origin of 
bistability is the buildup of charge inside the quantum wen 
during resonant tunneling. 

This section describes the method used to simulate the 
contact regions outside the double-barrier structure. Let 
mesh points 1, ... , NL be the points in the left-hand contact, 
and points Nr. + 1,oo.,N be in the right-hand contact. Con­
stant Fermi levels E FL and E FR are associated with the con­
tacts, such that E PR - E FL = q Vapp ' where Vapl' is the ap­
plied bias voltage. Using equlibrium Fermi-Dirac statistics, 
the electron concentration is given by 
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where Nc is the effective density of electrons in the conduc­
tion band and 
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Note from Eg. (2) that the concentration is related to 
the difference between the local conduction band edge 
Ee (x) and the Fermi levelE FR or EFt, depending in which 
contact the expression is applied. 

Equation ( 1) is a mapping between 1/ and the local elec­
tron concentration. It cannot be evaluated in dosed form, 
and the usual approximation of Boltzmann statistics is not 
valid for this case since degenerate doping levels are typically 
found in the contact regions. However, Eq. (1) can be accu­
rately approximated by retaining the first two terms in the 
Joyce-Dixon approximation7
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The condition band edge is related to the potential by 

Ec(x) =Ec( ± 00) -q[V(x) - V( ± 00)], 

(3) 

(4) 

where the upper sign applies to the right-hand contact and 
the lower sign to the left. 

The potential variation is determined from Poisson's 
equation, discretized at point Xi as follows: 

~~. t 1 - 2Vi + Vi _ 1 = (ql::1X2/E) [ni - N di ], (5) 

where Nai is the doping density. 
Combining Eqs. (3) and (4) yields the following dis­

crete equation for 1I i : 

IOg(2) + _fli_ 

N e .J8Nc 

EFR•L - Ee ( ± 00) - q V( ± 00 ) + q Vi 

k8 T 
(6) 

Equations (5) and (6) are solved at all interior mesh points 
for 1Ii and v,. 

In addition, matching conditions must be applied at 
mesh points N Land N L + 1, at the left and right boundaries 
of the double-barrier structure. These matching conditions 
express the fact that the discontinuity of electric field is relat­
ed to the integral of the charge inside the structure, and that 
the potential discontinuity is related to this charge as well as 
the boundary electric fields. The first condition is expressed 
as 
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V NL + 1 - VNL + 2 + VII/I. - VII/I. 
ER - EL = --------------
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wherexL andxR are the positions at the left and right boun­
daries. The condition on potential discontinuity across the 
structure may be written as 

(8) 

where D" is given by 

Dv = ~i~Rdx'f~dX" [n(x") - N" (x")]. (9) 

The quantities DE and Dv are the means by which the 
quantum calculation for the electron concentration inside 
the double-barrier structure is coupled to the Thomas-Fer­
mi calculation. Note that these quantities would be zero if 
charge in the quantum weil were ignored. 

In addition, Dirichlet boundary conditions are set at 
mesh points 1 and N on the potential using the applied bias 
voltage, and on the concentration using the contact doping. 

The overall numerical procedure may now be described. 
An initial guess is generated for the potential and electron 
concentrations in the contacts, and the quantum well con­
centration is initially assumed zero < The Newton-Raphson 
iterative method is used to solve Eqs. (5)-(9), which consti­
tute a set of nonlinear equations. At each iteration, a quan­
tum calculation is performed using the methods of Ref 6 to 
calculate the quantities DE and Dv required for the match­
ing conditions. This process is repeated until the maximum 
fractional change of potential and carrier density predicted 
by the Newtcn-Raphson method for each iteration is below 
a specified tolerance. It is necessary to introduce numerical 
damping techniques for this procedure to converge, wherein 
fuH steps are not taken at every iteration. 

After convergence is obtained, the device current den­
sity is calculated by solving the time-independent Schr{)­
dinger equation using the methods of Ref. 6. 

The procedure described above was applied to an 
InO<53 GaOA7 As-Ino<52 AIMR As barrier-Ino.53 Ga0 .47 As wen 
structure with 23.2 A barriers and a 43.5 A well, The doping 
. 18 -3 c 
m the In().5]G~J.47As contacts was 2X 10 em ,and 50 A 
undoped spacer layers were placed adjacent to each barrier. 
The effective mass used was O.042mo in the contacts and 
well, and O.075mo in the barrier. The barrier height was 0.53 
eV. 

Figure 1 (a) shows the static J- V curves obained for this 
device. For the solid curve, the bias voltage was started at 0 V 
and swept positive. For the dashed curve (which coincides 
with the solid curve except in the bistable region), the bias 
voltage was started at 0.8 V and swept downward toward 0 
V. It is seen that a bistable region exists where different dc 
current states may bc assumed depending upon the direction 
of the bias voltage sweep. 

Figures l( b) and 1 (c) show two bistable solutions at 
the bias point Vdc = 0.55 V in Fig. ] (a), within the bistable 
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FIG. 1. (a) 1- V curves for the In053 Ga047 As-In" 52 Alo.48 As-Irlo.53 GUO 47As 
structure starting from 0 V (solid curve) and starting from 0.8 V (dashed 
curve), and solutions at V de = 0.55 V (b) corresponding to the solid curve 
or high-current state, and (c) corresponding to the dashed curve or low­
current state. 

region. Figure 1 (b) corresponds to the high-current state 
along the solid curve. The solid curves in 1 (b) show the 
electron concentrations in the contacts obtained from the 
Thomas-Fermi calculation, while the dashed curve shows 
the electron concentration within the double-barrier struc­
ture obtained from the quantum calculation. Since the solu­
tion is near the peak current point on the /- V curve, an appre­
ciable resonant buildup of electrons in the first quasi-bound 
state of the well is observed. In Fig. 1 (c), the charge in the 
well is much reduced and a corresponding buildup of charge 
in the accumulation region of the left contact is observed. 
The interpretation of these results is as follows. In Fig. 1 (c), 
a greater voltage drop exists across the left-hand accumula­
tion region than in Fig. 1 (b). This places the double-barrier 
structure at a lower (electron) potential than is the case in 
Fig. 1 (b). Because of this, the resonant energy level in the 
well drops below the conduction band edge in the left-hand 
contact. This in tum is responsible for the reduced charge in 

Mains, Sun, and Haddad 372 



the well, since the condition in Fig. 1 (c) is off resonance. It 
can be appreciated that once this redistribution of charge 
between left-hand accumulation region and quantum well is 
initiated, a regenerative action causes the device to behave as 
a bistable switch. 

A simulation method has been presented for modeling 
the de behavior of resonant tunneling devices taking into 
account self-consistency and quantum mechanical effects in­
side the double-barrier structure (this method does not in­
clude nonequilibrium quantum effects outside the struc­
ture). The method is relatively stratightforward to 
implement, compared to a fun quantum mechanical treat­
ment. Important effects such as bistability are clearly ob­
served. It is shown that dual states in the bistable region are 
due to the repartition of electrons from the well at resonance 
to the contact accumulation layer off resonance. 
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