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The partial differential equations for laminar free convection
over a needle are reduced to ordinary differential equations
by a similarity analysis, and the values of local skin frie-
tion, heat transfer for various needles are obtained.

The boundary-layer equations for free-convection
laminar flow over a vertical needle in nondimensional
form are as follows:
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Here 2 and 7’ are nondimensional cylindrical co-
ordinates and »!, #/ are nondimensional velocity
components, which are obtained by dividing the
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usual dimensional variables by L (reference length)
and wu, (reference velocity), respectively. The non-
dimensional temperature ¢ is defined as 6 =
(T — T.)/(T, — T.) where the subscripts « and
w denote reference and wall conditions, respectively.
» denotes kinematic viscosity, 8 coefficient of thermal
expansion, and Pr Prandt] number.

The boundary conditions for the surface and
for the outer edge of the boundary layer are

v, =0, =1,
v, =0, 6=0. ()

By using the definition of stream function ¥ we
can write Eqs. (2) and (3) as

r. = r(2), v, =
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The boundary conditions (5) then become
r=r@, Lo _o 4o,
r 2
19y _ _
row, S2E=0, 9=0.

To obtain a similarity transformation for the system
represented by (6), (7), and (8), consider the linear
transformation group' defined by

2= A%E r=A"F, v = A"y, 6= A*8, (9

where A is a parameter of transformation and
ai, ag, a3, and a, are constants.

With these transformations and the conditions
of invariancy, it follows that

(10)

The absolute invariants can then be obtained by
eliminating the parameter of transformation A
and by putting

Q3 = O and X — 3&2 = (4.

1= (5, =, - P

(11)
where
a=2 and 1 — 3a = 2.
ay 241

With this transformation, the boundary con-
ditions given by Eq. (8) become
1/2 e

=% f=1=0 - 7 =1,
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which shows that the boundary conditions can
be transformed if « = §; then the equation of the
surface is given by

T2
PR = ro = const.

13)

Hence, by using the transformation given by
Eq. (11) and by taking a = }, the momentum and
energy equations for laminar free convection can
be transformed into the following ordinary differ-
ential equations (primes denote differentiation
with respect to #):

8uf"" + 8f"" + 4ff" —2(f) +g=0, (19
g" + GPrf+Dng =0, (15
with the boundary conditions
fr) = fr9) =0, glo) =1,
f(©) =0, g(x)=0. (16)

The solution of Eqs. (14) and (15) is obtained by
the method described in Ref. 2.
The shear stress + on the needle is defined as

av,
Tw = Mgz ) o

where u is the dynamie viscosity. In terms of simi-
larity variables, Eq. (17) can be written as
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= 4(re)""*f"(ro), (18)

where
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Thus, the shear parameter f’(r,) indicates the
skin friction on the surface of the needle. Figure 1

100 T
Pr
]
5
10
10 25 B
50
100
10
Lo} p
A L
.001 01 O.t

o

Fia. 1. Skin friction on various needles at different Pr.
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F1a. 2. Heat transfer from various needles at different Pr. }

shows the values of f(r,) as a function of r, and
Pr. The results show that the skin friction increases
as r, is decreased, as it does in forced flow. The
dependence of the skin friction on the Prandtl
number is such that increasing the Prandtl number
decreases the skin friction.

The heat transfer ¢, is defined as

oT
Go = —k(af )w’

where % is the thermal conductivity. In terms of
similarity variables, Eq. (19) becomes

(19)
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The average heat transfer is, therefore,
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where 2, is obtained from Eq. (4) by putting 2 = L
(i.e., ' = 1), that is,

2
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The average Nusselt number Nu is defined as
Vu = % , 22)

where A is the average heat transfer coefficient.
From Eq. (20) we get
— R 1/6

Nuﬁ%ﬁ? = "3(7'0)1/29’(7'0)-

Thus, the slope of g, g'(r,), indicates the heat

transfer. Figure 2 shows the values of g'(r,) as a

(23)
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function of 7, and Pr. Again, decreasing 7, has the
effect of increasing the heat transfer. The dependence
of the heat transfer on the Prandtl number is sim-
ilar to the dependence of the heat transfer in free
convection over a plate, in that it increases with
increasing Prandtl numbers.

! A. G. Hansen, Similarity Analyses of Boundary Value
Problems in Engineering (Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1964).

1A, M. O. Smith and T. Cebeci, Douglas Aircraft Com-
pany Report DAC 33735 (1967).
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Altechnique for the solution of an eigenvalue problem arising
in entrance region flow is presented along with a simplification
of the nonlinear transformation used with such problems.
From this, certain other results are obtained.

The purpose of this Note is to point out certain
amplifications and simplifications to the results of
a paper published in this journal (Ref. 1) regarding
flow' in the entrance region of ducts. A technique
for the solution of the eigenvalue problem posed
therein for two dimensional flows will be given as
well as a remarkable simplification of the nonlinear
transformation and certain results obtained from
this simplification.

We refer to Ref. 1 for all definitions, notation, and
the problem history. Briefly, the problem is to
analyze the incompressible laminar flow of a fluid
with constant properties in the entrance region of a
straight duct with arbitrary but unchanging cross
section. The axis is taken along the positive 2 direc-
tion while = and y are the cross-sectional coordi-
nates. The flow is governed by the momentum and
continuity equations with the velocity being zero
on the duct walls and equal to the average velocity
at the duct entrance. The method employed in
Ref. 1 involves a linearization of the inertia terms
of the equation of motion by introducing a stretched
coordinate in the flow direction. The linearized
momentum equation is

29 Sxas,
where U i the average velocity, » is the kinematic
viscosity, A is the cross sections area, V? is the
Laplacian 8°/8x° + 9°/8y°, and e(z) is an unknown
function to be determined. Making the (nonhnear)
transformation defined by

U _ o,
e(z)Uaz =yVu
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transforms (1) to
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U az* Y Sgc m ds = v Vu. 3)
The method of solution is to write
U = U, + U, (4)
separate (3) into two equations
1 u
Vi = = gﬁc st g, (5)
= Uy 1 gou
Vo= o T 4P o & ©)

and seek a solution for u, as

= 3 c:g; exp (—ale*). )
tm]
This reduces the problem to one of solving
Ve +Sg=tfd Ly @

with g; = 0 on C, the boundary of the duct. For a
one-dimensional problem (as solved in Ref. 1)
this is not a difficult problem. For two-dimensional
problems it is considerably more involved. The
following is an outline of a technique for the solution
of (8) for any cross section which can be mapped
onto a rectangle in such a way that the boundary
conditions separate, e.g., a rectangle, a circular
sector, an annulus.

Let f be a transformation with Jacobian AJ
which maps the cross section onto a rectangle and
simultaneously makes the coordinates nondimen-
sional. (We use I = A! as the characteristic
length.)

The problem then becomes

2 e _ o 24
Vg + aig; = 95c an ds )]

with g.(0, n) = gu(B, n) = ¢:(§,0) = gi(§, 8) = 0
where § = z/L, n = y/L, R = &, /L, and 8 =
Nmax/ L. We first observe that the right-hand side
of (9) is a constant for each g, and write

do g _ ar 4M,  kat,
560 oG8 =Mo= 2 “oisimpl (10)
Assuming
k7rE
g:(& n) = Z C,k(n) sin —5* (11)

and using (10) and (11) in (9) gives a second—order
ordinary differential equation for C';.(3),



