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A radio frequency electromagnetic wave, polarized in the plane of incidence is incident obliquely
upon a plasma half-space, where the equilibrium plasma is taken to be homogeneous and isotropic.
Employing the specular boundary condition, an exact solution of the coupled Maxwell-Vlasov equa-
tions is derived, yielding both transverse and longitudinal waves in the plasma region. The reflection

coefficient is derived, and approximately evaluated.

INTRODUCTION

t is well known that transverse and longitudinal
waves can propagate in a homogeneous un-

bounded plasma. It is of interest to know precisely
how such waves are generated when vacuum or
dielectric radio frequency electromagnetic waves
arrive at a bounded plasma. Based upon the coupled
Maxwell-Vlasov equations, this problem has been
treated by Felderhof' for the special case where the
electromagnetic wave is incident normally to a
half-space filled with a homogeneous isotropic
plasma. In this situation only transverse waves are
generated. A somewhat similar problem was treated
by Shure® for the plasma capacitor where only
longitudinal waves are generated.

The fundamental boundary condition employed
by the above authors was the specular reflection
condition, corresponding to the physical situation
associated with an infinitesimally thin sheath.® In
this connection it should be pointed out that the
finite sheath case was treated by Pavkovich.* Em-
ploying the coupled Maxwell-Vlasov equations, he
investigated the generation of the electric field com-
ponent normal to the interface separating the sheath
from the semi-infinite plasma half-space, where the
sheath potential had parabolic spatial behavior.

The problem that will be treated here is a general-
ization of Felderhof’s case, with the electromagnetic
wave incident obliquely upon the interface. In this
situation, both transverse and longitudinal waves
are generated. The procedure that will be used is
based upon Felderhof’s' analysis as well as Van
Kampen’s® treatment for longitudinal waves, and
is outlined as follows. The plane wave will be taken
to be polarized in the plane of incidence. The
transmitted field in the plasma region will be rep-

1 B, U. Felderhof, Physica 29, 662 (1963).

2 F. C. Shure, J. Nucl. Energy C6, 1 (1964).

3D. Bohm and E. P. Gross, Phys. Rev. 79, 992 (1950).
t J. M. Pavkovich, (to be published).

5 N. G. Van Kampen, Physica 21, 949 (1955).

resented in terms of a linear combination of normal
modes, i.e. particular solutions of the coupled Max-
well-Vlasov equations, each of which is associated
with a particular value of the propagation constant
in a direction normal to the surface. The contribu-
tion arising from the continuous portion of the
spectrum is obtained in terms of an integral rep-
resentation containing two unknown functions. To
this is added the discrete spectrum contribution.
The appropriate conditions are derived governing
the existence and number of discrete modes. It is
shown that the discrete modes do not exist, provided
that the angle of incidence, measured from the
normal to the interface, is less than a certain critical
angle. For small Debye lengths, this critical angle
corresponds to the angle for which complete reflec-
tion occurs when a wave is incident upon an optically
less dense dielectric medium. The specular boundary
condition is employed, and the reduction leads to
two coupled integral equations involving the un-
known functions associated with the continuous
spectrum. Exact solutions are obtained, and explicit
expressions are given for the field components.
Finally, the reflection coefficient is computed for
two cases.

BASIC EQUATIONS

The appropriate equations for the plasma region
are Maxwell’s equations and Vlasov’s linearized
equation, with harmonic time dependence exp (—twt)
assumed

—twf + v-Vf = (¢/m)E-V.f,.

The electronic charge is denoted by —e, and the
unperturbed distribution function f, will be taken
to be Maxwellian

fo(v) = n(m/2xxT)} exp [— (m/2T)v?].

Outside the plasma region, Maxwell’s equations hold
withp = j = 0.
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OBLIQUE WAVE ON PLASMA HALF-SPACE

A Cartesian coordinate system will be employed
such that the z = 0 plane represents the interface,
and the positive z half-space contains the plasma.
An electromagnetic wave, polarized in the plane of
incidence, will be incident upon the vacuum side
of the interface, producing a reflected electromag-
netic wave in the vacuum region, and transmitted
waves in the plasma region. The direction of the
magnetic vector will be taken to lie parallel to the
y axis. The total (incident plus reflected) electric
and magnetic field components at the interface will
have the form

E, = cos a(l — R)(uo/e0)* exp (ik, sin ax), (1)
H, = (1 + R) exp (ik; sin ax), 2)

where k, is the wavenumber in the vacuum half-
space. The direction of propagation of the incident
wave is given by the vector (sin «a, 0, cos a), and
the voltage reflection coeflicient is given by —R.
For further analyses the positive real quantity k.,
where

k, = kysin 3)

is used. Thus in the plasma region, the required
solutions has the form

E = exp ('Lk,x)[Ez(Z), 0} E,(Z)],
H= exp ('Lkzx)[oy H,,(Z), 0]’

with similar x dependence for the distribution func-
tion. The field will be represented in terms of a
linear combination of normal modes where each
mode is associated with a z dependence of the form
exp (tk,z). From Maxwell’s equations, it follows that
the particular mode, associated with the wavenum-
ber k,, must satisfy the following two equations:

—tweo(k. B, + k.E.) + (kg + k.j.) =0,  (4)
(ks — k — k)(k.E, — k.E.)
+ douolk.j. — k.j) =0,  (5)
together with Vlasov’s equation
flo — vk, — v.k.) = —(ie/«T)Er. + En.)fo. (6)

The modes are restricted by the requirement that
only outgoing waves are considered in the plasma
domain. This implies that only modes associated
with values of k, such that 0 < arg k, < = are
considered.

CONTINUOUS SPECTRUM

The modes associated with the portion of the
continuous spectrum (0 < k, < =) corresponding
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to the outgoing wave requirement are considered
first. Two classes of modes are considered, trans-
verse waves and longitudinal waves.

Generalizing the analysis of Felderhof, who
treated the special case where &, = 0, the particular
transverse modes can be represented in the form

E. = (iev’ /o’ e)k. exp (tk-x),
E! = —(iev® /o ep)k, exp (ik-x),
H, = (ieu/wpeo) exp (7k-X),
f* = (@) ek DPlfo(W /@ — v,)]
+ 8(u — v,)T"(v,, w)} exp (ik-x),

where k = (k,, 0, k,), and u is related to &k, by the
expression

k= (k2 + kD = w/u. ™

The velocity components v, and v, represent com-
ponents of velocity transverse and parallel to the
direction of propagation, respectively, and are given
by the following relations:

vy, = (k. + k)/k.  (8)

In order for the wave to be transverse, i.e., the total
charge is zero, I'*(v,, u) must satisfy the relation

v, = (k. — k2.)/k,

[ roow =0, ©

and the requirement that the mode be a solution of
the coupled Maxwell-Vlasov equations, yields the
relation

f v, T (v, u) dv,

—a

2 @
M) = u* —~ ¢ + 25u°P f Lolt) dv,
w Nl

(10)

where the Cauchy principle value is taken. F,(v) is
given by the relation

Fow) = (m/2Tx)} exp [— (m/2T W], (1)

and w, is the plasma frequency. I'*(v,, u) is un-
specified except for relations (9) and (10).

The longitudinal modes have the form (for the
continuous spectrum)

E; = (ie/w’e)ku’ exp (ik-x),
E. = (ie/o’e)k i’ exp (ik-x),
'@, v) = {(@%* /e’ TP [fo(V),/ (@ — v,)]
+ 8(u — v,)I'(v,, u)} exp (tk-x),
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where I''(»,, w) has the restrictions

f 0o, u) dve = 0, (12)

f_: I''(v,, w) dv,

2% o F
=N@ = 1+5psp [ Dy,

(13)

with \; being the Debye length.

In the analysis that follows, the variable u takes
the predominant role in place of k,. Expressing k,
in terms of u, it follows from Eq. (7) that for u real

kz = (kx/u)[ﬂz - u2]*:
with
Q = w/k,, (14

the domains 0 < k, £ wand — o < k, < 0 eor-
respond, respectively, to the domains 0 < v < @
and —Q < u < 0. The continuous spectrum of the
total field is then comprised of a linear ecombination
of transverse and longitudinal modes for « in the
range 0 < » < Q and is expressible in the following
form as demonstrated for the x component of the
electric field:
Fe - i [

W €5 Jgo

([ — v P A@w) + w’Bu)}

-exp (tk-x) du,
where
k= Uﬂ,, 0) kz/u(ﬂz - uz)é]'

Apart from the factor exp (ik,x), the portion of the
distribution function arising from the continuous
spectrum has the following form at the interface
z=0:

'fo(¥)

2
w éoKT 0

Q.,..3 2
% A(u):; j ;& ‘Blu, du

f@s, 05 0) =

+ [ st b4 ) + BT 00,0 du, (15)
with
v, = fw. + (@ — W)/, (16)
v = (& — whh, — w.)/Q. an

The above representation (where the superseript ¢
refers to the contribution from the continuous spec-
trum) contains two unknown functions 4(u) and
B(u) associated with the transverse and longitudinal
waves, respectively, as well as the functions I'* (v, u)
and T'(v,, w) which are only partially determined
by the relations (9), (10), (12) and (13). However,
it is seen that, on applying the specular boundary
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condition at the interface, 4(u) and B(u) can be
completely determined.

Before considering the contribution due to the
discrete spectrum, some preliminary analysis are
performed which are required later in the application
of the specular boundary condition. From relations
(16) and (17) it is seen that

v,,(u, Uz, ""Uz) = -——1),,('-%, Uz 02)7
vty vy —02) = v:(—u, v, 0.);

hence it follows that after replacing », by ~v, in (15)
and changing the variable of integration from u
to —u,

fc(vz: -

0,38 47 2
j’ﬂu A{—wr, + u’'B( u)v,,du

U - v,
+ f 8w — o) A(—W)T (@, —u)
+ B(—w)T'@,, —w)] du.

The following functions are now introduced:
Yu) = udw), u>0,
—uwA(—-u), u < 0;

o) = w(@® — v)Bw), w>0,

—u(Q* — uB(—w), u <0.

For further simplification, the new independent var-
iables s and ¢, given by the relations

(18)

s = 0l + (@ — ), (19)
t =sgn (0. — QL% + 0.0, — Q)]
WA @ -0 (20)

are introduced in place of v, and »,. For both v,
and v, ranging in values from ~ © to 4+ ®, s and ¢
vary over the intervals (—Q, 2) and (— o, =),
respectively.

On combining Eqs. (17) and (18), and introducing
the functions ¥{(u) and ¢(u) and the new independent.
variables s and ¢, it can be shown that

st[fc(vz; Vs 0) - fc(vz) Uz, O)]

Ct)z)\?) - ¥ — 8
a .2
N w P(u) :I
+ (o — e [ BHUg,

+ sgn [(@° — )} — U@ — )

T, s]) + @I, 18D @n
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Expression (21) is used later in connection with the
determination of the unknown functions y(u) and
¢(u), through the application of the specular bound-
ary condition. The importance of this representation
is that, with s fixed, integration with respect to ¢
from — o to + « replaces the functions I''(¢, s)
and T'(¢, s) by known quantities.
DISCRETE SPECTRUM

Unlike the continuous spectrum, the modes for
the discrete spectrum cannot be split up into lon-
gitudinal and transverse waves. Thus the field com-

ponents corresponding to a particular discrete mode
are given by

= (ie/w’e)[u’k, A + u’k.B] exp (ik-x),
E, = (le/w’e)[—u’k, A + v’k.B] exp (tk-x),
H, = (ie/wepo)u A exp (1K-X).

Extending the domain of variable u defined by (7)
into the complex plane, k, is defined in terms of
a function of % which is analytic outside the cut
(—2 < Re u < Q) on the real axis, as follows:

kz = (Zkz/u)(uz - 92)1}7
which implies that 0 < arg k, < =, outside the cut.

As u approaches the cut from above or below, k,
takes the form

ka4 40) = —(bu/u)(@" — ')},
ko — 40) = (k./u)(@" — W),

From Eq. (6) it follows that the distribution function
is given by

f = (/e TV [(Auv, + Bv,)/(u

where

- v,,)]fo(v),

v, = b + i@’ — @hl/Q,
= [’ — @l — w,]/Q.

The constants A and B as well as the particular
values of u, are obtained from the requirement that
the above representations must satisfy (4) and (5),
yielding the two linear homogeneous equations

B[l + —J‘T' vi"(i)”;d ]
P ERT
(g:ﬂi;:% l—i’(%)ztzdv
+ A[u —¢ +wEOKT v{:'(i)”;l v:| =0. (23)
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The coefficients of A and B in the above systems
of equations can be simplified by changing the
variables of integration (v,, v,) to 6 and r where
v, = Q + r cos 8 and », = r sin §, with the domain
of integration given by —7 < § < 71, 0 < r < =»,
Retaining only even functions of 6, integrating with
respect to r, and then replacing the variable ¢ by y

where y = Q sin 6, one can obtain the following
results:
;)—fLZ)Di dv = —’I:1rw2)\§>neﬁ:
2l gy w1 4 N ), (2)

v, —

fo(v)ve _ 2 2[@ * 2 o2 }]
v——,——udv—m"w)\DmF(u)-l_B(u )y,
where —rxw’\28 = exp [—(m/2«T)Q*]. The func-
tion F*(u) is defined as follows. For complex u out-
side the cut, F*(u) is given by

* 117 @)
F*(u) = f p— dy,
where
PO = ez Fa) [ R dt, = @ = g

For u approaching the cut, the following relations
hold:

F*(u 4+ 90) — F*(u — 10) = 2if*(u),

f f(y) L,

where the Cauchy principle value of the integral
is taken. Further simplification is achieved by the
introduction of the following functions:

F*(u 4+ 10) + F¥(u — 10) =

ANw) =4 — ¢ + «T/mm’F*(u),
1+ */250) + 7 F*u),

which are analytic in the cut-u plane. Using the
following identity:

1*@). 1 © Fo(t)
Pf at=zuP [ L,

t—u
which holds for —Q < u < Q, it can be shown that
the above functions have the following important
property on the cut:

Aw) =

A+ 90) + A'(w — 90) = 2\ (w),
Alw + 40) + Al(u — 0) = 22 (w).
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The system of equations (22) and (23) can now be
expressed in the following form:

BA'u) — irBu*A = 0,
—Binfu’ + A[A'@) + fru’(’ — )] = 0.

Nontrivial solutions provided that the

determinant
L) = A'@)[A'@) + gr*@® — @)Y + 76

vanishes. The values u;, of the discrete spectrum
are thus given by the zeros of the equation

L(u,» = O'

Because of the complicated nature of the function,
L(u), the evaluation of the roots u;, is not carried
out. Instead, a precise relation is given, specifying
- the number of zeros as a function of plasma fre-
-quency, operating frequency, debye length, and the
incident wavelength component A,. The approach
is based on the result that the number of zeros of
a function which is analytic in a region enclosed
by a contour, is equal to the total change in phase
of the function taken around the contour, divided
by 2#. Since L(u), is analytic in the cut plane, and
behaves like u® as |u| approaches infinity, then the
total number of roots N is given by

N =2+ (1/2n) A, arg L(u),

where A, arg L(u) is the change in phase of L(u)
taken in a clockwise direction around the cut. Using
the result

L+ i0) = (\' + ir®f*)(\' + imi’g) + 7°8%°, (25)
where '
gw) = WT/m)f*@w) + B(2" — u)},
it follows that

exist,

-2<u<Q,

WWN+W)>_
NN — 1r2u6f*g 3+ ﬂ_zﬁzus
(26)
In order to interpret this relation from a physical
point of view, the particular case expressed by the
inequality

N =2 + % A(o,g) tan—‘ (

whp K wh, 27)

is considered. This inequality implies that the term
containing 8° in the denominator if expression (26)
can be neglected, yielding

3
N=2++2 Aw.o [ta,n-1 (’r—u,i)
T A
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The above inequality (27) also implies that

2 2
! a2 I E’L‘T_
M) ~ ( - w2> (w ) mQ’

In addition, \'(u) can be approximated by the
expression

wh w? «T

2 D 2 b}

N ~u (1 — a?) - — Em 0(1), (28)
where O(1) is a term the order of unity. Precise
analysis of \'(u), indicates that it has no roots when
the plasma frequency is greater than the operating
frequency, otherwise it may have one root in the
range 0 < u < Q. It is seen from Eq. (28) that if

(29)

then a root does oceur in this range. Since \'(u) is
unity for vanishing u, then there will be either no
roots, or an even number of roots when the plasma
frequency is sufficiently less than the operating fre-
quency, otherwise \'(u) may have one root in the
interval (0 < u < Q).

Since g(w) is a positive real even function, vanish-

Q8 — @) > ¢

ing at » = , and since \'(0) = —¢°, then it follows
that

’ 3 2 2 2 22
A, o tan™ (77_1;79_> = JO for @(w wy) < wce,

l—w for QW — i) > o,

and similarly

3%
A, o tan™ (m—)\—“lf ) = {0 for o, <o,
r for w, > w.

From this it is seen that L(u) = 0 will have no roots,
implying that there are no discrete modes, when
the operating frequency is sufficiently greater than
the plasma frequency such that inequality (29)
holds. Otherwise, the discrete modes exist, and there
are either two or four roots of L(u) = 0 according
asw, < w Or w, > w. The inequality 0°(v* — w?) < &’
governing the existence of the discrete modes can
be rewritten in the following form:

sina > ¢

where « is the angle of incidence, and ¢ = (1 — w?/w®)}
is the relative permittivity of the cold plasma. This

-inequality corresponds to the case of oblique in-

cidence upon a surface bounding an optically less
dense medium, wherein complete reflection occurs.
Since L(u) is an even function of %, implying that
both u; and —u; are roots, and since k, is also an
even function of u, the total number of distinct
discrete modes is either one or two according as
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w, < wor w, > w. However, in the expression for
the portion of the field components arising from the
discrete position, the summation will be taken over
all values of u;. The component EZ is given by
the relation '

= S Yl -
with the ecefficients A; and B, related as follows:

B,‘Az(uj) = iTB’U/?A,‘.

QlA; + ulB;] exp (ik;-x)

In the application of the specular boundary condition
the following relation is required:

Qv Ud(t},,?}z, 0) - fd(”za T O)]

_ Fo(s)Fo(t) :‘
W Z e (24,[8 ~
+ (92 - 32)%} + 2’53;'(“5 - Qz)i}y (30)

where s and ¢ are specified by Egs. (19) and (20).
In the above expression the factor exp (¢k,x) has
been dropped.

EVALUATION OF THE UNKNOWN QUANTITIES

The unknown funetions A (u) and B(u) will now
be determined explicitly through the application of
the specular boundary condition f(v,, »,, 0) =
f{v., —v,, 0), upon the total distribution funection.
This condition can be expressed in the form

vaDw(vx; Uys O) - fc(v:} —v,, 0)]
+ sz[fd(uu Vay 0) - fd(vz: -0

where the subscripts ¢ and d refer to the components
arising from the continuous and discrete spectrums,
respectively. The explicit representations (21) and
(30) can now be used, where the variables v, and v,
are replaced by the new variables s and ¢ Since
Eq. (31) must hold for all real values of v, and v,,
it must hold for all values of s and ¢ such that
~0<s<L G and — o £ i< o, Further reduction
of Eq. (31) is achieved by multiplication with respect
to sgn [(@° — %)} — {], followed by integration with
respect to ¢ over its complete domain. Using rela-~
tions (9) and (11) the resulting equation is obtained

501 =0 (31

(\'(s) + saf*(s)(f —"f’-f-;'f-)- du — Sﬁ

4 ZQm (u 392) B) + 8@ — )

([ *”(“)d +84e T 24 20 @

ON PLASMA HALF-SPACE
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Similarly, by multiplying Eq. (31) with respect to

t sgn [(@ — s — 1] and then integrating with

respect to ¢, one obtains

VN () + s°g(s)
( ! x&(u)

~qU —

s°8 T elw) 1:_
GRS s)<_nu—sd”’“

8§

(2 — OB,
+sz2m,(u; %)B’>=O.

U — §

33)

The constants ¢ and b employed above are defined
as follows:

z2w

H,(0, 0),

i

a

fj; Y) du + 2 D uA; =

b= [ 0 - o) du

+ 2 2 [ld; — w;d — 09B,] = ca.
The problem has been reduced to a set of coupled
singular integral equations, which is easily solved
employing known techniques.® Continuation of the
unknown functions ¢(u) and ¥(u) is extended into
the complex ‘u plane by the introduction of the

following functions:
_L1 1" e ()
w) = [ gy, ww =l My,

which are analytic outside of the cut, vanish at
infinity, and satisfy relations of the type

B + 10) — dlu — iO) = 2iq3(u),
¢(y)

-y — u

for - < u < Q. Using the similar relations de-

veloped in the previous section for F*(u), A'(u),
and A'(u), Egs. (32) and (33) can be written in form

®u + i0) + du — 0) =

Pu 4+ 90) = Plu — 10), (34)
R(u + 0) = R(u — 10), 35)
where
Pl) = Vg’ — 9 + M) + L,
R@) = W*@)[A' @) + =Bl — 0]

3 2
— _( ZBjugfl)% @*(u) + 2.2 ,

8 N. I Muskhelishvili, Singular Integral Equations (Stechert-
Hafner Service Agency, ,Inc New Yo%'rk 1!%%3) ¢ g
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with
v = v + 2 E
- ]
&*(u) = ) "“{f + 217"‘ Z”—-~—-——~Q; _?B

Since both P(u) and R(u) vanish at infinity, and
are analytic in the cut plane, the required solutions
of Eqgs. (34) and (35) are given by P(u) = R(u) = 0,
from which the following expressions are obtained:
Y*(u) = [—c’a/urLu)]
fANw) + mlB® — 997, (36)
d*(u) = [—bA'(w) urL(w)]. 37

It can be shown that both ¥(u) and ®(u) vanish
at infinity, and are analytic outside of the cut,
provided that the constants B; are chosen such that
there are no poles at the roots u; of L(u). This
requirement yields the following:

(u; — Qz)gBi = [:——ibA!(ui)/zu?L’(uf)]-

Everything has been completely determined. Em-
ploying relations of the type

26p(u) = d*(u + 10) — d*(u — 10)

= 2¢ Im ®*(u + 10)
the continuous spectrum portion of the z component
of the electric field can be placed in the form

3 2
B2 =% [ exp (ikxu Im [(sf ~ uNHu + 0)
W€y Jo

+ (‘si“—li?? B + m)] du.  (38)

The discrete spectrum portion can be expressed in
the compact form

E = ; lim [(u ~ U;)

u—u§

ﬁ?)—; ‘I’*(u))] , (39
‘where the functions ¥*(u) and ®*(u) are given by
Egs. (36) and (37). Similar results hold for the
other field components,

Alternative representations can be given for the
field components. This involves representing the
components of the discrete spectrum in terms of
a contour integral around the cut, through the use
of the caleulus of residues. In this way it can be
shown in particular that the discrete spectrum por-
tion of E, is given by

-((vf ~ @) — ¢
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ek,

Yw’eq

E = (u((f — W u — 10)

+ -(.(-ZTE—TF? ¥y — iO))

‘exp Pk (@

On combining this with the continuous spectrum
portion the following final expression is derived:

utlz *iic,x] du

a
E, = Ei-ci exp ik, f (u(ff — wHN*(u + 40)
w € 0

+ oy ¥+ z'O))

oS (% (@ - uz)*z) du,

p V@ + AP *f*(u)
L(u -+ 20) !

(40)

where

d*(u + 10) =

T¥*(u -+ 10)
_ b M) 4 i) — indlB(R — )
ur L{u + 10) ’
with L(u + 40) specified by Eq. (25) and the con-
stant b related to the magnetic field component at
the interface,

eb = —120H,(0, 0).

In the limiting case when the incident wave is
normal to the interface, expression (40) reduces to
the form

E{a = 0) ———f w¥*(y 4 70) ccs< )du

where
W*u + 0) = —@/um)[N' W) + trlwl/" W Fw)] .
The above expression can be placed in the form

E,(a=0)=2z—60[j; u\II*(u-l-zO)exp( )du
~(—f w¥*u — 10) exp( )du]

wH,,(O) f (

S

which agrees with Felderhof’s* results for normal
incidence.

e — wlw

dv) exp (tkz) dk,
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To derive physical insight into the nature of the
solution it would be useful to make the approximation
«T/mQ) = (T/mc") sin’ a K 1,

in which case the terms containing the factor g
[given by expression (24)] can be dropped. The
following is thus obtained:

&*(u + i0) ~ —(b/um)N'@) + W], @)
¥*(u - 40)
~ —(b/um)\' @) + &T/mym’fFw)]™,  (42)

Lw) ~ A @A ().

The effect of the above approximation is to decouple
the modes. The discrete modes are separated into
logitudinal waves given by the roots of A) = 0,
and transverse waves given by the roots of A’(u) = 0.

The physical nature of the solution given by the
sum of Iqgs. (38) and (39) can now be given. For
w > w, and sin @ < (1 — w?/w?)? there are no
discrete modes, and hence no attenuated waves.
The dominant contribution to the continuous spec-
trum portion is a transverse wave and arises from
the neighborhood of the point \f(u,) = 0. This
dominant contribution is thus expressed as follows:

P — ug)?
<]}

. ] } (Q
2 sin a( 60) H,(0) o)

. Q°

5
For the operating frequency still greater than the
plasma frequency, but such that the sine of the
angle of incidence is greater than (1 — w?/w’)?,
the above dominant contribution to the discrete
spectrum does not exist. However, this wave appears
as the evanescent transverse mode given by the
root of A*(u) = 0. This is the dominant contribution
for finite values of z.

As the operating frequency approaches the plasma
frequency from above, an important contribution
arises from the continuous spectrum. This addi-
tional contribution is the longitudinal wave given
by the root of A'(x,) = 0 and is given by

T -

- exp {ik,,':x + (—g; - 1>*z]}H,,(O).

When the operating frequency passes the plasma
frequency or more precisely when w’/wl < 1 +
(8xT/mc?) sin® «, this dominant contribution does
not appear in the continuous portion of the spectrum,
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but appears as the discrete evanescent wave given
by the root of A'(u) = 0.

REFLECTION COEFFICIENT

Since the charge at the surface is finite, the
tangential components E, and H, will be continuous
across the surface. The voltage reflection coefficient
can then be derived from the formula

(1 —R)/(1 +R) = 8/cos «,

where
S = (eo/ﬂo)%(Ez/Hy)z=0'

In computing the value of S, the surface impedance,
the representation of £, given by Eq. (40) is used.
For computational purposes the approximation given
by Eqs. (41) and (42) is employed. This results in
the following expression:
-1
”)

7;2 Sina e Py D) t . 3 KT
SN—T—j; [(Q —-u)*(k -I—‘I/Im'n—’,’
+ (Q—zi‘w '+ iruaf*)_l] du.

Both \f(x) and A\'(u) can be expressed in terms of
known functions as follows:

- 2
M) =1 — % v*Z'(v),
where the dimensionless quantity v is given by

u = 2T/mb.
Tables of the function Z(v), where

1 ® e
Zl) = ;Pﬁwmdi,
are given by Fried and Conte.” The quantity f*(u)
is approximated by the relation

@) ~ (/7 w,/w) (m/26T)} exp [— (m/2TW],

which is quite accurate except in the immediate
vicinity of # = Q. It can be shown that the integral

.2 gin 8 . T -t
i —_n_—q /; (@ — uz)*()\’ + imd K—n; f*(u)) du

(-3 frmes [0
(1-38) ) o)

"B. D. Fried and S. D. Conte, The Plasma Dispersion
Function (Academic Press Inc., New York, 1961).



640 VAUGHAN

where the argument of the square root quantity
is to be taken as = when that quantity becomes
negative.

An approximate evaluation of the remaining
integral

Psine ", i L g1

_—F—fo (@ — w0 + imf)] " du,  (43)
arising from the contribution of the longitudinal
waves is not as easily obtained. It can be shown
that when the operating frequency is not too close
to the plasma frequency, the above integral is

(1 8) o+ o 26 2

When the operating frequency is very close to the
plasma frequency, the dominant part of the integral
arises from the range of integration §(2kT/m)? <
u < Q, where § is the order of 3, in which case \*(«)
can be approximated by

Employing this approximation, expression (43)

becomes

w2 -1 2 2m
< — ;§> {z sin & 4 sin a[(;; — 1) 3T

. _% '
— sin® o .

Thus when the operating frequency is in the im-
mediate vicinity of the plasma frequency, the surface
impedance is given by

H. WESTON

w2\ 7! o ¥
S(w) ~ (1 — ~§> {i[sin2 a—1+ -§]
w w

2 2 -3
+ sin® a|:<g§ — 1) %{% — sin® ail }

At the plasma frequency this reduces to
S(w,) ~ —i[(Em/6xT)]/sin a.

The critical frequency occurs when o’/w? = 1 +
sin® a 3«T/(c*m) in which case S becomes infinite.

To obtain more precise information on the reflec-
tion coefficient, the integral (43) would have to be
evaluated numerically using the known values of
the function Z ().

CONCLUSION

Based upon the coupled Maxwell-Vlasov equa-
tions, the exact solutions of the field generated in
the semi-infinite plasma region by a plane wave
incident obliquely to the interface, have been ob-
tained. The component of electric intensity parallel
to the interface is preseribed by Eqs. (38) and (39)
or by Eq. (40), from which the reflection coefficient
is derived. The above analysis was based upon the
assumption that all the electrons arriving at the
interface were scattered specularly. In would be of
interest to extend the results to include a more
general boundary condition, such as one based upon
the assumption that a fraction p of the electrons
arriving at the surface is scattered specularly, while
the rest are scattered diffusely. Reuter and Sond-
heimer® employed this boundary condition in their
treatment of the skin effect of metals, and obtained
explicit results for the two cases of specular scattering
p = 1, and complete diffuse scattering p = 0.

8 G. E. Reuter and E. H. Sondheimer, Proc. Roy. Soc.
A195, 336 (1948).



