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Instability of plane Couette flow of three superposed layers of fluids of different viscosity between
two horizontal planes is investigated. It is found that there are two modes of disturbance dominated,
respectively, by the two interfaces. The flow is found to be unstable in the zero-order approximation
of wavenumber « for certain values of the depth and viscosity ratios. This is owing to a sort of res-
onance which prevails when a free wave at the lower interface forces a free wave at the upper in-
terface. As is known from results previously obtained, the existence of a single surface of viscosity
discontinuity will cause instability. The presence of an additional surface of discontinuity may or may
not be stabilizing, depending upon the values of the depth and viscosity ratios at the additional

interface.

I. INTRODUCTION

The linear stability of plane Couette flow has been
the subject of several investigations in recent years.
All show that the flow with a single fluid is stable
no matter how large the Reynolds number. Yih'
considered the stability of two superposed fluids of
different viscosities in plane Couette and Poiseuille
flow and found that, for long waves, both plane
Couette flow and plane Poiseuille flow can be un-
stable, however small the Reynolds number. The
unstable modes are due to the stratification in the
viscosity.

In this investigation, the problem has been ex-
tended to plane Couette flow with three superposed
fluids of different viscosities and different densities.
The effects on the stability or instability owing to
the presence of an additional surface of viscosity
discontinuity is examined, as is the interaction
between the two wave trains, each associated with
one interface. It is found that two different modes of
waves exist. The two modes of waves correspond to
the two surfaces of discontinuity. Because of a sort
of resonance, the flow might become unstable in the
zero-order approximation for certain values of depth
and viscosity ratios. This relatively highly unstable
mode might be regarded, as Taylor® explained in his
problem of superposed of three layers of inviscid
fluids, as owing to a free wave at the lower interface
forcing a free wave at the upper interface when their
velocities in space coincide or nearly coincide.

II. THE PRIMARY FLOW
Consider the three superposed layers of fluid with
the depth d,, d;, and d; = d,, the viseosity u,, us,
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F1a. 1. Definition sketch for the three-layer steady flow.

and p;, and the density p,, ps, and p; for the upper,
the intermediate, and the lower fluid, respectively.
The upper boundary is moving with a constant
velocity U, while the lower boundary is stationary.
The coordinates are chosen as shown in Fig. 1.

We make all quantities nondimensional by using
a length scale d,, a velocity scale U,, a pressure
scale p, U3, and a time scale d,/U,. The primary flow
is assumed to be steady. In terms of the dimensionless
quantities, the equations govern the primary flow are

U d’U d’U.

dy21 _&;—2-2' dyZ"= = zmbA! (1)
for the upper, the intermediate, and the lower fluid,
respectively, in which the factor 2 on the right-hand
side of (1) is introduced for convenience. U,, U,,

and U; denote, respectively, the mean velocity in
those layers of fluid, and '

= 2m,A, = 24, and

— ﬁ_ _ M 123
A= K m=f m-B

K being the pressure gradient in the horizontal
direction which is a constant.
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Equations (1) are easily solved with the boundary
conditions being that the mean velocity is equal to
a specified velocity U, at the upper boundary and
zero at the lower boundary, and the mean velocity
as well as the shear stress being continuous at the
interfaces. The solutions are

U, = mAy + ay + b,
U, = Ay® + ay + b, ®
U3 = mbAy2 + azy + bl)

in which
ar = (n + ma + my)’

1 — mA + nln + 2m)A + mA],

4 = My0s, as = My,
b=1— mA — ay,
b, = my(1 + n)
n 4+ m, + me
1 — 2m, + nm, + nm, — n)A],
where n = dy/d, is the depth ratio. The velocity

gradients at interfaces are discontinuous for either of
two adjacent fluids if m, = 1 and m, 5 1. As pointed
out by Yih and again true here, this is the cause of
the instability.

III. THE DIFFERENTIAL SYSTEM
GOVERNING STABILITY

As is customary in hydrodynamic stability prob-
lems, an infinitesimal disturbance is applied to the
primary flow. The flow will be unstable if the disturb-
ance grows with time, and is stable if it attenuates
with time. Since it has been shown by Squire® for
homogeneous fluids, and later by Yih* for stratified
fluids that the stability or instability of three-
dimensional disturbance, can be determined from
that of the corresponding two-dimensional disturb-
ance, it is sufficient to consider only two-dimensional
disturbances.

The equation of continuity for the perturbation
flow is

oul , o

] 0’
or 9y

)
in which the subscript 4 is taken to be 1, 2, and 3 for
the upper, intermediate, and lower layer of fluid,
respectively. The u{ and v; are the perturbed velocity
components in the direction of increasing z and ¥,

2 H. B. Séjuire, Proc. Roy. Soc. (London) A142, 621 (1933).
4 .S, Yib, Phys. Fluids 6, 321 (1963).
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respectively. Equation (4) permits the use of a
stream function ¢;, in terms of which

’LL: = (‘05)1/7 D: = _(‘l’i)z; (5)

the subscripts z and y denoting partial differentiation.
The Navier-Stokes equations as well as the
boundary conditions governing the perturbation flow
admit a solution of the form

Wi, p) = loi(y), f:W)] exp iz — cr)],  (6)

in which p! is the pressure perturbation, « is the
dimensionless wavenumber, and ¢ = ¢, + ic; is the
complex phase velocity. We wish to determine the
sign of ¢;, since the flow is stable, unstable, or
neutrally stable according to whether ¢; is negative,
positive, or zero.

It is well known that the perturbation flow in
parallel flow is governed by the Orr-Sommerfeld
equation. If we write ¢ for ¢, x for ¢, and 6 for ¢,
equations governing the amplitude funetions will be

<puu _ 2a2<p” _|_ a4¢

=R (U, — o —a'9) —Ulel,
X' — 2% + a'x
_ w_’;:_R_ (U, — O — o) — Us'xl, (8
0" — 22°60" + o'6
_ lermy B (Us — (8" — a’6) — U'el, (9

Mm,

in which the primes denote the differentiation with
respect to ¥,

Yo = p2/P1, Vs = p3/m1

are the density ratios, and R is the Reynolds number
p18:Uo/ 1. To solve the three fourth-order differen-
tial equations (7), (8), and (9), there must be 12
boundary eonditions imposed to specify the mathe-
matical problem completely. The rigid boundaries
demand that

e(l) = 0,
8(—1 —n) =0,

o' (1) =0,
6(—1 —n) =0.

(10a, b, ¢, d)

Here the primes indicate differentiation with respect
to y. The continuity of ¢’ at the interfaces demands
that

#(0) = x(0),
x(—n) = 6(—n).
If 5 represents the deviation of interface from its

(10e, f)
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mean position, the kinematic condition at the inter-
face is

9 9
(af +U ax)" = (1)
in which U is the mean velocity at the interface.
Applying Eq. (11) to both upper and lower inter-
faces, we obtain

n = 2 exp liatz — o), 12
7y = x——(cT,n) exp [ia(z — en)], (13)
respectively, where
¢ =c—U,0) and ¢ =c¢— Uy(—n). (14)

The %, and 4, are the deviation of the upper and
lower interfaces from their mean positions. The
continuity of U + «’ should be imposed at the actual
positions of interface, i.e., at ¥y = 9, and y =
—n + 5,. Within the framework of the linear theory,
this condition is represented by the continuity of
w + (8U/3y)n at the mean position of interface,
that is, at y = 0 and y = —n. These give

¢O - x® =2 @-a), 09
and
x'(—n) — 6'(—n)
= X(CT,n) [2n(1 — my)A + a; — a].  (10h)

In regard to the continuity of shear stress at the
interfaces, we first note that the gradient of the
mean shear stress is the same for either of two adja-~
cent layers of fluid, so that we can apply the conti-
nuity of shear stress at the mean position of each of
the interfaces. The results are

¢"(0) + o’¢(0) = m[x"(0) + &’x(0)], (10i)

X'(=n) + &’x(—n) = m*[§"(—n) + o*6(—n)].
(109)

Finally, the continuity of the normal stress at the
interfaces demands that the difference of the
quantity

2ul, &'
pg din V4 nUs + d, 9y’

evaluated for the upper fluid from its valve for the
lower fluid at either interface should be equal to
T 8%y

d, 8z* '

(15)
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in which T is the surface tension. T, and T, will be
used to denote the surface tension at the upper and
lower interfaces, respectively. In (15), the first term
takes care of the contribution of hydrostatic pressure
to the actual pressure at the interface. The last two
terms in (15) are evaluated at the mean positions of
interface. Evaluate p’ for each fluid from the =
component of the Navier-Stokes equation governing
the perturbation flow. With the results so obtained
and with %, and 7. evaluated from Egs. (12) and
(13), we get
—iaR (¢ + aw) — (¢ — o’¢’)

+ 2d%" + iv.a R (%’ + a:x)

+ mx" —

x) — 2a°mx’

=iaR (F;* + o*8,) ‘ci , (10k)

for the upper interface, in which all variables are
evaluated at y = 0, and
—da Bv.(c"'x — 2ndx + a:x)

— max" — &x) + 2mae’x’

F v R €6 — 2mnA0 + as6)

ln__e nr o 290 . 2_"?_"3_1
+’fm(0 o0 Zambo

=ia Rl ( ’;2 -+ OZZSb) C%CT , (101)

for the lower interface, in which all variables are
evaluated at y = —n. In (10k and 1),

F—z_Pz—Plgf_il —z_Pa"‘P2g(dl+d2)
a 2 [ 2 U2 ]
P1 0 P1 0
- T
Sa B P1 d, g ’ and Sb - M dlUg !

and F, and F, are the modified Froude numbers.

Iv. THE SOLUTIONS OF THE
EIGENVALUE PROBLEMS

The method of regular perturbation of Yih® for
long waves (¢ < 1) will be adopted to solve this
eigenvalue problem. The funections ¢, x, 6, and ¢ can
be expanded in a power series in «:

E 0“.%: X = Z a‘xg,

¢ =
i=0 =0
« «©

g = Z 0(104, c = Z(Z'C,'.
=0 i=0

5 C.-8. Yih, Quart. Appl. Math. 12, 434 (1955).
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The quantity «R is assumed to be small compared
with 1. Thus, however large the Reynolds number R,
there exists a range of small.a for which the pertur-
bation technique is valid. Upon substituting these
expansions into (7), (8), and (9) as well as the
boundary conditions, and collecting terms, involving
o to the same power and setting them equal to zero,
we have the governing equations and the boundary
conditions for each order of approximation.

A. The Zero-Order Approximation
The equations corresponding to o’ are
0y = (16)

The boundary conditions (10a)-(10h) corresponding
to o’ remain the same except that the variables all
have subseripts zero, whereas (10i)—(101) correspond-
ing to a° become

©’(0) — m.xs'(0) = 0,
mixs'(—n) — 6'(—n) = 0,
24’ (0) — m.x{’(0) = 0,

mxs’'(—n) — 84/'(—n) = 0.

e’ =0, x' =0,

(17)

Equations (16) can be integrated at once subject
to the pertinent boundary conditions. The solutions
are

=14 By + C* + D¢,

Lo =
xo =1+ Bzy + Czy2 + Dzya, (18)
6, = E; + By + Csy2 + D3y3,
in which
Q, £ (@ + 4Q.0)""
D — b b a¥e
: 2Q, ’
where Q,, @, and @, are given in the Appendix;
1
B, = o n* + m, — my)
— (nz + 2% — 3m, — 42“) D,,
Ca = L - 2D21

a

B, = 2(1 + n) % — my(7 + 10n + 30 D,,

D, and C; = m,C..

The eigenvalue cj(= ¢, — b) is given by

= maD2’

o G — O .
€= 790, + 3D, + B,

(19)
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There are two roots for D, hence two possible
eigenvalues can be found to satisfy the governing
equations and the boundary conditions. These two
phase velocities give two possible modes of wave
motion. This is true since there are two interfaces
which admit two degrees of freedom in disturbances.
The two modes have equal importance in stability
considerations.

B. The First-Order Approximation

The equations obtained from the coefficients of o'
are

11rr

®1 =1R (U, — Co)ia(l)/ — 2m,Ag,},

R
= D2 (U, — exd’ — 24x),

X{III pon (20)
- My:ﬂ (U — ¢)8y — 2myA6,],

in which ¢, X0, 65, and ¢, are given by Eqgs. (18)
and (19).
The solutions for (20) are

o = AByy + ACyw® + ADwW’ + i R h(y), (21)
x = ABy + ACy" + ADy' + i R X ha(y), (22)
6, = AE, + AByy + ACw® + ADyy’
+iR LR y(y), (23)
where
_ m,AD, a Dy o
MW =910 v+ 60 ¥
+ a,Cl e 30(’)16)(1) _ maABl yﬁ
_ ceCi + mA
1z ¥
_ ADZ 7 azDZ 6
aCy — 3¢tDy — ABy, 5 ¢Co+ A
+ 60 ¥ 12 Y
N m;,AD;; 7 (13D3 6
hy) = 510 ¥ T 60
asCy — 3D3(cé + b — bl) — M ABs
+ 60 y
_ o — b)Cs + mAE;
12 v

The first three terms in each of Egs. (21), (22), and
(23) are the complementary solution while the last
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term is the particular solution. The term of zero
power in y for ¢, and x, are taken to be zero. The
argument is that the solution of the eigenvalue
problem is unique only up to a constant multiplier.
The constant terms of ¢ and x have been taken to
be 1. We can and will keep them at that value once
and for all. That this does not remove the possibility
of satisfying the boundary condition is obvious,
since ¢, is yet to be determined. The constants of
integration and the eigenvalue will be determined
by applying the boundary conditions (10) for terms
with the factor o.

As a result of many lengthy mathematical manipu-
lations, the boundary conditions can be solved for

’LR[(Hl — m,,n)Gg - (Gl + Gz)Hz]
mnG, + H.G, ’
(24)
in which Gy, G., G5, H,, and H, are given in the
Appendix. For details, the reader may consult

Ref. 6. The boundary condition (10g) for the first-
order approximation reads

AB, — AB, =

AB, — AB, = —(¢;/ctP)(a, — av). (25)
Separating ¢, into real and imaginary parts
e = (e, + ey
from Eq. (25) we obtain
). = 0,
ie): = %2—37?1&06"’-
or
(€)c = R K(n, ey Mo, oy Yor Foy Fiy 505 8), (26)
with
g = OlG + GH, — (Hy = m)Ga] o

(@, — al)("manGl — H.,G,)
V. NUMERICAL CALCULATIONS

The eigenvalues of the zeroth-order approximation
and first-order approximation expressed in terms of
constant parameters such as n, m,, m,, -+ , ete.,
are given, respectively, by Eqs. (19) and (26). To
examine the stability or instability of the flow, to
understand the influence on the stability or insta-
bility due to the variations of n, m,, and m,, and to
see the interaction between the waves associated
with each interface, numerical calculations are
carried out for the special casey, = 1, v, = 1, and
A = 0. Thus, the three layers have the same density,

¢ C.-H. Li, Ph.D. thesis, University of Michigan.
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Fic. 2. Sketch showing the interchange of the upper and
lower fluids: (a) before interchange; (b) after interchange.

and the mean flow is the plane Couette flow, since
there is no longitudinal pressure gradient.

As we have previously pointed out, there are two
modes of wave motion corresponding to the two
interfaces. Let us define the amplitude ratio § to be

¢ = amplitude of upper interface wave (28)
amplitude of lower interface wave

Then it ecan be shown that

¢ = ¢t —n*A + na, .
Cé(l - 'nt + nzcz - nng)

Since this Investigation is restricted to equal
depths in the upper and lower layers, if the fluids in
the upper and in the lower layers are interchanged
(the. fluid in the intermediate layer remains the
same), that is, if m, and m, are interchanged, we
know from a physical point of view that

c;(n, My, mb) + C(I)I(n7 My ma) = 1, (29)

in which ¢;(n, m,, m;) represents the phase velocity
for the first mode before the interchange, and
ct'(n, my,, m,) represents the phase velocity for the
second mode after the interchange. (Figure 2 shows
the configuration of the system before and after
interchange of the upper and the lower fluids.)
Henceforth, the superseripts I and II indicate the
quantities related to the first mode and the second
mode. The results of numerical computation using
the IBM 360 computer withstands the tests of (29).
This result confirms the accuracy of both the equa-
tions and the numerical results up to the zeroth-order
approximation. The calculations were only done for
the special case v, = 1 = 7,, corresponding to the
case of uniform density in all layers; gravity has no
effect on the stability aside from imparting a hydro-
static part to the pressure. With this idea in mind,
we know the disturbances before and after inter-
change of the upper fluid and the lower fluid should
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have the same amplification or damping rate in the
case of plane Couette flow. This leads to

(cl>£(n) My, mb) = (cl)?(n) M, ma))

or

(30)

m,
KI("’: Mg, mb) = ;n__g KH(nr My, ma)’
b

in which (c,): is the imaginary part of the eigenvalue
in the first-order approximation which is given by
Eq. (26), and K is given by Eq. (27). The factor
m./ms in front of K™ in (30) has arisen because the
definition of Reynolds number before and after
interchange is retained. The results of numerical
calculation also withstand the test (30). Again, this
confirms the accuracy of both the equations and
numerical results up to the first-order approxima-
tion. Keeping (26) in mind, one knows that the
stability of the flow can be concluded from the
computation results of K. Using the relation (30),
values of K for the second mode can be calculated
very quickly from that of the first mode in the
interchanged system, if care is taken that the
arguments m, and m; in K* and K" of Eq. (30) are
interchanged. Besides, if we set m, = 1, the system
reduces to the superposition of two layers of fluid;
Yih’s* results are reproduced analytically and numer-
ically. This provides another test of the accuracy of
the algebra and the computation in this investigation.

The results of the calculation will be presented
graphically and discussed in the following section.

VI. DISCUSSION OF THE GRAPHS

Since there are two modes of wave motion, two
eigenvalues of the phase velocities and hence two
amplitude ratios can be found to satisfy the govern-
ing equations and the boundary conditions for a
fixed value of n, m,, and m,. Numerical calculation
shows that the two possible amplitude ratios can be
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either positive or negative. This would indicate that
the two interfaces can oscillate either in phase or
180 deg out of phase whatever the mode of the
disturbance. From here on the term amplitude ratio
will be used to mean its absolute value. The com-
puted results demonstrate that of the two possible
amplitude ratios one is always greater than 1 and
the other always less than 1, no matter what the
assigned values of parameters n, m,, and m, are.
From the definition in (28), we know that the mode
with an absolute amplitude ratio greater than 1 is
primarily an upper-interface mode while the mode
with an amplitude ratio less than 1 is primarily a
lower-interface mode. In order to avoid confusion,
we will call the mode belonging to the upper interface
“the first mode” and denote it by the symbol I.
Similarly, the other mode will be called the second
mode and denoted by the symbol II.

The numerical calculations show that for certain
values of n, m,, and m;, the eigenvalues might become
complex even in the zeroth-order approximations.
Since the complex roots of a quadratic equation of
real coefficients always appear in a conjugate pair,
one of the two modes is unstable. For the special
cases m, = m, and m, = 2my,, the curves of the
limiting values of n for which the resonance will
occur for each assigned value of m, are shown in
Fig. 3. For these two cases, the flow becomes highly
unstable if the values of n and m, fall in the regions
below these two curves in Fig. 3. The phenomenon
of resonance in the flow fleld with two or more
discontinuity surfaces is not strange. Taylor® and
Goldstein” found the existence of resonance in the
inviseid flows of two superposed fluids separated by
a layer of intermediate density in which the velocity
varies continuously from that of the lower fluid to
that of the upper fluid. The unstable range of relative
velocities, they found, is a very narrow one in the
immediate neighborhood of the relative velocity
where the backward-moving free waves at the upper
surface of separation move at the same speed as the
forward-moving wave at the lower surface of separa-
tion. Thus, the instability might be regarded as
being due to a free wave at the lower surface forcing
a free wave at the upper surface when their velocities
in space coincide.

The results of the calculation also show another
interesting feature. We will discuss the results of
mode I and of mode IT individually. For mode I, the
growth rate of disturbance is increased with increas-
ing n if the fluid of intermediate layer is “less

7 8. Goldstein, Proec. Roy. Soc. (London) A132, 524 (1931).
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Fig. 4. (a) Variation of K with the viscosity ratio m, for various values of n for the upper-interface mode. m, = 0.4,
va = v3 = 1. (b) Variation of K with the viscosity ratio ms for various values of n for the upper-interface mode. m. = 2.5,

Yo = vs = L.

viscous” than that of the upper layer; but, the
growth rate is decreased or the damping rate: in-
creased with increasing n if the upper fluid becomes
“less viscous” than the intermediate one. This
feature is true for any value of m; as long as n is of
order of 1 or less than 1, but having some exceptions
when n > 1, for instance, m, > 10. A symmetrical
feature can be found in mode II. For mode II the
growth rate of the disturbance is increased with
increasing n if the fluid of the intermediate layer is
“less viscous” than that of the lower layer; but, the
growth rate is decreased or the damping rate is in-
creased with increasing n as soon as the lower fluid
becomes “less viscous” than the intermediate one.
This feature is true for any value of m, as long as n is
near or less than 1, but having some exceptions, for
instance m, > 20, when n > 1. The symmetry of the
situation confirms the aforementioned intuitive idea
that the two modes are, respectively, dominated by
the two interfaces. For the special case m, = 0.4 and
2.5, the variations of K of the first mode with m, for
various. values of the parameter n are illustrated in
Figs. 4(a) and (b). '

If m, or m, becomes unity, the flow field reduces to
the two-layer case treated by Yih.'! To see the
influence of an additional surface of discontinuity in
viscosity on the stability of the flow, the variations
in K of mode I with m, are plotted in Figs. 5(a), (b),
and (c¢) for the special values of n = 0.5, 4.0, and 1.0.
In those plots, m, is used as a parameter. Keeping
(26) in mind, we see from Figs. 5(a) and (b) that the
additional interface, the lower interface in this case,
in the flow field has no appreciable effect on stability
or instability if n > 1 when m, > 1 or n < 1 when
my < 1. When the three layers become equal in
depth, the additional discontinuity surface has an

appreciable effect on stability whether m, > 1 or
m, < 1. Figure 5(a) shows that, for n = 0.4, the flow
is unstable if m, < 1 with any values of m,, but is
stable if m, > 1 for m, > 1. The damping or ampli-
fication rate becomes constant when the magnitude
of m, is larger than 10. Figure 5(b) shows that, for
n = 4.0, the flow is stable or unstable accordingly
as m, > 1 or m, < 1. The smaller the values of m,,
the more unstable is the flow; the larger the values
of m,, the more stable the flow. When m, > 20,
apparently neither the damping nor amplification
rate will change with m,. For m, = 10, the damping
rate does not change with m,.

If we plot K of mode IT against m, with m, as the
parameter for n = 0.5, 4.0, and 1.0, we will have a
set, of curves similar to those shown in Figs. 5(a), (b),
and (¢). The tendency to variations of K with m,
and m, for mode II is exactly the same as that for
variations of K with m, and m, for mode I. This
symmetrical behavior is a consequence of the fact
that each mode of waves motion is dominated by
one surface of discontinuity.

VII. CONCLUSIONS

As a result of this investigation, the following
conclusions can be drawn for plane Couette flows of
three layers:

(1) Two modes of disturbance are found. They are
dominated, respectively, by the two interfaces.

(2) For the case of equal densities, the growth
rate or damping rate of disturbance for the lower-
interface mode can be calculated from that for the
upper-interface mode simply by the relation

KI(nr My, mb) = (ma/mb)KH(n7 my, ma)’
or vice versa. .
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(3) The flow was found to be highly unstable for
certain values of the depth ratio and the viscosity
ratios. This can be regarded as owing to a sort of
resonance which prevails when a free wave at the
lower interface forces a free wave at the upper inter-
face, as Taylor pointed out in his problem of inviscid
fluids.

(4) As the depth ratio n for the upper interfacial
mode is increased, the flow becomes more unstable
if m, < 1 and more stable or less unstable if m, > 1.
A symmetrie situation exists for the lower interfacial
mode.

(5) The existence of one surface of viscosity dis-
continuity will cause instability. The presence of an
additional surface of diseontinuity may or may not
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Fia. 5. (a) Variation of K as a function of the viscosity
ratio m; for various vliaues of m, for the upper-interface mode.
n = 0.5, v, = v, = 1. (b) Variation of K as a funetion of the
viscosity ratio ms for various values of m, for the upper-
interface mode. n = 4, v, = v = 1. (¢) Variation of K as
a funection of the viscosity ratio ms for various values of m,
for the upper-interface mode. n =1, vy, = y; = 1

be stabilizing, depending on the values of the depth
ratio and the viscosity ratio at the additional inter-
face. The detailed results are given in Sec. VL.
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APPENDIX

.[m,,(3n + H[2n(l — m)A + a: — a,] — 2nnd — az)(n2 4+ n 4+ 5m, + 3nm, + 2:’:”)] ,

Q. = <m¢+n2+2n—3mb—4:?b)
1 4
Qb=;n—a(ma+n2+2n—3mb— ;n")

mA — a))(m. — my, — n° — 2mun) + 2mn(l — m)A + my(as — a.)]
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2
:ta - %)(nA — @) —a, + al]

+ 2<n2 +n + 5m, + 3nm, + 2"“)[(1 + 2n +

n

Z” @n + H@2nm, + 0’ + m, — m)2n(l — M)A + a; — as],

nm,
Q. = ’n;z? {me — my —n® — 2nmy)[ma(a; — a)) — @A — a)2mam + 0° — m, — my)]
— my2n(l — m)A + a; — a,]2am, + 0° + m, — my)},
Gl — maXO(—n)[2n(1 - mb)A + a3 — a2] 662 — n(3n + 4) _ mb(Gn + 7) . n2(2 + n)Qz,

(cs + naz)’(a; — ay)

G, - —m (1 +nQ, + Xo(—n)[Qn(l - mb)A + a; — a,] c,2)

(C(,) + naz)z(az — ay) ’

G = @n® + n°Q, + 3m, + enmb)[—h(l) +4 (5—}— — (ya — D(elBs + al))]

= {mQs — mifyshi(—1 — n) + v:h{'(—n) — vhi'(—n)] — 3m.Q}
+ [@r + 2) + my(5 + 6n) + 7°Q,(1 + n)][3h(1) — R{(1)],
H = —n® — 2n0° + 4m, + 3nm,,
H = Io* ~ m + 3n)][—h1(1) 3 (c—;— — (e = D(EiB: + aoﬂ
— {vaho(—n) ——-‘ybmb[h3(—n) —hs(—1—n)]+yymhi(—1—n)— mb‘thé’(_n)+mb7ahél(_n) —3m.Q}
+ (0° +n° — 3m, — 3nm,)[3h(1) — AI(D)],

in which the primes on %,, k,, and %; denote differentiation with respect to y before evaluating at the right
position, and

0 = 2 (2 — 6 — (=) — A + aix=m)] = Wk (=) + b (=)

Qz"‘

¢y + na,

1

Mea

2n(l — mp)A + as — a,],

Q= — [yohi(—n) — myy,hi(—n) — Yo@oho(—n)].



