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The problem of analytic continuation of the many-body scattering amplitude associated with a 
perturbation-theory diagram under the rotation of the final momenta from real to complex momenta, 
k -.. (1 + iO)k, is studied. It is shown that the contour of integration over internal momenta can be 
distorted avoiding singularities of the integrand, as 0 varies for small enough O. If the diagram is 
connected enough, the potentials are Yukawa-type, Re E > 0, and 1m E < O. The rotation angle can be 
picked independently of 1m E. 

I. INTRODUCTION 

WE intend to study the analytic continuation in () 
of a many-body scattering diagram, where the 

final momenta, all initially real, are rotated under the 
transformation k ->- (1 + W)k. A more general type 
of continuation will also be studied. We restrict our 
attention to Re E > 0, 1m E < 0, the most interesting 
situation. The heart of the study is an analysis of a 
peculiar geometrical problem. The type of geometrical 
analysis involved clearly can be applied to more 
general problems than those studied here, about which 
a few comments will be made later. 

n. SCATTERING DIAGRAM 

We deal with an N-particle scattering situation. 
There will then be N masses, M I , M 2 ,"', M N , 

and a Hamiltonian 

k2 

H = '2, -' + '2, ~llxi - Xi\)' 
i 2M; i<i 

(1) 

Clearly we limit ourselves to two-body interactions. 
We change momentum variables so that Ho can be 
written 

(2) 

and there is then the equation of momentum conserva­
tion 

'2, k;Mr = const. (3) 
i 

Now consider a perturbation-theory diagram 
specified by a sequence of interactions and internal 
momenta (before integration). We write the momen­
tum of each state as a vector in 3N-dimensional 
Euclidean space (kl' k2' ... , kN)' By working in the 
center-of-mass system, one can take 

(4) 

If there are S intermediate states in the diagram, there 

is then the following sequence of (S + 2) vectors: 

(kill kill ... kill) 
I, 2' , N 

(k~ , k;, . . . , kN) 

(k fill kfill . .. kfill) 
I , 2, 'N' (5) 

For each of the vectors, Eq. (4) holds. If the interaction 
between the ith intermediate state and the (i + I )th 
intermediate state is V LT, the vector difference in 
3N-dimensional space 

(ki+I, ... ,kW) - (kl, ... ,k~) 

is parallel to the vector 

(0 0 ... 0 Mf a 0 '" 0 .. , Mfa 0 '" 0) )' "T" " ,- L" , 
(Lth place) (Tth place) 

for some three-dimensional vector a. We prefer to 
think of this difference as the appropriate succession 
of three displacements in the directions 

(0 0 . " Mf i 0 ... 0 _Mf i 0 ... 0) 
" , T" " L', " 

(0,0, ... , M~j, 0, ... ,0, -Mt, 0, ... ,0), (6) 

(0,0,"', Mtk, 0,' ",0, -M!k, 0,' ",0). 

Thus we have a 3(N - I)-dimensional vector space 
(the subspace of pN with ! Mtki = 0), and a 
sequence of 4 + 3S vectors in this space (breaking the 
momentum transfer at each interaction into a sequence 
of three momentum transfers, as indicated above). 
In the sequence, two successive vectors differ by a 
vector parallel to one of the 3 [N(N - 1)/2] possible 
directions (three directions are associated to every 
interaction). These 3 [N(N - 1)/2] directions will be 
called preferred directions. 

The integration over internal momenta is an 
integration over all possible sequences of 3S + 2 
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vectors consistent with the direction restrictions 
associated with the interactions. 

We define, in the usual sense, the connectivity 
properties of the perturbation diagram. The diagram 
is M-connected if the sequence of 3S + 3 vectors 
can be partitioned into M subsequences, and at most 
M subsequences, such that the vectors in each 
subsequence are a spanning set. (The sequence of 
3S + 3 vectors is the sequence of preferred directions 
associated with the diagram.) This is equivalent to 
being able to subdivide the diagram into a sequence of 
M diagrams, and at most M diagrams, such that each 
subdiagram is connected. 

As we will be concerned with analytic continuation, 
we will allow the momenta to become complex. We 
restrict our attention to distortions of the original real 
contour that project one-to-one onto the original 
contour under the projection that sends each complex 
momentum onto its real part. Call these semiflat 
contours. Such a contour is specified by associating 
with each sequence of 3S + 2 real vectors in the 
3(N - I)-dimensional space, subject to the conditions 
that successive vector differences are parallel to the 
appropriate preferred directions, a second sequence of 
3S + 2 vectors (the imaginary parts of the momenta), 
with the same conditions on successive vector 
differences. 

The contour of integration may be distorted in any 
bounded region provided the integrand is analytic 
through the region of distortion. We will also allow 
distortions of the contour at infinity, a procedure that 
must be studied separately. The analyticity of the 
integrand involves the analyticity of the potentials 
and the analyticity of the energy denominators. For 
the first result we aim at below, we require the 
analyticity properties of the potential in momentum 
space to be that of a superposition of Yukawa 
potentials with a minimum mass greater than zero. 
We will also give a similar result for the case of 
momentum-space analyticity of the potentials in a strip 
about the real momentum axis as is obtained if, in 
coordinate space, 

W(X) I < ce-«I"'I, oc > 0 (7) 

for some c and oc. The essential difficulties and interest 
arise from consideration of analyticity properties of 
the energy denominators. 

The two results we obtain are among many that 
are obtainable by a similar procedure. In the conclusion 
we will indicate further directions. The type of 
theorems we now aim at are chosen through a con­
sideration of those that seem most useful in the study 
of many-body scattering theory along the lines of 

Faddeev's study of the three-body system. 1 The type 
of rotation of the momentum we consider in the 
theorems below, applied in a more general context, 
(outside of perturbation theory) could (hopefully) 
provide a method for dealing with the singular limit 
of the energy approaching the real axis. 

m. GEOMETRICAL THEOREMS 

We consider the following basic situation, motivated 
as an abstraction of the considerations of the last 
section. There is a Euclidean space E and a finite set 
P of unit vectors in E (specifying preferred directions) 
that together span E. 

Lemma 1: There is a constant c such that if any 
vector v in E is expressed as a linear combination of 
linearly independent vectors, ai' a2,"', all from 
P, each of the expansion coefficients is less than 
c Ivl. 

Proof' Writing 

we take the inner product of v with each of the unit 
vectors ai' . . . , all: 

ai·v = Iockai • ak, i = 1,2, ... , g. 
k 

This set of equations has a unique solution for the 
ak, since the matrix of inner products (a.· ak) is 
nonsingular. Because the value of the determinants 
of all such matrices formed from linearly independent 
subsets of P, being finite in number, is bounded 
away from zero, the lemma follows. 

Lemma 2: Let u be an arbitrary unit vector in E, 
and let ai' a2, ... , ag be any subset of vectors from 
P. Let 

f.l = max (Iu' ail), 
i=l.··· ,g 

and let () be the angle between u and the subspace 
spanned by ai' ... , ag (i.e., the smallest angle possible 
between u and a vector in the subspace). Then 

with c the constant of Lemma 1. 

Proof' This follows immediately from Lemma 1 
upon writing any vector in the subspace as a combina­
tion of the ak • 

1 L. D. Faddeev, "Mathematical Problems of the Quantum 
Theory of Scattering for a Three Particle System," AERE-Trans 
1002, United Kingdom Atomic Energy Authority Translation. 
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Lemma 2': There is a minimum angle between the 
subspaces spanned by any subset of P and any vector 
from P not in the subspace. 

Proof' This follows since there are only a nnite 
number of such pairs of subs paces and vectors not in 
the subspace formable from P. 

Mam Theorem: Let (aex(I) , 8ex(2) , ••• ,aex(u}) be a 
sequence of vectors from the set P, possibly with 
repetitions. The connectivity of this sequence is 
defined as before as the greatest number of sub· 
sequences the sequence can be partitioned into: 

(aex(1) , a ex (2) , ••• ; aex[p(l)})(aex[tl(I)+l)' ... ) ... 

(8ex[P(M-l)+1)' •.. ,80«11»' (8) 

such that each subsequence contains a spanning 
subset. Let (Xl' X2 , •• " xg+1) be a sequence of vectors 
from E with the property that XH1 - Xt is parallel 
to 8exW' Let a be a fixed number greater than zero. 
There is a (j > 0 and an Mo such that, for every two 
sequences related as the above, there is a sequence 
(YI' Y2"" 'Yu+1) of vectors with 

(a) Y~+1 - Y. parallel to aexw I 

(b) Yl = 0, 

Yu+l = xg+l> 

(c) Yi' X. ;:: 0 if a - (J S IXil S a + (j, 
provided the connectivity of the a sequence is greater 
than Mo. 

It is easy to show that, in general, the theorem 
would not be true if instead of (c) above we tried 

(c') Y.· Xi ;:: 0 if Ix.1 S a. 
However, it does not seem difficult to modify the 
proof to include the stronger theorem obtained 
with (c) replaced by 

(c") Yi' Xi ;:: 0 if 0 < b S IXil S a, 
a and b given, limited only by 0 < b S a. This 
generalization, important for some further applica­
tions, is not explored here. 

Lemma 3: If Ix. - Yil < a - (J, the inner product 
condition (c) is automatically satisfied. 

Proof' This is immediate. 

Lemma 4: If Xl' Xl' .•.• Xp!l) all lie outside the 
shell a - (j s Ixi S a + (j [(aex(1),···. aex[PU)]) a 
spanning set as indicated in the statement of the 
theorem], then Y. can be chosen equal to Xi for i = 
PI + 1, PI + 2,' . '.g and Yl"", Yilm can be 
chosen so that this set of Yi satisfies conditions of the 
theorem. 

Proof" Expand X/Hl)+1 in terms of a1 •••• , aex[p(llJ' 

xp(l)+1 = Otl81 + ... + Otp(l)aex{p{J)]' 
Pick 

Yl = 0, Y2 = Otlal , Y3 = Otlal + Ot2a2' 

Y pm+! = Xp(l)+1' 
These choices satisfy the necessary conditions. 

Lemma 5: There is an e such that, if lx, - Yil < e 
for some i and if aextil , ... , aexlf } form a spanning set, 
then Y.-H can be chosen equal to XH1 and intermediate 
y's can be found consistent with the conditions of 
the theorem. 

Proof: Pick a linearly independent set of spanning 
vectors among 8exW •••• , aex(a)' Now expand 

.. Xi - Yi = Ot.aexli) + ... + Ot88ex(8) (9) 

with coefficients different from zero only among the 
linearly independent spanning vectors. Pick 

YHI = Y. + Ottaex{i} + (x.+1 - Xi), 

YH2 = YH1 + Ot'+1a"'(H1) + (XiH - XHI), (10) 

Ys+1 = XS+1 • 

It follows that 

Y.+1 - Xi+1 = (Y. - Xt) + Ot.8ex(i), 

Y.+2 - XiH = (y. - Xt) + Ot,aex(i) + Ot.+1aO«/+1)' 

Thus 

(11) 

ly<+1' - xHrl sly, - xii + ~ IOttl. (12) 

Since IOt.1 < c lx, - Y.I by Lemma 1, if D is the 
dimension of the space, 

IYHI' - xHrl S (1 + Dc) Iy. - xii, 

r=O,l,···. (13) 

If Iy. - Xtl is small enough, then IYHI' - xH .. 1 < 
a - (j, which, by Lemma 3, guarantees that these 
y's work. 

Lemma 6: If lx, - Yil < a - (j for some i, then a 
sequence of y's can be found starting with Yi which 
satisfy the conditions of the theorem such that 
IXle - Ylel is monotonically decreasing; and each time 
the a's pass through a spanning sequence, the IXlc - Y .. I 
decreases at least by some factor r, r < 1. r depends 
only on the vectors in P. 

Proof' Pick y's successively by minimizing Ix,. - y,.1 at 
each stage; that is, Y7<+1 - y,. = A~ex(le) with Ale chosen 
to minimize IX7<+1 - Y7<+II. It is clear that Ixlc - hi < 
a - (J for all k, so the conditions of the theorem are 
satisfied. It remains to see that /Xk - Ykl decreases by 
some factor as the a's go through a spanning set. We 



2418 PAUL FEDERBUSH 

omit the proof of this fact; it may be constructed 
along the lines of the following lemma. 

Lemma 7: If a - b S IXll S a + b (with Yl = 0), 
an allowable sequence of y's can be found such that 
Ix.+1 - Ys+ll < a - b, provided al ,···, as are a 
spanning set (from P) and b is small enough. b may 
be chosen, depending on a and the set P, but in­
dependently of the x's. 

The main geometric theorem follows from Lemmas 
3-7. If x never hits the spherical shell as the a's pass 
through the first spanning set, Lemma 4 shows the 
existence of the y's. If some x hits the spherical shell as 
the a's pass through the first spanning set, use Lemma 
7 to obtain Ix; - Y;I < a = b. Then use Lemma 6 to 
get IXk - Ykl small enough to use Lemma 5, complet­
ing the sequence of y's. 

Proof of Lemma 7: Let D be the dimension of the 
Euclidean space, 0min be the angle of Lemma 2', and 
c be the constant of Lemma 1. Choose 01 , O2 , ••• , 

o D-l such that 
81 = CP1 > 0, 

0H1 - 2 sin-l (Dc sin 0i) = CPi+l > 0, (14) 

Omin - 2 sin-l (Dc sin 0D-l) = CPD > 0. 

Let CPmin = min (CPl' CP2' ..• , cP D); pick b such that 
(a + b) cos CPmin < a-b. By assumption, a - b S 
IXll S a + b. Let aI' az, ••• , aR be a spanning set, 
but. aI, a2, ... , aR-l not. Let bl = aI' bi = ap(i) , bi 

the first of thea/s linearly independent of bl , b2, ... , 
bi-l. bD will equal aR. Let "Pi = 1T/2 - L(bi , Xl). 
By L (bi , Xl) we mean the angle between the vectors 
bi and Xl (minus their orientation), an angle between ° and 1T/2. Let "Pk be the first of the "P's with "Pk ;;:: CPk. 
Then "Pl < CPl' "P2 < CP2' .•• , "Pk-l < CPk-l' and "Pk ;;:: 
CPk. Such a k must exist due to the nature of the cp's. 
If IX,B(kd sa + b, let 

Yl = Y2 = ... = Y,B(kl = 0, Y,B(kl+1 = Able' 

A chosen to minimize IX,B(kl+1 - YP(kl+1l. If IXp(kll > 
a + b, with 

IXgl S a + b, IXg+11 > a + b, 

IXg+21 > a + b, ... , IXp(kll > a + b, 

then pick 
Y, = Y2 = ... = Y 9 = 0, 

Yg+l = xg+l - Xg, 

Y P(k) = Xp(k) - X g , 

YP(kl+1 = )'bk + Y,BCk)' 

A chosen to mInimiZe IXPCkl+1 - Yp(kl+1l. One can 
check that IYPCk)+1 - XpCkl+11 < a - b in both cases. 

IV. ANALYTIC CONTINUATION 

Theorem 1: If E = a2 - ie, a> 0, E > 0, and if all 
the potentials involved have the analyticity of a 
superposition of Yukawa potentials with a minimum 
mass greater than zero, then there is an Mo and an 'YJ 

such that any perturbation-theory diagram with 
connectivity ;;::Mo considered a function of 0, kiln ~ 
(1 + iO)klln[kin and kiln being real] has the property 
that the intermediate-state integration contour can be 
distorted through analytic regions of the integrand as 
o varies from 0 = ° to 0 = 'YJ. 'YJ will depend on: 

(a) N, (b) M l , M 2 , ••• ,MN , (c) the minimal mass 
in the Yukawa decomposition of the potentials, 
(d) a, (e) kin, but not on kiln. 

It is important to notice that the requirement of 
high connectivity is essential. For example, with 
N = 3, the simple second-order diagram with 
interactions V12 followed by V2S cannot be continued 
as above. With kin and kiln specified in this case, the 
possible rotation angle may approach zero as E -+ 0. 
The existence of the rotation in the limit E -+ ° is 
most crucial. 

It is reasonable to suppose that by increasing the 
connectivity requirements the amount of rotation can 
be increased beyond that allowed by the theorem. 
This is an interesting question, but possibly not 
important to the proposed application of the theorem. 

To prove Theorem 1, we observe that the following 
bounds can be put on IYil and IYi+l - Yil by examining 
the construction of Lemmas 3-7: 

IYil SCI IXll + c2lxil, 

IYHl - Yil S cslxi+l - Xii + c4 lxll. (15) 

We identify the a of the theorem and the a of the 
geometric construction, and associate the x's with the 
real parts of the momenta, the y's with a constant 
A times the imaginary part of the momenta. It is easy 
to see that, with a fixed a, fixed initial momenta, and 
minimum mass of the Yukawa potentials, if A is large 
enough (A ;;:: Ao, say), the real and imaginary parts form 
a complex momentum always avoiding the singularities 
of the potentials and the energy denominators. The 
inner product condition of the geometric construction 
guarantees that the denominators are never singular. 
If 1m E is fixed at some negative value, then the 
sequences of y's satisfying the conditions of the 
geometric theorem form a convex set under vector-by­
vector addition. We can impose (15) and still maintain 
a convex set of solutions. Since 1m E < 0, we can 
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replace the inner product inequality Xi· Yi ~ 0 by 
Xi· Yi > -e, e> ° for some small E, a condition 
that also possesses a convex solution set. We observe 
the following lemma. 

Contour Construction Lemma: Let ER +s be Euclid­
ean (R + S)-dimensional space considered as a product 
of ER and E S , with 7T the projection onto ER. Let 
U be an open set in ER+S with the following two 
properties: 

(a) U projects, under 7T, onto all of ER; 
(b) The inverse image of each point under the map 

7T: u -'>- ER is a convex subset of E S• 

Then there exists a differentiable (even COO) cross 
section, i.e., there is a differentiable map F: ER -'>- U 
such that 7TF: ER -'>- ER is the identity map. 

Proof: Pick a point [x, lex)] in U for each point x 
in ER. Each such [x, lex)] is contained in a product 
neighborhood ul(x) X u2(x) C u. In the neighborhood 
Ul(X) of x in E R, the map Ix:Y -'>- [Y, leX)] is a COO 
cross section. There is a locally finite refinement V. 
of the ul(x) and a subordinate Coo partition of unity 
r/>a' The convexity of the fibers allows this Coo 
partition of unity to provide a global cross section: 

f = L cPafx(a) , 
a 

where Va C U1[X(Cl)]. 
This lemma enables us to construct a global contour 

of integration. (1/,10) is the 'Y] of the theorem. For ° ~ 0 ~ 'Y], the contour of integration may be chosen 
to be the momentum surface associated with A = I/O. 
(The lemma is applied with ER the space of X se­
quences and E S the space of Y sequences.) 

If the potentials have analyticity in a strip about 
real momentum values, and not in the full Yukawa 
region, the above construction must be modified to 
bound lyJ We restrict ourselves to the following result. 

Theorem 2: Let kin, Rlln , and Illn be real vectors, 
with Rlln and Illn satisfying the following conditions: 

(a) IIllnl < 1; 
(b) If ko is any vector in the shell (a - (j ~ 

Ikol ~ a + (5) and Rlln - ko = LiEJ Clia i for 
some subset indexed by J of vectors from P, 
then Illn - ko = LiEJ f3iai for some f3i' 

Then, given any B > 0, there is a ,10 such that the 
amplitude can be continued in the final momenta 
written as kiln = Rlln + iAIlln from A = 0 to A = ,10' 
and 11m kil < B for all intermediate stresses. ,10 
will depend on: (a) M l , M 2 ,'" , M N , (b) N, (c) B, 
(d) Re E. 

Proof: Let Q be a sphere of radius greater than the 
maximum of a + 15 and 1, in the setup of the geo­
metric theorem before. As before, solve the geometric 
problem for Xl = kin and xlln = Rlln . By Lemma 2 
there is a sphere Q' greater than Q such that if any 
subsequence of vectors in the solution set begin with a 
vector in Q and end with a vector in Q, the solution 
set can be modified to keep all vectors inside Q'. 
With such modifications this theorem follows from 
Theorem 1. 

V. CONCLUSION 

We indicate problems remaining to be studied. 
First, the behavior at infinity must be studied suffi­
ciently to justify the contour distortion at infinity. 
Second, the equations for many-body scattering 
amplitudes should be continued similarly to the 
perturbation-theory case. The geometry of this 
problem seems treatable with only a slight generaliza­
tion of the theorems included here. If the analytic 
questions relating to threshhold behavior and behavior 
at infinity for the integral equations can be treated 
systematically, a rigorous treatment of the problem of 
asymptotic completeness may be achieved. 


