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It is shown how to reduce N-dimensional probability densities calculated from vibrational wave functions 
of polyatomic molecules to one-dimensional radial distribution functions. Such distributions are. in 
principle, derivable from diffraction experiments. In this initial treatment, anharmonicity and 
nonlinearities in transformations between normal coordinates and internuclear distances are neglected. 
Illustrative calculations are given for H20, CF3CI, and SF6 in various vibrational states or thermal 
distributions among vibrational states. Possible applications are briefly discussed. 

I. INTRODUCTION 

Infrared lasers have greatly facilitated the study of 
molecular systems in states far from thermal equilib­
rium. They have made possible fruitful investigations 
of intra- and intermolecular energy transfer1 and, in­
deed, have led to a new field of laser-induced process­
es. 2 Since some of these processes are difficult to fol­
low by the techniques currently employed, it seemed 
worthwhile to consider applying gas-phase electron dif­
fraction analysis to molecules subjected to intense laser 
radiation. In the electron diffraction method, the infor­
mation derivable, in principle, is the radial distribution 
of internuclear distances averaged over the molecular 
ensemble. A large body of literature exists describing 
the influence of molecular vibrations on the radial dis­
tribution function p(r) for samples in thermal equilib­
rium. 3- 5 As far as we know, however, no description 
exists for the treatment of molecules in arbitrary vi­
brational states or arbitrary distributions among vibra­
tional states. Therefore, the present investigation is 
addressed to the development of such a treatment. 

II. THEORY 

A. Level of approximation 

If a general expression were available to represent the 
vibrational wave function IJi(Qh ••• , QN)for a molecule of 
interest, it would be a tedious but straightforward exer­
cise (as we shall show) to reduce the multidimensional 
probability density 11Ji1 2 to the one-dimensional radial 
distribution function p(r). Two complications arise im­
mediately, however. The first of these is that there is 
a nonlinear transformation between the normal coor­
dinates Q~ and the internuclear distances riJ between any 
pair of atoms i and j. 6 For vibrations of very small 
amplitude, only the linear terms are important, of 
course, but for actual molecular vibrations, particu­
larly in the case of excited states, higher-order terms 
are necessary for a precise treatment. These correc­
tions are derivable from geometric considerations. The 
second complication is far less tractable. It is that nor­
mal coordinate theory, itself, can provide the required 
wave functions simply only for the fictional case of mole­
cules undergoing infinitesimal vibrations. For real 
molecules, effects of anharmonicity are significant5-

8 

but known accurately for only a handful of polyatomic 
molecules. Since the ill-characterized effects of an-

harmonicity are of the same magnitude as, or larger 
than, the effects of the nonlinear transformation between 
the normal coordinates and interatomic distances, it is 
reasonable in this first attack to neglect both of the 
aforementioned complications, Results, while slightly 
distorted, reveal the essential nature of the influence of 
vibrational state upon the observable p(r). 

B. Relation between normal vibrations and 'ij 

For a polyatomic molecule executing harmonic vibra­
tions in a given stationary state, the vibrational wave 
function IJi can be written ass 

(1) 

where the individual functions IJiv~(Q~) for each of the N 
normal coordinates Q k are the well known SHO eigen­
functions associated with the quantum states v k • Ac­
cordingly, the expression 

PQ(Qb •.. , QN)dQl'" dQN = II \lJivk(Qk) \2dQk (2) 
k 

represents the probability of finding the molecule dis­
placed from equilibrium along its kth normal coordinate 
between Qk and Qk + dQ~, along its lth normal coordinate 
between Q, and Q, + dQ" and so on. For a given pair of 
atoms i and j, we seek the radial distribution function 
PjJ(r) for which PIJ(r)dr is the probability of finding the 
internuclear distance between rand r + dr. This re­
quires that we relate the internuclear distances r (de­
noted as rli in the following) to the normal coordinates. 
To this end, internuclear displacements can be ex­
pressed by the Taylor series expansion 

Arii = riJ - (r.)/i 

= 2),I.\)/iQk + ~L L(J.\')iiQkQ, + .•. , (3) 
k k , 

where, as explained in Sec. II A, we retain only the lin­
ear terms and where the coefficients10 

(£k)1i = (mj1/21i k - m j1l21ik) • r/il \ rli \ (4) 

can be derived from a normal coordinate analysis. In 
Eq. (4), mi and 1111 are, respectively, the mass and the 
mass-weighted amplitude eigenvector of atom i for the 
kth mode. It is convenient to re-express Eq. (3) as 

(5) 
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where the variable (X.)IJ = (£.)jJQ. is the contribution of 
mode k to IlriJ' 

It remains to be shown how to reduce the probability 
density PO(Qh ••• , QN) of Eq. (2) to the i,j radial dis­
tribution function PjJ(r). For expedience, we shall 
henceforth use Piir) =PiJ(r. + Ilr) and PIJ(llr) inter­
changeably without comment, letting the meaning be in­
ferred from the context. In order to make the reduction 
procedure plain, we shall first carry it out explicitly in 
the next section for a two dimensional illustrative case. 
We shall then treat the general case of an N dimensional 
harmonic oscillator in the following section. 

C. Reduction of two dimensional density function 

Although it is not necessary in the formal mathemati­
cal treatment to specify the physical system involved, it 
may make the exposition clearer if a concrete example 
is suggested. Let us suppose that the normal coordi­
nates Ql and Q2 pertain to the symmetric and asymmet­
ric stretching modes !ll and !l3, respectively, of a (non­
bending) linear triatomic molecule. Then, for the 
ground state of the molecule, the probability density is9 

P O(Qh Q2) = 1J!O(Ql)21J!O(Q2)2 

(6) 

where Y. = 47T2
!1 ./h. For each of the three atom pairs in 

the molecule, the corresponding coefficients (£l)IJ and 
(£2)IJ transforming normal coordinates to physical dis­
tances can be calculated according to Eq. (4) and used 
to obtain the internuclear displacement coordinates (Xl)iJ 
and (X2)IJ of Eq. (5). In the following, we shall delete 
the subscripts i and j to reduce clutter but they should 
be understood to pertain. In the xl, X2 space, the nor­
malized density becomes 

(1'11'2)112 (YIX~ Y2X~) 
P,,(Xh X2)= £ £ exp - nr - nr . 

7T 1 2 ""'1 ""'2 
(7) 

A final transformation with 

(8a) 

and 

(8b) 

carries the density function into one of particularly sim­
ple physical meaning, yielding 

_ (')'11'2) 112 (u2 + w2 
) 

p(u, W) - 27T£1£2 exp - 2a2 - {3uw , (9) 

where 

(lOa) 

and 

(lOb) 

Note that u is just Ilr, and that, along a line of constant 
u, the internuclear distance 

(11) 

is also constant, irrespective of the value of w. There­
fore, in order to determine the probability Pu(u)du 
= pu(llr)dr that the internuclear distance is between r 

and r + dr, it is only necessary to consider contours of 
constant r in the u, W density map and sum over the ele­
ments of probability along the W direction in the strip 
between u and u + du, obtaining 

PlJ(u)du= (1~ p(u, W)dW)dU 

= (YIY2/27T)1I2(a/£1£2) exp(-;} /2l;J)du, (12) 

where the mean square amplitude of vibration l;J asso­
ciated with the ij atom pair is 

(13) 

By this method, we have reduced a two-dimensional den­
sity to a one-dimensional radial distribution function. 
A procedure for extending such reductions to a system 
with an arbitrary number of normal modes, each with 
arbitrary quantum number, is outlined in the next sec­
tion. 

D. Reduction of N-dimensional density function 

Rewriting Eq. (2) more explicitly, we get for the 
probability density corresponding to an arbitrary excited 
state of a polyatomic oscillator the expression9 

(14) 

where N. = [(7T/y) 1/22"·(v.!) r1l2 and H". is the Hermite 
polynomial of degree v.. Reduction to the one-dimen­
sional radial distribution function proceeds as in the 
previous sljction. For each atom pair in the molecule, 
the (£.)iJ coefficients relating the normal coordinates to 
the internuclear distance riJ [cf. Eq. (3)] can be calcu­
lated by means of Eq. (4). With their aid PO(Qh"" QN) 
is transformed into the normalized probability density 

(15) 

Reduction is carried out in steps, each step following 
the procedure outlined in Sec. lIC. Step (1), for exam­
ple, transforms xl and X2 to Ut and Wh via Eqs. (8a) and 
(8b), respectively, and the product pt(Xt) 0 P2(X2) of Eq. 
(15) is reduced to Pt(Ut) by the integration 

Pt(Ut) = i.,,"' P(Uh Wt)dwt (16) 

analogous to that of Eq. (12), where P(Uh Wt) is given by 

with 1)1 = {[(u~ + wn/2~] + {3tUtWt}, where the subscripts 
of u, w, a, and f3 denote the reduction step. An evalua­
tion of Pt(Ut), then, is expressible as the sum of inte­
grals of the form 

Mn(ut) = i: w'I exp[ - (wV2aD - f31utwtldwl , (18) 

which are readily evaluated analytically, 11 where n is 
an integer between 0 and 2(vt + V2)' 
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In the next step, the product Pl(Ul)P3(Xa) is transformed 
by 

(19a) 

and 

(19b) 

to yield p(u 2, W2)' This two-dimensional function is re­
duced to the distribution P2(U2) by integration over the 
coordinate W2' Subsequently, the product P2(U2)P4(X4) is 
transformed to P(ua, wa) from which Pa(ua) is obtained, 
and so on. For reduction steps beyond the first, the 
amplitude parameters a~, 13m , and 11m take on the values 

2 (1 J:L)-1 
am = 4a;'_1 + 2.£I (20a) 

(20b) 

and 

(21) 

respectively, in which the subscript m denotes the re­
duction step and the subscript k denotes the new mode to 
be included in the reduction. Recursion formulas (20a) 
and (20b) apply to steps with m ~ 2. In the case of m = 1, 
the parameters ai and 131 are given by Eqs. (lOa) and 
(lOb), respectively. Reductions are carried out until the 
last xk has been taken into account, and the resultant 
PN(UN) is the desired radial distribution function for the 
atom pair i,j inasmuch as UN =~kXk is identic~lly AriJ 
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FIG. 1. Molecular radial distribution functions calculated ac­
cording to Eq. (22) of the text. H20: (a) zero-point amplitudes 
of vibration; (b) single excitation of asymmetric stretch (0,0,1); 
(c) single excitation of both stretching modes (1,0,1). CF 3Cl: 
(d) zero-point amplitudes of vibration; (e) single eXCitation of 
the 1'1 mode (1,0,0,0,0,0) customarily referred to as the C-F 
symmetric stretch but principally manifested in the C-Cl dis­
tribution; (f) double excitation of the 1'2 mode (0,2,0,0,0,0) 
customarily described as the C-Cl stretch but predominantly 
exhibited in the F-C-F bend (F"'F peak). 
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FIG. 2. Molecular radial distribution functions of SFs calcu­
lated according to Eq. (22) of text: (a) zero-point amplitudes 
of vibration. Remaining curves, six quanta distributed among 
triply degenerate 1'3 asymmetric stretching modes (V3a' v3/>, 
V3c): (b) (6,0,0); (c) (3,2,1); (d) (2,2,2). 

by virtue of Eq. (5). The final result does not depend 
upon the order in which the individual x k are reduced but 
it is simpler to begin with the modes of lowest quantum 
number and finish with the highest. This is because in­
dex n of integral Mn of Eq. (18) increases each time an 
excited mode is brought into the reduction, thus pro­
liferating the numbers of terms to be handled in all sub­
sequent steps. 

If comparisons are to be made with electron diffrac­
tion studies, it may be convenient to calculate a compo­
site radial distribution function p(r) for the entire mole­
cule in which the individual internuclear peaks are 
weighted by the relative scattering powers, or 

p(r) = 2 r;. {Zi Z /[ ~ (Z~ + Z k)]} PIJ(r) . (22) 

Sometimes it may be desirable to transform Eq. (22) 
into the so-calledj(r) function corresponding to the 
Fourier sine transform of the modified experimental in­
tensity function sM(s) artificially damped by the Degard 
factor exp( - bs 2). The result is, 12,13 in the notation of 
Ref. 13, 

1.2 1.6 2.0 0 24 3.0 
r ,A 

FIG. 3. Molecular radial distribution peaks in SFs. Solid line, 
six guanta in 1'3 distributed as in Fig. 2(d). Dashed line, same 
vibrational energy distributed among all modes according to 
Boltzmann distribution (T= 911. 5 K). 
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TABLE I. Root-mean-square amplitudes 
of vibration (in A) corresponding to the 
radial distribution functions of H20 and 
CF3Cl shown in Fig. 1. 

Curve 

Peak l(a) l(b) l(c) 

O-H 0.06770 0.09571 0.1171 
H"'H 0.1114 0.1114 0.1545 

Curve 

Peak l(d) l(e) l(f) 

C-F 0.04431 0.05122 0.04948 
C-Cl 0.04495 0.06590 0.06444 
F···F 0.05149 0.05392 0.07794 
F·· ·Cl 0.05322 0.05347 0.06237 

(23) 

If molecules in an ensemble populate a distribution of 
vibrational states, the p(r) andj(r) curves for the en­
semble are, of course, simple superpositions of curves 
calculated for the individual states represented. 

III. ILLUSTRATIVE RESULTS 

In ,order to illustrate how radial distribution curves 
vary from vibrational state to vibrational state-and to 
convey graphically how broad the distribution peaks can 
be-we portray in Figs. 1-3 some curves calculated14 

according to Eq. (22). Root-mean-square amplitudes 
of vibration of the individual distribution peakS plotted 
in Figs. 1-3 are listed in Tables I and II for reference. 
Molecular examples include H20, CFaCI, and SFs• A 
case such as water is simple enough for the details of 
its dominant peak (OH) to be understood intuitively from 
a visualization of the two dimensional probability den­
sity function Pl(Xl)P3(Xa) for OH stretching. Therefore, 
it is a helpful conceptual bridge between elementary one­
dimensional oscillators and multidimensional oscilla­
tors. A more complex, nine-dimensional oscillator with 
six distinct frequencies is CF3CI, selected because of 
the particularly distinct resolution of its four internu­
clear peaks. A final example is SFs, the subject of in­
tense current interest in laser-induced processes. 2 For 
sake of illustration, we show in Figs. 2 and 3 the effect 
of various excitations of the tl • stretching modes, the 
modes directly pumped by a CO2 laser. A comparison 
is made with thermally excited SF s posseSSing the same 
mean vibrational energy. 

It is apparent in the foregOing illustrations that a pre­
cise measurement of radial distribution functions of en­
sembles of molecules in excited states would yield use­
ful but incomplete information about the distribution of 
vibrational energy in the molecules. Since measure­
ments by electron diffraction can be made at controlled 

TABLE II. Root-mean-square amplitudes of vi­
bration (in A) corresponding to the radial distri­
bution functions of SFs shown in Fig. 2. 

Curve 

Peak 2(a) 2(b) 2(c) 2(d) 

S-F 0.04100 0.07613 0.07613 0.07613 
F··· Fe 0.05530 0.06262 0.06262 0.06262 
F···FT 0.05107 0.05107 0.05107 0.05107 

time delays, of the order of microseconds after the ir­
radiation of samples, it is possible that diffraction mea­
surement may yield information on the rate of energy 
redistribution in the case of slow v-v relaxation. The 
foregoing treatment may be of value in such studies. 
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