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A steady planar detonation wave, considered to be a shock wave followed by a reaction zone, is
studied with both irreversible and reversible first-order reaction kinetics. A perturbation solution
with first-order transport effects, valid in the reaction zone for those cases where the ratio of the
characteristic collision time to the characteristic chemical time is small compared to one, is presented
with sample calculations of temperature and coneentration distributions for typical irreversible
and reversible reaction cases. Analysis of the solution shows that simple series solutions and hence
the given perturbation solutions do not hold near the hot boundary for all possible final Mach numbers.
In the irreversible reaction case, the perturbation solution is a valid approximation for final Mach
numbers less than (1 — B)}, where B is the ratio of characteristic times, the approximation becoming
less accurate as the Mach numbers tend toward this limiting value. In the reversible reaction case,
the perturbation solution is a valid approximation for final Mach numbers up to the Chapman-
Jouguet value of unity, if the Mach number is based on the equilibrium speed of sound.

INTRODUCTION

HE gross details of the detonation wave have
been the subject of both experimental and theo-
retical investigation for many years. Thus, such
quantities as the wave Mach number for a given
heat release, as well as the resulting pressure, tem-
perature, and density ratios are well known. How-
ever, it is only recently that serious consideration
has been given to the internal structure of the
detonation wave. Perhaps the greatest deterrent to
such studies has been the complexities involved
in a complete description of the chemical kinetics
which hold in even the simpler reactions. In fact,
only the simplest reaction mechanisms have been
employed to date.
Since a complete description of the processes
occurring in a stationary detonation wave would
involve a simultaneous solution of the conservation
equations including transport phenomena, and the
equation of state, attempts have been made to
postulate relatively simple models in which only
the important mechanisms are retained. For example,
von Neumann,' following Chapman and Jouguet,
pictured the wave as being a shock followed by
reaction and in his description of the structure,
completely neglected any transport effects. No
reaction kinetics were employed, the extent of
reaction being characterized by a parameter n
which varied between zero and one. Von Kérman,®
in noting the essential differences between the
. 1J. von Neumann, “On the theory of stationary detona-
tion waves,” Ballistic Resecarch Laboratories, Aberdeen
Proving Ground, File No. X122, September 20, 1948,
2D, L. Chapman, Phil. Mag. 47, 90 (1899); E. Jouguet,

J. Mathematique 6, No. 1, 347 (1903) and 6, No. 2, 6 (1906).
3T, von n, Aerotecnica, 33, 80 (1953).

detonation and deflagration wave, considered the
same model. In his paper, he also established the
form of the parameter to be used in deciding upon
the relative importance of the transport terms.
The next improvement in the model employed was
the consideration of simple reaction kinetics, still
with no transport terms. It was argued that since,
in gross terms, one could show that the transport
terms were small compared to the convective terms,
the transport terms could be neglected entirely.
Moreover, it was clear that in this case the thickness
of the wave and the various property distributions
depended on the reaction rate, so attempts were
made to consider the chemical kinetics. For example,
Brinkley and Richardson* and Kirkwood and
Wood*>" analyzed such cases. Even more recently,
Hirschfelder and his group have published a series
of papers®’® on the structure of the detonation
wave wherein the most general model has been
considered. That is, not only the reaction terms,
but also the transport terms have been included.
However, only very simple first-order reactions
have been studied, for obvious reasons.

4 8. Brinkley and J. Richardson, “On the structure of
plane detonation waves with finite reaction velocity,” Fourth
Symposium on Combustion, Cambridge, Massachusetts
1052, pp. 450-457.

¢ J. G. Kirkwood and W. W. Wood, J. Chem. Phys. 22,
1915 (1954).

8 W. W. Wood and J. G. Kirkwood, J. Chem. Phys. 25,
1276 (1956).

" W. W. Wood and J. G. Kirkwood, J. Chem. Phys. 29,
957A (1958).

8 J. O. Hirschfelder and C. F. Curtiss, J. Chem. Phys. 28,
1130 (1958).

® B. Linder, C. F. Curtiss, and J. O. Hirschfelder, J. Chem.
Phys. 28, 1147 (1058).

10 C. F. Curtiss, J. O. Hirschfelder, and M. P. Barnett, J.
Chem. Phys. 30, 470 (1959).
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STRUCTURE OF PLANE DETONATION WAVES

In this paper, as in those by Hirschfelder ef al.,
mentioned in the foregoing, a steady-state plane
detonation wave is considered. As mentioned in the
first of these papers,® for final Mach numbers less
than unity, it is not possible to compare the theoret-
ical solutions with experimental detonations initiated
at a wall; since no limitations on the final Mach
number are given by the hydrodynamic boundary
conditions in the steady-state condition assumed,
other criteria must be employed to rule out those
Mach numbers which are physically unattainable.
Recently, Nicholls' and Gross'® have shown that
it is possible to attain steady planar detonation
waves in the laboratory, so it might ke possible to
compare theoretical solutions with their results.
However, at the present time, it is not possible to
establish definitely the fact that strong detonations
were attained.

The purpose of this paper is to present an approxi-
mate analytical solution to essentially the same
mathematical problem solved numerically by
Hirschfelder and co-workers. In the event that
there is a relatively small coupling between the
shock and reaction zone, it is found that this can be
accomplished by means of a perturbation solution.’
The model chosen is that of a shock followed by
reaction, so that in zeroth order, that is, with no
molecular transport effects, it is essentially the
von Neumann model.

PHYSICAL CONCEPTS

In any aerodynamic flow in which reaction oceurs,
attention must be given to the mechanism by which
continuous ignition of the combustible gases may
occur. For example, in a deflagration it is clear that
the molecular transports of mass (in the form of
active radicals) and energy, from the burned to the
unburned gases, are the mechanisms by which the
reaction is sustained. In the detonation wave,
however, two possibilities present themselves. First
the initial compression in the shock part of the wave
increases the temperature and pressure to relatively
high values in a distance of the order of a few mean

1 J, A, Nicholls, E. K. Dabora, and R. L. Gealer, “Studies
in connection with stabilized gaseous detonation waves,”
Seventh Symposium on Combustion, Oxford, England,
September 1958, pp. 766-772.

2 R. A. Gross, ARS Journal, January 1959, pp. 63-64.

13 Upon submission of. this paper, it was learned that
similar solutions had been found simultaneously by Dr.
W. W. Wood at the Los Alamos Scientific Laboratory. See
Rept. No. GMX-10-38-A, “On perturbation solutions for
Navier Stokes detonations based on the von Neumann
solution as the zeroth-order approximation.”
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free paths. Following this, the main part of the
reaction occurs and molecular transport, while
occurring, may or may not be important. The
picture seen by an observer moving with the mass
average velocity of the gas in the reaction zone,
would differ from that seen by an observer in a
deflagration, only in the higher relative velocity of
random motion of the molecules. If this higher
temperature is high enough to initiate a reaction
immediately, then transport of mass or energy from
the burned gases will contribute a negligible portion
to the reaction rate. If, however, the temperature,
and thus the reaction rate, is low enough that the
energy transferred from the unburned gas is a
significant fraction of the energy released by the
reaction, then, of course, the transport effects
must be included. Hence, it seems clear that in a
gross manner of speaking, for relatively small heat
releases, and thus relatively low wave Mach numbers,
with corresponding small temperature increase
across the shock portion of the wave, the transport
terms should be more important than in these
waves where the heat release is relatively very
large, the wave Mach number is large, and hence,
the temperature at the beginning of reaction is
much greater. Of course, these remarks are made
with the tacit assumption that the activation
energy remains essentially the same for the two
examples mentioned.

A comparison of values characteristic of the
various processes occurring in the wave can be
made in terms of length or time. In this case, as
both von Kérmén® and Hirschfelder'® point out,
one can define a characteristic collision time,
equivalent to the average time between collisions,
and a characteristic chemical time, equivalent to
the time between collisions resulting in reaction,
for example. For most cases, f, << £, the collision
time is usually far less than the chemical time.
In other words, the number of collisions resulting
in reaction is generally far less than the number of
collisions. In fact, it would seem physically impos-
sible to set ., < f.. Generally, it is not enough to
compare i, and f. alone since roughly the same
values hold whether one considers a deflagration
or a detonation. Thus, in comparing deflagration
and detonation waves, von Kérman® evaluates the
ratio of the previously noted characteristic time
ratio to the square of the Mach number. However,
since the Mach number in the reaction zone of the
detonation wave is of the order of one, it is necessary
to consider only the characteristic time ratio in this
case, as will be shown in later calculations.
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DETONATION WAVE EQUATIONS

A stationary plane detonation wave is considered
in a one-dimensional flow. There are no external
forces, and bulk viscosity is neglected. The reaction
is a first-order reaction with no change in molecular
weight. Hence, a binary mixture of perfect gases
with constant specific heats is employed. Diffusion
is neglected, so that this forms the counterpart of
the “thermal model” studied in deflagration prob-
lems. This assumption is not necessary for the
calculations to be performed. Indeed, the comparison
of the limits of this solution with those obtained
with diffusion included, leads to a slight change
in form, but not in functional dependence. The
diffusion is neglected, then, only for the greater
simplicity in computation obtained.

With the foregoing assumptions, the equations
which hold in the detonation wave are (see reference
14, for example),

pU = pUy = M (1a)
4 d
guj-‘;=m(u—u,)+P—P, (1b)
AdT 1y — Lo = we
m d:l: - CP(T Tf) 2 (u uf)
1
+@—a)@—P—P) p (1c)
m%% = w, (1d)
= pI;:lT ’ (le)

where the subscript f refers to the hot boundary,
or final conditions, @ is the heat released by the
reactant in cal/g, and ¢ is the mass fraction of the
reactant, p,/p. M is the molecular weight.

The reaction rate term, w,, is written for a first-
order reaction, either reversible or irreversible.
Thus, for the irreversible case,

A, — A, )

_ (__fL)
Wy = T € exp RoT
while for the reversible case,
Al = Az

__» (_A)
W = T exp RoT

1 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molec-
ular Theory of Gases and Liguids (John Wiley & Sons, Inc,,
New York, 1954).
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-[e1 ~ (1 — &) exp (—%)jl, (3)

where 7, a characteristic time in the reaction, is
the inverse of the steric factor, assumed to be the
same for both the forward and reverse reactions
in the reversible case. A is the activation energy.

Since, in Eqgs. (1),  does not appear explicitly,
it is convenient to transform these equations such
that a dimensionless velocity,

4

is the new indeperident variable. The following
dimensionless, variables and parameters are also
introduced:

v=1—uly

f = I—T/Tf, r = (7_ 1)/7:

0= Q/CT), 0= A/, "
. 1m i enl )

N = yM;, B = CPTPf €xp on ’

where M, is the Mach number at the hot boundary.
The parameter B is of the order of the maximum
value of the ratio of characteristic times men-
tioned, i.e.,

B ~ (tc/tch)max (6)

since (1/7) exp (—8,) is of the order of the maximum
reaction rate and A\,/(C,P;) is of the order of the
characteristic time between collisions at this same
state point. (1/7) exp (—8,) is essentially the
maximum reaction rate because this rate term is
that where the relative mass concentration is unity
and the temperature is at its final value which is
the maximum temperature or close to the maximum
temperature, depending on the strength of the wave.

IRREVERSIBLE REACTION

In terms of the just mentioned parameters,
the transformed equations, for the case of an
irreversible reaction are ag follows:

do _ (L= ) exp (= 0,6/(1 — )

- B T-wrw-ng > O
de _ 560 =) —eqg+ (TN/2W + T
w =NV = ) T TR TN — D) ’

®)

where P, = 4 C,u/\, the reduced Prandtl number,
has been assumed to be one. Also, \, the thermal
conductivity has been assumed to vary linearly
with the temperature, and the speed of sound is
taken to be (YR,T/9M)}. The boundary conditions
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are siply that at the hot boundary, where v = 0,
€ == 0 = 0.

In view of the fact that the irreversible mechanism
gives physically realizable results for B small
compared to one, it is in order to compute a per-
turbation solution for the part of the wave in which
reaction occurs, with B as the small parameter.
In this event, the proper perturbation expansions
are as follows:

0 — 0(0) + Ba(l) + 820(2) + N
€ = eiO) + BEin +B2e§2) + cen

Employing these expansions in Egs. (7) and (8),
one can show that the zeroth- and frst-order
funections are

9

8” = (1 — Nw + N&*, (102)
€7 =g =[1 -~ N1 - Dp
+ (2 = P)sz, (10b)
0(1) - _(d;:)>—1(1 - 0(0))6(0)
6,0
- eXp (-—-1—*:-—0;(—07), (10¢)
S R gel? = —g®
de(O) 1
[“‘;{L’-m -1 - P)] (10d)

The zeroth-order solutions are those which hold
for the well-known case of negligible transport
effects, while the first effects of the transport proper-
ties are given by the inclusion of ¢ and §%.
While the conditions that ¢ and ' must vanish
at both hot and cold boundaries are met at the
hot boundary, they are not precisely met at the
cold boundary, i.e., immediately after the shock.
Just-as in-eombustion theory, because of the form
of the reaction rate employed, a finite reaction rate
exists at any temperature greater than absolute
zero. Hence, the cold boundary condition is only
approximately satisfied since B8, for example,
does not vanish but is very small compared to
6 at the cold boundary. Higher-order terms
would show the same behavior.

At the cold boundary of the reactive region,
8, ¢, and v are all positive, being those values which
may be found by applying the shock wave relations
across a shock traveling at the detonation wave
propagation Mach number. Moreover, according to
the perturbation solution, ¢ and ¢ both are zero
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when v is zero, so that no negative values of v exist
between the cold and hot boundaries. Since ¢®
is always positive or zero, and since succeeding
terms are assumed to be small compared to a given
term, ¢ must be positive no matter how many terms
are included, if the perturbation solution is to be
valid. In the irreversible case, of course, ¢ > 0is a
physical necessity.

It can be seen from Eqgs. (10) that near the hot

‘boundary, i.e., as v — 0, both 6 and e are proportional

to v, at least to first order. Furthermore, when
1 ~ N(1 — I') = 0, which corresponds to the
Chapman-Jouguet case of M2 = 1, ¢ ~ »*, while
¢” ~ v, which indicates that the perturbation
solution breaks down. Hence, it is necessary to
examine solutions near the hot boundary, in order
to determine whether there is a range of final Mach
numbers for which a perturbation solution is not
valid in this region.

First, it is of interest to calculate the limiting
values of de;/dv and df/dv at the hot boundary.
Thus, if

. d

ay = ll-gl—dg, (11)
. d

by = lim ¢ 4 ; (12)

and, since by L’Hospital’s rule,

im 8 = o
lm;”"a;,

v—0

€

limq; = bl'

=0
Then, at the limit, Eqs. (7) and (8) can be shown
to reduce to

bila, + N—-14+B=0 (13)
afe;, + N - 1) = Nia,(1 ~T) — b, + Il (14

Since it is desired, at this point, to consider only
those solutions for which ¢ and 8 can be expanded
in powers of » and thus are linear functions of v
in the small, and since » > 0, and ¢ > 0, it is
clear that b, > 0 is a necessary condition which
must be met if the perturbation solutions are to be
valid. In fact, since

b= 3 B'de™ /dv),mo and (de™ /db),., # 0
0
in general, then b, = 0 implies that as v — 0, several

terms of the perturbation expansion must be of
the same absolute order of magnitude, so that the
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fundamental condition of the perturbation solution
is violated. Here, of course, b, is the coefficient of
the first term of an expansion of ¢ in powers of v
about the point v = 0. If b, # 0, then Egs. (13)
and (14) may be solved for a, and b,. Thus,

o= - ~-1+B) (15)
by =[B+ N)/NJ1 —B - N1 -T)]. (16)

Equation (15) specifies that if a critical N is
defined as

N.=+yM;, =1 — B, a7
then a, —<>— 0as N —Z— N.. The critical final Mach

number, M, , can be shown to be that Mach number
above which a temperature maximum exists in
the wave. Thus, since v > 0, thenasv —0,dv/dz < 0,

or du/dx > 0. Hence, a, § 0 implies dT/dx é 0

near the hot boundary. Figure 1 indicates the

Fie. 1. Variation of
properties through a de-
tonation wave,

cases mentioned with the corresponding ranges of
the final Mach number. It is interesting to note
that, according to Eq. (17), the inclusion of transport
properties changes the critical final Mach number
from its classical value of y~* by a factor (1 — B)%.
For the generally accepted values of B < 1, the
difference from the classical value is relatively small.

From Eq. (16), it can be seen that the condition
b, > 0 imposes a condition on the final Mach
number. Thus, for b, > 0,

N <(1-B)y/1 -1,
M, < (1 — B

That is, the perturbation solution in this region
can be expected to be valid only in the final Mach
number regime given by Eq. (18). Certainly, it is

(18)

T. C. ADAMSON,

JR.

not valid for M, > (1 — B)!. It should be noted
that this range does not include the Chapman-
Jouguet wave (M; = 1). In fact, near the hot
boundary, one should expect the approximation
to be less accurate as the Mach number approaches
the limiting value of (1 — B)%.

It is possible to obtain the exact solutions which
hold near the hot boundary by considering the
linearized equations in this region. The author is

. indebted to William W. Wood (private communica-

tion) for having pointed out that these solutions
not only show the range of validity of a simple
expansion, but also illustrate the nature of the
solution in the region around » = 0 for the remaining
Mach number range. Thus, if one writes the govern-
ing equations, Egs. (1b),(1c¢), and (1d), in Lagrangian
form and linearizes them with respect to the point

§ = ¢ = v = 0, the result is as follows:
de/dt = —Be, (19)
dé/dt = N[6(1 — T) — ¢ + Tv], (20)
dv/dt = 6 + (N — 1. (21)

With the application of the given boundary con-
ditions, the solutions can be written in the following
form, where one of the arbitrary constants has
been set equal to unity.

€ = €xp (—Bt)) (22)
- NN -14B)
o= (N+BI[N1~-T)—1++B] exp (—Bt)
— CNTexp {—=[1 — N1 - D)]¢}, (23
N
VS T T BING =T 145 P B
4+ Cexp {—[1 — N(‘1 ~ DY, (24)

where ¢ is an arbitrary constant. Finally, substi-
tuting Eq. (22) in Egs. (23) and (24), 6 and » can
be written in terms of e.

NN —14B) €

= WEBNA-D -178
— CNFGII—N(l—F)]/B’ (25)
v = — N €
N+ BINI —T) — 1 + B
+ Ce[l—N(l—T)]/B' (26)

Thus, as W. W. Wood pointed out, only certain
special solutions have power series expansions about
the singular point, even though the system is linear.
It is clear that for 1 — N(1 — T) > B, which is
the condition given by Eq. (18), as ¢ — 0 the linear
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term is dominant, while for 1 — N1 — I') < B,
the solution for 6 and v involve noninteger powers
of ¢ for which a series solution and hence, the
perturbation solutions do not hold. At the present
time, - no approximate solution is known for this
Mach number interval, 1 — B < M} < 1. In this
range of Mach numbers, of course, it is possible
that 1 — N(1 — I') = B/n, where n is an integer.
In this case, for v small enough, ¢ « °, as seen from
Eq. (25). Thus, a series expansion would hold
for these discreet values of the Mach number, if
the first » — 1 coefficients of the series were zero.
However, in this event, a perturbation solution
would not be applicable near the hot boundary,
since enough terms would have to be taken into
account to show that the coefficients of v, v*, ¢°, - - -
v"~' canceled out. Thus, as mentioned previously,
for the simple case where b, = 0, successive terms
of the perturbation would become of the same
order, as v — 0.

At this point, the foregoing results can be com-
pared with those given by Hirschfelder and his
group in the first of their very interesting and
stimulating series of papers on detonation theory.®
The first terms of the series expansions, which are
essentially Eqs. (25) and (26) with ¢ = 0, correspond
to Hirschfelder’s asymptotic expansion “2” in the
section entitled “Nature of the solution near the
hot boundary,” the only exception being that in
the present case, diffusion is not considered. By
using the expansions given in that section, it can
be shown that the limit on N is, in the notation
of this paper,

N<1/(1-DQ1+B) (27)

which reduces to Eq. (18) if B « 1 is considered.
However, it should be noted that the range of
Mach numbers over which a series expansion is
possible is relatively insignificant for the large
values of B considered by Hirsehfelder and Curtiss.
Thus, their numerical results are calculated for
B > 1, with B = 2.5 corresponding closely to one
of their particular solutions. For this value of B
and for ¥y = 1.25, according to Eq. (27), N < 0.36,
or M, < 0.54 is the range in which it is possible to
consider a series expansion. Of course, for this
value of B, the perturbation solution is not proper,
since it is based on B << 1. However, B = 2.5 1is a
seemingly impossible value, as pointed out by
Hirschfelder and his group themselves, in the third
paper of their series.'’® In this reference, the anom-
alous condition of B > 1 is pointed out, and the
possibility of employing more complicated relaxation
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F1a. 2. Perturbation solution of combustible concentration
and temperature as functions of velocity in the reaction
zone of a detonation wave with a first-order irreversible
reaction mechanism; wave Mach number is 6.0.

reactions which might occur during a first-order
reaction is discussed. However, it seems more logical
to restrict the use of first-order irreversible mechan-
isms to the more physically realizable values of B.
It happens that B « 1 for those reactants with
relatively small heats of formation and relatively
high activation energies. For example, for hydrazine,
the calculated value of B is 0.002. With such a
value, the perturbation solution should be useful
up to final Mach numbers very nearly unity.

In view of the foregoing remarks, a calculation of
6 and ¢, to first order was made for B = 0.05, and
M?% = 0.90. The results are shown in Figs. 2 and

.10
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Fi6. 3. Perturbation solution from Fig. 2 in the neighborhood
of the hot boundary.
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3. The differences between the zeroth- and first-
order solutions are seen to be relatively small for
this case. It is interesting to note that near the
hot boundary the solution for ¢ is not as well
behaved as the solution for 6. That is, it is only in
the calculation for ¢ that the first-order term
becomes comparable to the zeroth-order term as
v — 0, although a comparison of b, with the slope
[d(” 4+ Be™))/dv at the hot boundary, showed
good agreement in the example calculations. A
glance at Egs. (25) and (26) explains this behavior,

&,

RN G il e | K e e ) |

T. C. ADAMSON, JR.

in that, for ¢ small enough, 8 = const X v can be
written for all Mach numbers, while the linear
variation between e and v holds only for the afore-
mentioned range, and becomes increasingly poor
asN1 - T)— (1 — B).

REVERSIBLE FIRST-ORDER REACTION

The equations which hold for the reversible first-
order reaction mechanism may be written in a
form equivalent to Eqgs. (7) and (8). In dimension-
less form, they are

q0

dé

T N —v)
[0 = 1) — b+ ON/2 + 18] o0
(6 + (N — 1)» — Nv*] !
where
G= & — €. (30)

€1, is the equilibrium value of ¢, at the hot bound-
ary, and the reduced Prandtl number is again
assumed to be unity. Since the speed of sound is
again taken to be ('yROT/Em)*, the parameter N
refers to a Mach number based on the so-called
frozen speed of sound.

A perturbation solution for the condition B « 1
may be obtained by applying the expansions given
in Eq. (9), now for € and 6, to Eqgs. (28) and (29).
The results for the zeroth- and first-order terms are
as follows:

' = (1 — Nw + N, (31a)
& =g =1~ N1 - Dpw

4 [(2 — I)/2]NY*, (31b)

_(0)\ ~1 6.6
o = () w0 em (~1250)

.{5“”[1 + exp (—F(T-l?m)]

0(0)

+oft-on (e Jf w0
& = qéf”
. e 1
= —§° )[ v m — (1 - I‘)] (31(1)

6+ (N — Do~ Nv’) <, (28)

It is seen that if € is substituted for ¢, Egs. (31) are
the same as those for the irreversible reaction with
the exception of the equation found for 6. The
remarks concerning both the cold boundary con-
ditions and the nonnegative values of ¢ and v,
made with regard to the irreversible reaction
solution can be seen to hold for this solution as well.

In order to find the Mach number limitations of
the perturbation solution, the procedure employed
in the irreversible reaction problem may be used.
Thus, if @, and b, are defined as in Eqs. (11) and (12),
considering ¢ rather than e, then in the limit, Eqgs.
(28) and (29) become

_b+ &,9°(a:/T) exp (¢/T)]

b, = [a. + N — 1]51, B exp (—¢/T)
(32)
g =y =Da=b +T] 33)

e + N - 1]

Equation (32) may be simplified by introducing
the specific heat ratio of the reacting gas, y’. As
given in reference 14, and in the notation of this
paper,

_ 14 6a,¢(1/T) exp (¢/T)
1+ [e],¢"/T(1 — T)] exp (¢/T) ’

where the condition of equilibrium at the hot
boundary,

v
y (34

&, = (1 — &, exp(—g/T) (35)
has been used. Defining I similarly to I' so that
M= -DN, (36)

one can solve Eq. (34) to yield

€,¢'(1/T) exp (¢/T) = (T — I)/T".  (37)
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Finally, B is defined such that
B = (B/e,) exp (—q/T). (38)

&, exp (¢/T) is of order one, so B is of order B.
Equations (37) and (38) are substituted in Eq. (32)
with the result that

bl(al -+ N — 1) = _B{bl + [(P - P’)/P,]al}- (39)

Thus, Egs. (33) and (39) may be analyzed to find
the desired Mach number range. As in the irre-
versible case, the perturbation solutions for 6 and
€ are linear in v in the small. Also, since ¢ and v are
nonnegative functions, near the hot boundary,
dv/der < 0 and d¢/de < 0 are conditions which
must be met if the perturbation solution is to
be valid.

The critical Mach number, i.e., the largest final
Mach number which can occur before a temperature
maximum exists within the wave can be found by
setting a, = 0. Thus,
or

M,, =11 - B/,

a result similar to the irreversible calculation.

The calculation of the limiting final Mach number
is somewhat different from that in the irreversible
case. A solution of Egs. (33) and (39) results in
cubic equations for @, and b,. Although no simple
solutions were found, the Mach number range may
be found by using the conditions noted in the fore-
going. In particular, if dv/dx < 0, and thus dv/dt < 0
near the hot boundary, then from Eq. (21), which
holds for the reversible case also, it can be seen that
the equivalent condition at the limit is

o+ N—-1<0
or,if @, = —a,,
dIZ_N'—l.

Here, G, > 0 since N > N, corresponds to the Mach
number range under consideration. Moreover, since
both b, and B are positive, the foregoing condition
applied to Eq. (39) indicates that

b = [(T' = I)/T"]a, > 0. (41)

Finally, it may be shown, from Eqs. (33) and (39)
that as N increases, b, decreases and 4, increases.
Hence, the maximum Mach number which allows
a perturbation solution is given when the equality
of Eq. (41) occurs. With this equality, one can show,
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from Eqgs. (33) and (39), that the maximum Mach
number is

M; =+'/y. (42)
However, if the Mach number is defined in terms of
the equilibrium speed of sound, (v'R,T/9N)}, then
the limiting condition is, from Eq. (42},

M; = 1. (43)

Hence, the perturbation solution should hold up to
the Chapman-Jouguet case, if the Mach number is
based on the equilibrium speed of sound. While
some controversy has existed in the literature
concerning the use of frozen or equilibrium speeds
of sound, the latter is now generally accepted as the
proper one to use in the definition of the Chapman-
Jouguet condition.

It is interesting to note that b; # 0 in the allowable
Mach number range for the perturbation solution.
Instead, for 0 < b, < [(T' — I)/Tla,, dv/dt > 0,
and since b, > 0, d&/dt > 0. Thus, both & and v
must approach zero from negative values, a condi-
tion which is not allowed in the perturbation solu-
tion. That is, & initially positive, must remain
positive, in accordance with the behavior of &.

Example calculations were carried out for a
reversible reaction with ¢ = 0.644, B = 0.05, and
T = 0.20. The results are shown in Fig. 4. The
limiting case of M} = 1 was chosen for this example
in order to illustrate the difficulties inherent in the
perturbation solution near the hot boundary. As
v — 0, two terms hardly sufficed to give a proper
representation of €, since values of Bé'"’ /¢ as high
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F1a. 4. Perturbation solution of combustible concentration
and temperature as functions of velocity in the neighborhood
of the hot boundary of a detonation wave with a first-order
reversible reaction mechanism; wave Mach number is 5.75.
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as 0.50 were calculated. However, a comparison of
dé/dv at the hot boundary with the corresponding
b, showed good results so that at least with the
numerical values chosen, the third- and higher-
order terms contribute very little to. the solution.
For v far from zero, of course, the transport effects
are seen to be small, and the perturbation solution
is evidently valid.

CONCLUSION

A perturbation solution is a relatively simple
and accurate solution for the concentration and
temperature profiles, for B <« 1. However, its use
is restricted to Mach number ranges which do not
include the classical Chapman-Jouguet case for
irreversible reactions, but which do include the
Chapman-Jouguet case for reversible reactions, if
the final Mach number is based on the equilibrium
speed of sound.

In view of the physical interpretation of the
perturbation parameter B, it seems clear that
within the given final Mach number range, a pertur-
bation solution should hold for most reactions.
Thus, detonations traveling through most reactive
mixtures should have relatively small coupling
between the shock and reactive zones.

T. C. ADAMSON, JR.

The first-order reaction rate mechanism is difficult
to justify mechanistically. The explanation accepted
by most kineticists is that initially a relatively fast
second-order reaction produces active reactant
particles which then decompose slowly at a rate
which is first order. Thus, the over-all rate controlling
reaction is first order. Generally, the pre-decompo-
sition reactions are not taken into account in
simplified combustion or detonation wave treat-
ments so that with a given set of parameters, it is
possible to calculate reaction zones of the order of
a mean free path in thickness, with B > 1. However,
postulating such a rate would seem to give results
of doubtful practical value, since, in such a case,
there would be no way of producing the necessary
supply of active particles such that the decompo-
sition was still the slowest rate controlling part
of the reaction.
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