tials more positive than -0.4V vs SCE on ZnO under irra-
diation, while it was observed at the potentials more positive
than $+0.6 \text{V vs SCE}$ on SnO$_2$. Therefore, photoelectro-
chemical polymerization proceeds selectively on ZnO when the
potential of the photoetched substrate electrode is set
between -0.4 and $+0.6 \text{V vs SCE}$. On the other hand, in
the dark, no anodic current appeared up to $+1.5 \text{V vs SCE}$
on ZnO while it was observed at potentials more positive
than $+0.6 \text{V vs SCE}$. Therefore, electrochemical polymer-
ization proceeds selectively on SnO$_2$ when the potential of
the photoetched substrate electrode is set between $+0.6$ and
$+1.5 \text{V vs SCE}$. Thus, prepared polyyrrole patterns on
ZnO and on SnO$_2$ are shown in Figs. 5(a) and 5(b), respect-
ively.

In the latter two procedures of area-selective deposition,
ZnO is working as an inorganic photoresist material. ZnO
has a very fascinating peculiarities as a photoresist that it can be
removed in neutral aqueous solution by irradiation. This is
an important characteristic because application of func-
tional organic materials and biological elements into devices
in the future needs fabrication of them under mild condi-
tions.

In conclusion, area-selective deposition of polyyrrole
was successfully performed by three different procedures in
polyyrrole-ZnO system with electrochemical and photo-
electrochemical techniques. These methods are important as
tools for fabrication of organic devices (including conduct-
ing pattern generation) and functionalization of electrode
surfaces, which is essential for fabrication of chemical- and
biosensors.

Dual phase formation in multilayered Ni-Al by ion beam mixing

J. Eridon

Department of Nuclear Engineering, University of Michigan, Ann Arbor, Michigan 48109

G. Was

Department of Nuclear Engineering, University of Michigan, Ann Arbor, Michigan 48109

L. Rehn

Materials Science and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439

(Received 22 December 1986; accepted for publication 28 April 1987)

Ion beam mixing is used to homogenize multilayered thin films of nickel and aluminum, vapor
deposited onto pure nickel substrates. Doses of 500-keV Kr$^+$ at fluences of 2×10^{16} ions/cm2
produced a supersaturated solid solution of between 16 and 23 at. % aluminum in nickel at
room temperature. Subsequent thermal treatment at 425 $^\circ$C for 1 h resulted in the formation of
a dual phase structure of γ and γ' with grain sizes in the range 640 to 710 A. Although the dual
phase structure was obtained either by ion beam mixing followed by thermal annealing or by
thermal annealing alone, only the former process resulted in a surface film with a texture. The
films are stable against thermally induced grain growth at temperatures up to 700 $^\circ$C for 10 h.

Ion beam mixing has been used to induce phase trans-
formations in a wide variety of alloy systems. 1-4 Tsaur et al. 1
investigated ion-induced atomic mixing with Xe$^-$ as an alt-
ernative approach to conventional rapid quenching tech-
niques for producing thin-film metastable alloys. They
found that the formation of metastable phases such as super-
saturated solid solutions or amorphous alloys can be ob-
tained as a result of atomic mixing. Post-irradiation heat
treatment of the atomically mixed binary alloy usually re-
sults in a decomposition to the equilibrium structure.

In this work, we are interested in the ion beam induced
phase transformations of layers of Ni-$(16-23$ at. %)Al, va-
por deposited onto pure Ni substrates. The ultimate goal of this work is the delay of fatigue crack initiation in polycrystalline nickel samples that have undergone surface modification by ion beam mixing of a multilayered structure of Ni and Al. The presence of a surface layer of $\gamma + \gamma'$ on a Ni (γ) substrate is expected to significantly alter the fatigue crack initiation process. Potter, Ahmed, and Lamond found that such a structure could be created by the implantation of Al into Ni in the temperature range 300–600 °C in agreement with the equilibrium phase diagram. However, implantation at room temperature showed no evidence of the γ' phase in specimens implanted up to 25 at. % Al. It is our objective to determine if a γ/γ' surface layer can be produced with ion beam mixing, and if so, what degree of control this process affords.

Substrates of large grain ($> 100 \mu m$) polycrystalline Ni were mechanically and electrochemically polished to produce a surface finish with a roughness better than 500 Å. Upon each substrate, five layers (3 nickel sandwiching 2 aluminum) were deposited at room temperature by electron-gun evaporation to a total thickness of ~600 Å. The individual layer thicknesses were controlled to yield an overall composition between 16 and 23 at. % Al. Rutherford backscattering spectrometry (RBS) was conducted using

FIG. 1. Characterization by transmission electron microscopy, electron diffraction, and Rutherford backscattering spectrometry of (a) as-evaporated layers of composition Ni-16% Al, (b) layers mixed at room temperature with 500-keV Kr$^+$ to 2×10^{14} ions/cm2, (c) ion beam mixed structure heated at 425 °C for 1 h and (d) as-evaporated layers heated at 425 °C for 1 h.
the 2-MV tandem accelerator at Argonne National Laboratory. The spectra were analyzed to determine the depth versus concentration profile using the computer code BASF. After verification of the composition of the surface layer, samples were irradiated at room temperature with a 500-keV Kr beam to a dose of 2×10^{16} ions/cm2. RBS was again performed, followed by a thermal anneal on selected samples.

Evaporation of Ni and Al onto Ni substrates at room temperature resulted in very fine grains (~ 110 Å) of the deposited metals. The raw RBS spectrum, electron diffraction pattern, and TEM image from the as-deposited layers are shown in Fig. 1(a). Ion beam mixing with 500-keV Kr$^+$ to 2×10^{16} ions/cm2 resulted in substantial homogenization of the surface layer and grain growth to ~ 640 Å [Fig. 1(b)]. Electron diffraction reveals the presence of only the γ phase, although the surface layer composition is clearly within the two phase $\gamma + \gamma'$ region of the equilibrium phase diagram (Fig. 2). These results are in agreement with those of Potter, Ahmed, and Lamond,2 who showed that direct implantation of Al into Ni at room temperature resulted only in the γ phase.

However, upon subsequent heating at 425 °C for 1 h, the γ structure decomposed into a two phase $\gamma + \gamma'$ structure, as shown in Fig. 1(c). Note first that there is little change in the RBS spectrum, indicating that minimal thermal mixing has occurred. This is in agreement with measurements of grain size which show an increase of only ~ 10%, from 640 to 710 Å. However, the striking feature of the resulting structure is that it is both dual phase and textured. That is, the grains are partitioned into γ grains and γ' grains as opposed to a distribution of γ' precipitates in a γ matrix, and these γ' grains have grown with a preferred orientation. The texture is indicated in Fig. 1(c) by the arrows on the (110), (111), and (220) rings. This texture is probably dependent on the presence of the substrate, since Cu-Ag layers evaporated onto sapphire substrates showed no sign of texture after a similar sequence of ion beam and thermal treatments. While the actual volume fraction of γ' is a quantity of interest, it is difficult to evaluate due to the small grain size.

Layered samples heated without ion beam mixing, [Fig. 1(d)], showed a similar distribution of γ and γ' but with no texture and only minimal grain growth. The dual phase nature of the surface is indicated by the bright-field/dark-field pair in which the dark-field image was taken using a (100) diffraction spot. This dual phase structure is the same as that seen in the irradiated sample.

Grain growth occurs predominantly during the ion beam mixing step. An increase in grain size by a factor of six was observed after a dose of 1×10^{16} ions/cm2 on the multilayered sample. Thermal treatments applied either before or after mixing produced only minimal grain growth (a factor of 1.1 to 1.4) for temperatures up to 700 °C for 10 h. Hence, the fine grain structure is quite stable against thermally induced growth. Oxidation was a continual problem during annealing and often occurred preferentially in the ion beam mixed region of the samples.

Although ion beam mixing of Ni-Al layers followed by thermal treatment produces the intended $\gamma' + \gamma''$ layer, its character is substantially different from that achieved through either conventional processing or direct implantation of Al into Ni. Potter, Ahmed, and Lamond demonstrated that implantation of Al into Ni at 300–600 °C to a level between 10 and 23 at. % results in γ' in a γ solid solution in agreement with the equilibrium phase diagram.2 They also found that implantation at room temperature produced only a supersaturated solid solution—in agreement with our ion beam mixing experiments. Both sets of results support the known disordering reaction of the L_1_2 structure under low-temperature irradiation.2,9–11 However, while remaining disordered, substantial growth of the Ni-Al grains (up to the thickness of the deposited layers ~ 600 Å) occurred as also observed by Tsaur et al. in Au-Ni.4 The ordering which occurs during subsequent thermal annealing is a result of structure relaxation due to enhanced atomic migration. Although it is somewhat puzzling why a dual phase structure should form during thermal treatment, this structure poses a unique and as yet unanalyzed case for fatigue crack initiation studies.

The authors gratefully acknowledge Argonne National Laboratory for the use of the ion beam facilities. This work was supported under NSF grants DMR-8310032 and DMR-8603174.