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The deformation of a free surface caused by the roll up of a vortex sheet below the surface is
studied. The large amplitude motion depends on both the strength and depth of the vortex
sheet. A distinction is made between three different scenarios of the free-surface motion: a
breaking wave, entrainment of air, and the generation of relatively short surface waves.

The free-surface signature of an unsteady, submerged,
vortical flow is familiar to any observer of a river or a ship’s
wake. Nevertheless, little information is available about the
detailed interaction of vortical flow and a free surface. The
reason, at least partly, is that other phenomena, such as
waves and bores, are more dramatic and potentially more
damaging to any object on the surface. However, recent ad-
vances in remote sensing techniques have led to an interest in
the wake region of ships, The most visible surface mark left
by moving objects is usually the wave pattern commonly
referred to as a Kelvin wave, but observations by remote
sensing techniques have also shown a narrower mark (or
scar) that persists several hours after the ship is gone. The
narrow angle rules out Kelvin wakes, and although it is not
completely clear whether subsurface motion or an alteration
in the composition of the surface water leaves the detectable
mark, the cause is likely to be the fluid motion in the wake.
The wake consists of rotational, turbulent, high Reynolds
number flow, and coherent motion could last a long time.

Sarpkaya and Henderson' recently conducted experi-
mental studies of the surface deformation resulting from the

- vortex system behind a lifting surface (with a negative angle
of attack, so the trailing vortex pair moves upward) and
Madnia and Bernal? are currently investigating the genera-
tion of surface waves as a result of a shear flow by consider-
ing a jet below a free surface. The experimental observations
suggest that many competing and interacting processes are
responsible for the observed patterns. Not only are surface
waves generated by the vortical flow, but the waves also ra-
diate energy away from the disturbance region and thereby
affect the flow itself. Analytical investigations are, of course,
limited to rather simple situations. Linearized solutions exist
for a flow over a fixed vortex® and for a vortex moving freely
under the free surface.* For the full nonlinear solutions,
however, it is necessary to turn to numerical techniques.
Considerable progress has been made in numerical simula-
tions of the nonlinear evolution of large amplitude surface
waves during the last decade. The most successful calcula-
tions generally use the boundary integral technique pioneer-
ed by Longuet-Higgins and Cokelet.” These methods now
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permit relatively routine simulations of two-dimensional
large amplitude surface waves.*’ However, studies of the
interaction of vortical flows with the free surface are just
beginning. The motion of a pair of point vortices toward a
free surface has recently been simulated numerically by
Telste,® using a generalized vortex method. A strong vortex
pair penetrates the surface, but weak vortices separate much
as if the free surface were a rigid wall. Similar calculations
have been done by this author and also by Baker, Meiron,
and Orszag.®

Here we study the generation of surface disturbances by
a submerged shear layer. The flow is assumed to be inviscid,
incompressible, and two dimensional. To simplify the prob-
lem even more, and make the numerical setup easier, we
assume periodic boundary conditions. We use a generalized.
vortex method developed by Baker, Meiron, and Orszag,'°
which is applicable to arbitrary stratification and employs an
efficient iterative solution procedure. Both the free surface
and the shear layer are modeled as vortex sheets. On the free
surface, circulation is generated as prescribed by Bjerkness’
theorem, but the circulation of any segment of the regular
vortex sheet modeling the shear layer remains constant. The
velocity of the free surface and the submerged vortical flow is
found by integrating over both sheets. To prevent the regular
vortex sheet from forming a singularity and to reduce the
growth of short-wave instability, we use vortex blobs to rep-
resent the sheet. Krasny!! has shown that vortex blob meth-
ods can produce smooth, well-behaved solutions for any
finite blob size (&), in contrast to simulations that do not
employ any regularization. The evolution in the vortex cen-
ter will depend on 8, but the effect on the large-scale struc-
ture is minimal. For further discussions of the vortex blob
regularization the reader is referred to Krasny."' All our
calculations have been thoroughly checked for accuracy and
the effect of the blob size. These checks will be reported else-
where.

The setup for our simulations is an initially flat free sur-
face, and a vortex sheet perturbed slightly by a sine wave of
small amplitude (equal to 0.03 in the calculations presented
here) at a depth d below the free surface (see Fig. 1). The
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FIG. 1. The initial conditions. The free surface is flat, but the vortex sheet is
given a slight perturbation. The flow regimes are specified by the relative
depth of the vortex sheet, d /1, and R = g/3/T2.

flow of the fluid above the vortex sheet is from right to left,
and from left to right below the vortex sheet. The average
velocity, and the velocity of the vortex sheet, is therefore
Zero.

The governing nondimensional groups for this problem
can be taken as the relative depth of the vortex sheet d // and
a parameter related to the vortex sheet strength, R = g/ /T2,
where g is the gravity acceleration, / is the wavelength of the
basic perturbation, and I' is the circulation of one period of
the vortex sheet. We have selected the characteristic velocity
of the vortex sheet evolution as a velocity scale and the
length of the vortex sheet perturbation as a length scale. A
time scale is then given by /%/T". The parameter R can be
related to a Froude number.

The evolution of the free surface depends on both the
depth of the vortex sheet and its strength. In Fig. 2 the evolu-
tion is shown for R = 4 and d // = 0.3. As the vortex sheet
rolls up, a depression appears on the free surface, roughly
above the vortex, and moves slightly downstream as the am-
plitude increases. At the same time the wave becomes steeper
and eventually forms a sharp corner suggesting a breaking
wave. Breaking waves of this type, where the breaking takes
place below the crest of the wave, are sometimes referred to
as “collapsing breakers” in the literature.!? The calculation

—

\@\ FIG. 2. The evolution of a vortex sheet below a
free surface. Here d /! = 0.3 and R = 4. The non-
dimensional times are 0.75, 1.0, 1.25, 1.5. This

N~ flow regime is characterized by the breaking of

@\ the wave.

—
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FIG. 3. Same setup as in Fig. 2,butd // = 0.2 and
R = 0.5, The times are 0.75, 1.0, 1.25, 1.45. We
refer to this as entraining flow.

is terminated when the curvature of the wave crest becomes
large compared to the resolution and the iterative solution
technique fails. The possibility that the calculation could be
continued by slightly smoothing the free surface has not
been investigated. However, when the breaking is not too
severe, a slight modification of the free surface at the break-
ing point might have a negligible influence on the rest of the
solution and thus lead to acceptable (or useful) results. (The
somewhat “jagged” appearance of the vortex sheet just out-
side the vortex center is caused by the fact that we have
connected the points by straight lines. It does not indicate
irregular motion as typically results from insufficient resolu-
tion.) For stronger and shallower vortex sheets the large
amplitude motion of the free surface is somewhat different,
in addition to developing faster relative to the time scale of
the vortical motion. Figure 3 shows the motion for R = 0.5
and d /1 =0.2. The depression moves downstream faster,
and instead of developing a steep upwind facing slope, the
depression increases rapidly in depth and the vortex entrains
the top fluid into the interior of the flow. We therefore refer
to this as entrainment flow. For weak and deep vortex sheets
neither entrainment nor wave breaking seems to take place.
Figure 4 shows the free surface for different timesand R = 8
and d /I = 0.4. Since the amplitude of the surface distur-
bance is much smaller in this case, the vertical dimension is
amplified ten times. The evolution of the vortex sheet

FIG. 4. The evolution of a free surface for d/
1 =0.4, R = 8. The nondimensional times shown
are 1.0, 1.25, 1.5, 1.75, 2.0, 2.25. The vertical di-
mension is amplified ten times. Here the evolution
is governed by the formation of waves shorter
than the period of the vortex sheet perturbation.

Letters 956



0.40

0.30

Surface Depth and Height

0.20 -

0.10 [
0.0 0.5 10 15 2.0 2.5

Time

FIG. 5. The maximum and minimum elevation of the free surface for the
runs in Figs. 2-4. The lines correspond to the following flows: a, entraining
flow, Fig. 3; b, breaking-wave flow, Fig. 2; and ¢, short-wave flow, Fig. 4.

(which is not shown) is essentially identical to the one in
Fig. 3. As in the previous calculations the vortical flow
causes a depression on the free surface, but here the maxi-
mum depression remains almost stationary. At large times
the single-wave characteristic of the previous runs is
changed by the formation of smaller waves of shorter ampli-
tude downstream. This might therefore be called the wave-
generating flow or the short-wave regime. To quantify the
evolution, the maximum and minimum elevation of the free
surface is plotted versus time for these three cases in Fig. 5.
As apparent from Figs. 2—4, the amplitude grows fastest for
the entrainment case, and slowest for the short-wave case.
When entrainment occurs, the depth of the trough increases
considerably more rapidly than the amplitude of the crest
and, while the crest amplitude levels off at later times, the
trough depth continues to grow. In the breaking-wave case
the growth of the crest and the trough are more similar,
although the trough depth increases somewhat faster. For
the short-wave case the growth is even more symmetric and,
instead of being monotone as in the previous case, it is slight-
Iy oscillatory. Another diagnostic is presented in Fig. 6,
where the maximum positive and negative slope of the inter-
face is shown. For the entrainment flow both the slopes grow
without bound as both sides of the trench become vertical;
for the breaking-wave case the slope of the upstream facing
side increases rapidly, but the slope of the other side levels
off. For the short-wave regime both slopes increase only very
gradually.

The examples shown here have been selected to empha-
size the difference between the various scenarios. A denser
sampling of the parameter space shows that although there
are ranges of the parameter values where the evolution is
essentially similar to those shown here, there is also consid-
erably large overlap between those regions, and the transi-
tion between them is gradual. These transition zones and
further diagnostics for entraining, breaking-wave, and
short-wave flows, as well as details about the numerics, are
forthcoming.
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FIG. 6. The maximum and minimum slope of the free surface for the runs in
Figs. 2-4. The letters identifying each curve are as in Fig. 5.

The results presented here are our initial attempt to un-
derstand the relation between unsteady vortical flow and its
surface signature, and certainly fall short of fully explaining
the surface signature of a ship’s wake, which is the motiva-
tion for this study. One of the fundamental questions for this
problem is how the length and time scales of the free-surface
flow are related to the scales of the submerged flow. Al-
though intuition and this study suggest that the length scale
of the surface motion is representative of the scales of the
vortex motion, our two-dimensional calculations of a single
simple flow are not sufficient to establish the general rela-
tionship.
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