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An analysis is performed to investigate free and forced oscillation of a gas bubble and cavitation in
viscoelastic liquids of a three-parameter Oldroyd model. The first-order perturbation method for
small amplitudes has been employed to obtain periodic solutions to the bubble dynamics equation.
Consideration is given to the influence of surface tension, vapor pressure, and thermodynamic
behavior of the gas inside the bubble. It is disclosed that transient behavior of the bubble in
viscoelastic liquids is governed by five dimensionless parameters. Conditions for stable bubbles are
obtained. Free oscillation consists of a decaying exponential component and a damped sinusoidal
oscillation associated with the natural frequency of the bubble-liquid system. The effects of the five
governing parameters on the natural frequency are determined. The radial motion of the bubble in
an oscillating pressure field includes a sinusoidal oscillation associated with the forcing frequency, a
decaying exponential component, and a damped sinusoidal oscillation associated with the natural
frequency. Criteria for the onset of incipient cavitation are determined when a bubble is suddenly
released into the liquid or is situated in an oscillating pressure field.

I. INTRODUCTION

When a bubble is released into a liquid at constant
pressure, its wall will undergo so-called free oscilla-
tion, i.e., radial pulsation of natural frequency. In a
purely viscous liquid, the pulsation is basically a
dampled sinusoidal oscillation with the amplitude de-
caying by viscous friction.! The frequency of pulsation
was first derived by Minnaert? for the simplest case in
which the effects of viscosity, surface tension, com-
pressibility and vapor pressure were all neglected. The
expression was subsequently modified by Richardson®
and Neppiras and NoltingK* to include the contribution of
surface tension, then by Hirose and Okuyama® and
Houghton® for viscosity and recently by Shima® for com-
pressibility. Shima” has also derived the natural fre-
quency for a gas bubble in Bingham liquids.

1t is generally considered that cavitation bubbles are
generated from small gas- and vapor-filled nuclei that
can exist at least for short periods of time, in quasi-
equilibrium with a liquid. When an oscillating pressure
field is turned on, such a gas-vapor nucleus initially at
rest in a liquid may be set into various types of mo-
tion® 8: it may pulsate linearly about its equilibrium
radius; it may oscillate in a nonlinear motion; or it may
expand to some maximum size and contract so rapidly
that its initial motion would resemble that of a collapsing
Rayleigh bubble. (A Rayleigh bubble cannot be in
equilibrium with the surrounding liquid and must im-
mediately start to collapse.) Linear oscillation is a
lower limit to the motion generated by an oscillating
pressure field. A bubble that oscillates nonlinearly
about its equilibrium radius over relatively long inter-
vals of time is called the stable bubble, whereas a
transient bubble would grow to some maximum size—a
phenomenon called “cavitation”—and then collapse
violently with its initial motion approximately that of a
Rayleigh bubble. An oscillating pressure field may gen-
erate a range of bubbles between the transient bubble
and the stable bubble—two limiting types. In Newtonian
liquids, a stable bubble will resonate, being transformed
into a transient cavity when the forcing frequency coin-
cides with the natural frequency. It is the transient
bubble which is of widest interest since its motion will
bring about drastic physical effects of acoustic
cavitation.
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The dynamic equation of a gas bubble in a viscoelastic
liquid of the three-parameter Oldroyd model has been
derived in Ref. 9. Bubble pulsation induced by a sudden
increase in the system pressure was studied by numeri-
cal integration using a digital computer. This paper in-
vestigates both free and forced oscillation of a gas bub-~
ble in viscoelastic liquids. The bubble dynamics equation
is linearized by means of the first-order perturbation
method for small amplitudes. The solutions to the lin~
earized equation are obtained which describe the re-
sponses of the autonomous (or free) and nonautonomous
{or forced) systems. Conditions for the onset of cavita-
tion are determined when a bubble is suddenly released
into the liquid or is situated in an oscillating pressure
field.

Il. ANALYSIS

Consider a bubble containing a mixture of gas and
vapor situated in an incompressible viscoelastic liquid,
at an initial state whenthe bubble is at rest in the liquid
at the equilibrium temperature 7, and the ambient
equilibrium pressure p,. The bubble then has an equi-
librium radius R, determined from

Peo T, =P, T20/R,, (1)

where p,, is the initial pressure of the gas, p, is the
equilibrium vapor pressure at 7, and o is the surface
tension.

A spherical coordinate system is chosen with its
origin at the center of the bubble. When the equilibrium
state is disrupted, the radial motion of the spherical
interface is governed by the nonlinear integrodifferential
equation®

pl (RR +%R2) :pI(R) _p'”(t) + Trr; I(OO) - Trrv I(R)

+3 7 (r,,, /7y, @)

where p, is the liquid density; R, R, and R are the
instantaneous bubble radius and its time derivatives,
respectively; p,(R) is the liquid pressure at the cavity
wall; p,, is the pressure at infinity; 7, , is the compo-
nent of the deviatric stress tensor in the radial direction
7.

Neglecting the radial normal stress due to the gas
phase viscosity, the balance of forces at the interface
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requires that
p,(R)=p,(R) +p,-20/R+1,, ,(R), (3)

in which p, is the gas pressure. When the gas undergoes
a reversible polytropic process inside the bubble, its
pressure can be described by

£4(R) = o(Bo/R”, @)
wherein 7 is the polytropic exponent.

When a bubble is set in motion by a pressure field,
both the pressure at the interface and at infinity will
vary with time. The pressure at infinity can then be
expressed as the equilibrium ambient pressure p, minus
a time~varying pressure field f(2):

(D=1, f1). 5)

A sign convention is used for convenience so that the
radius R initially increases for positive f(#). When a
bubble is released into the liquid at constant pressure,
i.e., f{)=0, free oscillation takes place. A bubble may
collapse by a sudden increase in the system pressure.®
For such a case, f(f) is a negative constant.

The rheological equation for a viscoelastic liquid by
the three-parameter linear Oldroyd model reads

1., + 0 (D7, /D) =27e,, +\,(De, /D1)], (6)

where D/Di denotes the substantial derivative, A, a
characteristic stress-relaxation time, 7, a shear
viscosity; A, a characteristic strain-relaxation time,
and e, the rate of strain tensor. The special case in
which A, =X, =0 corresponds to a Newtonian liquid.

Equations (2)—(6) are combined and rearranged in
dimensionless form as

R*R* +3(R* )

=ﬁ;(R*)~37 +P: -1 +F(t*)

__zﬁ_lzn* * E*_t*
R ), P\TH )

[RHEN R (£%) + % {[R (64 PR* (8%) + 2R* ()[R (2}
TR - [R¥(e)P

)
Ingw(eny 445 @

where F(t*)=£(t)/p,. Details of the derivation of the
bubble dynamics equation are available in Ref. 9.

If the amplitude of bubble pulsation in the liquid is
small, then it is convenient to write

R*=1 +e*(t*). (8)

Here, e(#*) is small compared with unity, i.e., the
amplitude of bubble pulsation R, ¢ is small compared
with the equilibrium radius R, of the bubble. On sub-
stitution of Eq. (8) into Eq. (7), we get the following
integrodifferential equation after neglecting terms of
order €* and higher:

erap oA (e (Y55 (e +retenlar =,
9)

where
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=[37(1 =p¥) +20*@y-1)]. (10)

2, represents the natural frequency of a bubble in an
inviscid liquid.** Equation (9) is differentiated with
respect to t*. ThHe resulting expression is then com-~
bined with Eq. (9) to eliminate the integral terms. It
yields the third-order linear differential equation

T+BE+BE+Be=F+F, 1)
where

B, = (1 +4n*a%)/2%,

B, =2 +4m* /2%, (12)

B3=Qi/x§.

A bubble-liquid system described by Eq. (11) is non-
autonomous and is called the forced system.

The system becomes autonomous or a free system, when
F =0 and consequently F=0.

The characteristic equation of the system is a cubic
equation:

$*+B,S*+BS+B,=0, (13)

where S is the differential operator or Laplace variable.
Because an actual system may be subjected to all types
and variations of input excitations F(¢*), it becomes
impractical to investigate the system response e(¢*) or
R*(¢) for every possible excitation. However, a good
measure of the transient behavior may be obtained di-
rectly from the roots of the characteristic equation

(13):
S=-ay, -a, +bji, —a,-byi, (14)

in which 7 is (= 1)'/2 and

2,=3B,-(A+B), a =3B, +34+B), b,=3"%A-B)/2,
A=(~3b+11/2)/8, B=(—3b-yt/2)1/8, Y=1iP+& 8,
a=3(38,-F)/3, b=£QF -98,8,+218,). (15)

It is known that the nature of the roots will be different
depending upon the value of Y being greater than, equal
to, or less than zero. If Y is greater than zero, then
@y, a,, and b; will be real numbers, i.e., one real root
and two conjugate complex roots. When Y is zero, b,
becomes zero and the three roots are reduced to

S==a, =05, —ag, (16)
in which

ay=3B, —2(=3b)'/*, ay=7%B, +(-3b)'/°. amn
In the case of Y <0, the three roots can be rewritten as

S=-a,, —a5, —a, 1s)

where ,
a, =3B, -2(-3a)*/? cos(39),
=38 ~2(-30)"/2cos(36 +3n),
a5 =138, ~2(~3a)* /% cos(56 +4n),

cosf==p/[2(-%a®)]* /2.

19)

A. Conditions for onset of incipient cavitation

According to linear control theory, whether a system
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Curve || 0" ] & cavitation is found from Egs. (15) and (19) to be
ool [0ooi[14
2afl——[ 10000114 4p, <. (20p)
22
520 B. Stable bubbles in free systems
§,.8 {ALSO——1) Pulsation or transient of the bubble-liquid system may
Y6 100 be started by giving the bubble wall an initial radial
é ' velocity such that R*(0)=1. Such an initial condition
‘_‘l 4 simulates the release of a bubble from a jet underneath
g2 a liquid where the impulse created by suddenly closing
E 10 the interface may be interpreted in terms of an initial
%58 radial velocity. In addition to the initial conditions
06 R*(0)=1 and R*(0)=1, (21)
o4 the third initial condition may be obtained from Eq. (7)
02 with the collaboration of Eq. (1) as
00 : ! t . :
Ol 10 G 10 100 R*(O):l —~20%, (22)
(@ Equations (21) and (22) can be rewritten for ¢ and its
derivatives as
[Curve [?*] ¥ ¥ e(0)=0, €(0)=1, ¥(0)=1-20*, (23)
——lo ol [ia
va [==-- [001[0001[10 For Y and b, both greater than zero, Eq. (11) with
i e F=F=0 is integrated subject to the initial conditions
22 ~ o —_ (23). The solution is
20 4 /7 -
28 I / / e(t*) = A, exp(- aot*)
G B =y bt P e .
3 tgp Rl [ /7( o +[(A2 + B2 /%/b, exp(= ayt*) sin(b,* + ¢,), (24)
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e —=e i R
04 - AN ¢, =tan"}(B,/A,).
100 —.
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005 0 = 10 150 resonance frequency of the bubble-liguid system. Pulsa-
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FIG. 1. by vs Af.

is stable or unstable is a basic property of the system
itself, which is described by its characteristic equation
(13), and not the particular excitation to the system. If
any constant g, is negative, then the system is basically
unstable. In other words, the bubble will grow radially
without bound and there will be cavitation. On the other
hand, if all g,’s are positive, the bubble will be stable
and no cavitation will be induced by free or forced
oscillation. Therefore, the criterion for cavitation at
small pressure amplitudes is

n=0,1, ..., 6).

An examination of Eq. (15) reveals that when both
Y and b, are positive, both constants a, and q, are also
positive. When both ¥ and b, are zero, Eqs. (15) and
(17) give

BB, <38, and 98,8, >2.258} +215, (20a)

as the conditions for negative a; (if 5>0) and 4, (if <0),
respectively. For Y <0, the condition for the onset of

any a, <0
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tion will cease altogether when b, =0 or equivalently
Y=0. Since both g, and a, are also positive, pulsation of
the bubble consists of a decaying exponential component
and a damped sinusoidal oscillation of natural frequency
b,. The amplitude of pulsation decays with a time con-
stant 1/a,.

When both Y and b, are zero, Eqs. (15) and (17) yield
2.25@ +278, > 96,6,> 276, 26)

as the conditions for both g, and a, to be positive. The
radial motion of the bubble then includes three decaying
exponential components exp(— a,*), exp(-a,r*), and

* exp(= a,f*). In the case of Y <0, conditions for a,, a,,
and a, to be all positive are obtained from Eqs. (15) and
(19) to be

48,> A,

Then the bubble motion consists of three decaying
exponential components exp(~ a,*), exp(—a;#*), and
exp(— a,t*).

@7)

C. Stable bubbles in forced systems

Consideration is given to the behavior of a single
bubble in an oscillating pressure field
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TABLE 1. Natural frequency of a gas bubble (p¥ =0} in viscous
and inviscid liquids (Af= M =0).

n* o* Y Viscous Inviscid &, for
Qv Qs 7\?‘—-00’ any )‘é’(

0.01 0.001 1.4 2.048 2.051 2.047

1.0 0.1 1.4 0.9165 2,200 2.196

1.0 0.001 1.4 0.454 2.051 2.048

0.01 0.001 1.0 1.641 1.733 1.733
f()=p,sinwt or F(*)=p*sinQ*, (28)

where p, is the amplitude of the stationary pressure
wave, w is the circular frequency, p¥=p,/p,, and Q
= wRo(Pl/Pe)l /2 .

Under the conditions of ¥>0 and b, >0, the solution
of Eq. (12) subject to the initial conditions

£(0) =¢(0) =¢(0) =0 (29)
is found to be
€(£*)/p% = Ay exp(~ apt*) + (A + BY)' 2(2/b,) exp(~ a,*)

Xsin(b, #* + ¢,) — (A2 + B2 /2 sin(Q¢* + ¢,),
(30)

wherein

A, =90 - a,)/[By(a2 +9%)], B,=&5+&},
A3 = [(1 - al)Ql - b1 Qz]/Bgy Bg = [b1Q1 + (1 - al)Qg]/B25

¢, =tan(By/4;), Q,=(a,~a)(d - b} +9?) +2a,07,
Q2=b1(2a0a1—3aﬁ+b"{—§22), A4:(Q3-9Q4)/35, (31)

B4=(9Q3 +Q4)/B5’ B; =Q:2;+Q§’ ¢3=tan-l(B4/A4),
Q== ay(d + b2 = Q%) +2a,Q%,
Q,=QQaya, +ai + b}~ 2°).

The solution (30) has a form that includes two com-~
ponents called the free oscillation associated with the
decaying time constants 1/a, and 1/a, and the natural
frequency b, and a component called the forced oscilla-
tion associated with the forcing frequency €. In a linear
system, the free oscillation components appear only as
a transient and are eventually damped out since there is
no coupling between the free and forced oscillations.
The bubble then becomes stable and oscillates about its
equilibrium radius. This is also true for both Y=0 and
Y <0 cases: Under the conditions of Eqs. (26) and (27),
their solutions include the three decaying exponential
components, exp(- a,t*), exp(- a,#*), and * exp(~ a,t*)
for the former case and exp(- a,t*), exp{- a;t*), and
exp(~— ast*) for the latter case which are associated with
the free system response and a sinusoidal oscillating
component sin(Q#* + ¢) which corresponds to the forced
system response.

1. RESULTS

The reciprocals of the constants a,’s are the time
constants of the bubble-liquid system, while the param-
eter b, defined in Eq. (15) is the natural frequency of
the bubble-liquid system. They are all functions of the
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five dimensionless parameters: n*, A%, and A% repre-
senting the rheological properties of the viscoelastic
liquid, surface tension o*, and polytropic exponent 7.
The polytropic exponent may take a value in two limiting
cases: If heat is not transferred across the interface of
a pulsating bubble Y=k, where k is the ratio of specific
heats of the gas. Then the contents in the bubble under-
go a reversible adiabatic process. In the other extreme
case, the gas undergoes a reversible isothermal pro-
cess. Heat is instantaneously transferred into or out of
the bubble. For such an isothermal motion, the value
of vis unity. In reality, heat is transferred at a finite
rate during the motion of a bubble. Therefore, ¥ takes
a value between these two extreme values.

The parameters n*, X%, A%, ¢*, and ¥ are varied over
a certain range in order to determine their effects on
the natural frequency b,. Some results are presented
graphically in Figs. 1 and 2.

Figure 1 is a plot of b, versus A% with X% as param-
eter for four combinations of n*, o*, and y. Some
curves for large values of A% are discontinuous in cer-
tain ranges of A% where the condition of ¥>0 is not met.
Only if ¥> 0 the characteristic equation (13) would have
two conjugate imaginary roots and one real root so that
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a bubble will oscillate with natural frequency as indi-
cated by Eq. (24). Table I presents the natural frequen-
cy of a gas bubble in viscous and inviscid liquids for
which both M* and X% are zero. It is seen in Fig. 1 that
in the low A% region, the natural frequency b, decreases
as the value asymptotically approach the limiting ones
listed in the last column in Table I. These limiting
values of § should be £, (within the accuracy of com-
putations) since A} == as well as n* =0 correspond to an
inviscid liquid. b, increases with A% in the intermediate
A% region, some curves moderately while others quite
drastically following an S-shape change. The effect of
the shear viscosity 7* on the natural frequency can be
visualized by comparing the families of curves 1 and

3. When both A% and A% are small, an increase in 7* re-
sults in a substantial decrease in b,. For large values
of X% and/or 7%, b, decreases slightly with an increase
in 77*. By comparing curves 2 and 3, it is found that b,
is increased by increasing surface tension o*. A com-
parison exponent ¥ results in an increase in b,. The ef
fect of v on b, is more important in the low A% region,

Figure 1 is replotted for b, versus A% with % as
parameter in Fig. 2. Each curve shows a decrease in
b, as Mt is increased. The effect of A% on b, is most
significant when both A% and n* are small.

It is interesting to compare the present results with
those for viscous and inviscid liquids. In the case of

viscous liquids, Eq. (11) is reduced to
EHAN*E + Q% =F. (32)

The solution of Eq. (24) with F=0 subject to the initial
conditions €(0) =0 and ¢(0) =1 is obtained as

€(t*) =exp(~ 217*#*) sin(Q,*)/Q,, (33)
where
Q,={37[1 =px +2(1 =3V 0*] = 4(*)?}* /2. (34)

It is evident that the pulsation of a cavity is basically a
damped sinusoidal oscillation of natural frequency £,
with its amplitude decaying by viscous friction with a
time constant of 1/27*. The solution of Eq. (32) subject
to the initial conditions €(0) =€(0) =0 is

€(t%) = p*{(@/2, )[BT + (@7 ~ Q2 + (47*Q, 2]/ exp(= 2*1%)

Xsin(@,1* + ¢,) - [(22 - Q2P + Un*Q)] /2

x sin(Qe* + ¢,)}/ [@n*Q) +(Q2 - Q2 )], (35)
where
¢,=tan[4n*Q, /(8n*? + Q2 - Q2)],
(36)

6, =tant 470, /(% - 2)].

The response of cavity in a periodic pressure field con-
sists of two component, damped and pure sinusoidal
oscillations both with phase shifts. For inviscid liquids,
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the above equations can be further reduced to

e(*) =(1/Q,) sinQ t* (37)
and
e(r*) =p*[(2/Q,) sinQt*]/(Q2 - 22), Q=Q,
(38a)
€(#*) =p*(sinQ t* - Q t* cosQ 1*)/20,, Q=Q,
(38b)

respectively. When the forcing frequency coincides with
the natural frequency 2, the cavity will oscillate with
an amplitude that increases linearly with time and be-
comes unstable.

IV. CONCLUDING REMARKS

The application of the first-order perturbation method
on the bubble dynamics equation yields a remarkably
simple and convenient method of determining whether a
bubble will be stable or transient in nature. The solu-
tions for the motions of the stable bubble in both free
and forced systems are obtained. It is disclosed that the
solutions for viscoelastic liquids have an additional term
representing a decaying exponential component com-
pared with that for pure viscous liquids. In this connec-
tion, Tanasawa and Yang® have pointed out that due to
the presence of the elasticity, the viscous damping ef-
fect on the collapse of a bubble is less in viscoelastic
liquids than in pure viscous liquids. For small pulsation
amplitudes, a more general solution [than Eq. (8)] can
be found in series form including the first, second, and
other higher-order components. It is anticipated that
the second-order perturbation solution will demonstrate
the possible existence of integral overtones Zbl, 3,,1, -,
of the fundamental. However, that bubble pulsations
exhibit a relatively strong and pure tone® probably
suggests that the overtones are damped out very rapidly
and are of lower intensity than the fundamental.

References 1 [in which p, was treated as p,(«)] and 8
as well as Eq. (35) show that in inviscid liquids a bubble
will resonate and there will be cavitation when the
forcing frequency coincides with the natural frequency
or its harmonics or subharmonics. This applies to the
bubble-viscoelastic liquid system as well.
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