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Invariant Imbedding and Case Eigenfunctions* 

S. PAHORt AND P. F. ZWEIFEL::: 
Department of Nuclear Engineering, The University of Michigan, Ann Arbor, Michigan 

(Received 20 June 1968) 

A new approach to the solution of transport problems, based on the ideas introduced into transport 
theory by Ambarzumian, Chandrasekhar, and Case, is discussed. To simplify the discussion, the restriction 
to plane geometry and one-speed isotropic scattering is made. However, the method can be applied 
in any geometry with any scattering model, so long as a complete set of infinite-medium eigenfunctions is 
known. First, the solution for the surface distributions is sought. (In a number of applications this is all 
that is required.) By using the infinite-medium eigenfunctions, a system of singular integral equations 
together with the uniqueness conditions is derived for the surface distributions in a simple and straight­
forward way. This system is the basis of the theory. It can be reduced to a system of Fredholm integral 
equations or to a system of nonlinear integral equations, suitable for numerical computations. Once the 
surface distributions are known, the complete solution can be found by quadrature by using the full­
range completeness and orthogonality properties of the infinite-medium eigenfunctions. The method is 
compared with the standard methods of invariant imbedding, singular eigenfunctions, and a new 
procedure recently developed by Case. 

I. INTRODUCTION 

In the past 50 years or so, a number of methods 
have been devised for solving the neutron (or radia­
tion) transport equations. Excluding strictly approxi­
mation procedures such as spherical-harmonics 
expansions, discrete-ordinate methods, etc.,1-3 the 
most important schemes are the Wiener-Hopfmethod, 
which is described in detail in Ref. 2, the invariant­
imbedding technique, first introduced to transport 
theory by Ambarzumian4 and developed extensively 
by Chandrasekhar1 and others,5 and the Case eigen­
function-expansion method.3.6 

Historically, the first exact method was the Wiener­
Hopf method. Because it was basically simpler, the 
invariant-imbedding method became more popular 
after its introduction. Eventually, the eigenfunction­
expansion approach became more widely used than 
either of those methods for a number of reasons 
which are discussed below. (The Wiener-Hopf 
method is in fact identical with Case's method in the 
sense that any problem which can be solved by one 
method can be solved also by the other. Because 
Case's method is simpler and more familiar, we will 
not discuss the Wiener-Hopf method further.) 
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We first note that the traditional derivations of the 
equations of invariant imbedding are based upon 
intuitive physical arguments which, by virtue of the 
known existence of unique solutions of the transport 
equations,7 are, in fact, spurious. However, this 
approach has some real advantages for numerical 
computation. On the other hand, it does not give 
complete knowledge of the neutron distribution in a 
given medium, but only the reflected and transmitted 
intensities. (Admittedly, in a number of applications 
these are all that are required.) 

A really more serious disadvantage of the invariant­
imbedding equations is that they are, in general, not 
uniquely soluble. To guarantee a unique solution, 
additional conditions must be imposed.1 These 
conditions cannot be obtained from the original 
invariant-imbedding arguments, and so must be 
introduced in a somewhat arbitrary manner. 

The Case method,6 on the other hand, has the 
virtue of simplicity and familiarity, since it is based on 
an eigenfunction-expansion technique which is already 
well known to physicists from applications in "classi­
cal" boundary-value problems. Furthermore, no 
intuitive arguments and no extraneous conditions are 
necessary in order to derive the equations and to 
guarantee unique solutions. However, by straight­
forward application of this method, more information 
is frequently obtained than is really required (as, for 
example, the neutron distribution everywhere rather 
than at a surface) and reducing the results to numerics 
is highly nontrivia1.8 

The major purpose of the present paper is to 
rederive the nonlinear integral equations of invariant 

7 K. M. Case and P. F. Zweifel, J. Math. Phys. 4, 1367 (1963). 
8 M. R. Mendelson, thesis, The University of Michigan, 1964. 



582 S. PAHOR AND P. ZWEIFEL 

imbedding and the uniqueness conditions in a fashion 
which does not suffer from the deficiencies noted above. 
This is accomplished by using the Case infinite­
medium eigenfunctions. The nonlinear integral equa­
tions follow from a system of singular integral 
equations, which are themselves derived in a simple 
and straightforward way from Case's eigenfunctions. 
It is interesting to compare our derivation with those 
of Sobolev,9 Busbridge,IO and Mullikin,u 

We deal primarily with slab problems-in the 
limit, of course, half-space results are obtained. The 
familiar restriction to plane geometry and one-speed 
isotropic scattering is made. However, the method 
can be applied in any geometry with any scattering 
model (e.g., multivelocity anisotropic scattering) so 
long as a complete set of infinite-medium eigenfunc­
tions is known. 

The results we obtain are not new. However, we do 
feel that our approach yields a coherent, mathemati­
cally satisfying, and simple derivation of singular 
integral equations and equivalent invariant-imbedding 
nonlinear integral equations, together with the con­
ditions which guarantee unique solution. 

In Sec. II, we give a brief review of Case's eigenfunc­
tions and their properties. Then, in Sec. III, the system 
of singular integral equations and the nonlinear integral 
equations-together with the conditions guaranteeing 
uniqueness-are derived for the slab. In Sec. IV, some 
remarks are made for the half-space problems. 

II. THE CASE EIGENFUNCTIONS 

We begin with the Case eigenfunctions of the one­
speed one-dimensional transport equation with iso­
tropic scattering 

( ,u i. + 1) 1jl(x,,u) = £. Jl 1jl(x, ,u') d,u'. (1) ax 2 -1 

These eigenfunctions may be written in the form3•6 

1jlvCx,,u) = c/>(v, ,u)e-x/
v, (2a) 

with 

CV 1 
c/>(v,,u) = - p -- + A(v)15(v - ,u), 'liE (-1,1), 

2 v-,u 

A.( ) CVo 1 
'f ±vo,,u = -2 --, 

'110 T,u 

flc/>(v,,u)dfl=l, vE(-I,I), v=±vo· 

(2b) 

(2c) 

(2d) 

• v. V. Sobo1ev, A Treatise on Radiative Transfer (D. Van Nos­
trand Inc., Princeton, N.J., 1963). 

10 I. W. Busbridge, The Mathematics of Radiative Transfer 
(Cambridge University Press, London, 1960). 

11 T. W. Mullikin, Astrophys. J. 136,627 (1962); 139, 379, 1267 
(1964). 

Here the discrete eigenvalue '110 is a root of the dis­
persion function 

CZfl d,u A(z) = 1 - - -- . 
2 -1 Z - fl 

(3) 

The quantity A(V) which appears in Eq. (2b) is 
related to the boundary values of the dispersion 
function A(z) on the branch cut (-1, I). In fact, 

(4) 
where 

A±(v) = lim A(v ± i€), 'liE (-1,1). (5) 
0«""0 

We note that c, the mean number of neutrons 
emitted per collision, will always be assumed to be 
such that the slab is "subcritical." For C < 1, this 
is certainly true for all slab thickness. 

The eigenfunctions are orthogonal in the sense that 

ftc/>(V,fl)c/>(V',,u)d,u = 0, '11:;.6 v'. (6) 

In fact, the normalization integrals are also known: 

fl,uc/>2(±VO,,u) d,u = ±N(vo), (7a) 

ftc/>(v, ,u)c/>(v',,u) d,u = N(v)15(v - v'), v E (-1, 1), 

(7b) 
where 

(8a) 

(8b) 

(All of the above results, which are well known, are 
restated merely for convenience.) 

We now consider the solution of the so-called 
albedo problem for a slab. This is the problem of 
determining the distribution of neutrons everywhere 
in a source-free slab due to an incident beam. We seek 
the solution, denoted as 1jl(O,,uo -- x, ,u; T), to the 
homogeneous transport equation (1) subject to the 
boundary conditions 

1jl(0, ,uo -- 0, ,u; T) = 15(,uo - ,u), ,uo > 0, ,u > 0, 
1jl(O,,uo -- T, -,u; T) = 0, ,u > 0, (9) 

where T is the thickness of a slab. 
We expand the solution 1jl(O,,uo -- x,,u; T) in terms 

of the eigenfunctions. That is, 

1jl(O,,uo -- x, fl; T) 
= A(vo)c/>(vo, ,u)e-x/vo + A( -vo)c/>( -'110, ,u)ex

/vo 

+ flA(V)c/>(v, fl)e-X/v dv. (10) 

The Case procedure is to determine the expansion 
coefficient as discussed earlier. 
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However, by using the set of eigenfunctions in 
another way, we are led at once to a system of singular 
integral equations for the reflected and transmitted 
intensities. 

III. DERIVATION OF INVARIANT-IMBEDDING 
EQUATIONS 

A. Albedo Problem for a Slab 

Let us first consider the solution of the albedo 
problem defined in the previous section, for it will be 
shown that the solution of any problem can be ex­
pressed in terms of the albedo solution (Sec. III.B). 
We consider a slab whose left-hand surface is at 
x = 0, and whose right-hand surface is at x = r. 

We are primarily interested in the reflected and the 
transmitted distributions "P(O, flo - 0, -fl; r) and 
"P(O, flo - r, fl; r), fl > 0. From the reciprocity 
theorem for one-speed theory3.12 it follows that these 
distributions satisfy the relations 

fl"P(O, flo - 0, -fl; r) = flo"P(O, fl -0, -flo; T), (11) 

fl"P(O, flo - T, fl; T) = flo"P(O, fl - T, flo; T), 

flo > 0, fl > 0. (12) 

In view of these relations, it is convenient to 
introduce so-called Ambarzumian-Chandrasekhar's 
Sand T functions, defined asI 

and 

(1f2fl)T( T; flo, fl) + 8(flo - fl)e-T/f.lo 

= "P(O, flo - T, fl; r). (14) 

Both functions are symmetric: 

SeT; flo, fl) = SeT; fl, flo), (15) 

T(T; flo, fl) = T(T; fl, flo). (16) 

The reflected and transmitted distributions of an 
albedo problem "P(O, -fl; r) and "P(r, fl; r), fl > 0, 
for a given incident distribution "P(O, fl; r), fl > 0, 
can be then expressed as 

"P(O, -fl; T) = 1.. tS(T; fl', fl)"P(O,fl ' ; T) dfl', (17) 
2fl Jo 

"P(r, fl; T) = "P(O, fl; T)e-T/f.I 

1 II + - T(T; fl', fl)1p{O, fJ,'; T) dfl', 
2fl 0 

fl > 0. (18) 

We now derive a system of singular integral 

11 K. M. Case, Rev. Mod. Phys. 29, 651 (1957). 

equations for Sand T by using the intuitive invariant­
imbedding arguments. I 3.14 

Let us take any exponentially decreasing infinite­
medium eigenfunction 

4>(v, fl)e- x
/
v

, v E (0, 1), v = Vo' (19) 

The function 4>(v, fl)e-x/v describes a distribution of 
neutrons for the infinite medium. At x = 0, the 
angular density 4>(v, -fl), fl > 0, can be thought of as 
resulting from the reflection of the "incident" distri­
bution 4>(v, fl), fl > 0, on the slab of thickness T, and 
from the transmission of the "incident" distribution 
4>(v, -fl)e-T/V

, fl > 0, at x = T, through the same 
slab. Therefore, in view of Eqs. (17) and (18), we have 

[1 - e-r!I/V+l/f.I>]4>(v, -fl) 

= 1.. (I S( r; fl', fl)4>(v, fl') dfl' 
2fl Jo 

e-T/vI I 

+ - T(r; fl', fl)4>(v, -fl') dfl', 
2fl 0 

fl > 0, v E (0, 1), v = Vo' (20) 

Similarly, by taking any exponentially increasing 
eigenfunction 

4>(-lJ,fl)exfv
, v E(O, 1), v = vo, (21) 

and reasoning as before, we get 

(e-T/V 
- e-T/f.I)4>(v, fl) 

e-T/vI I 

= - SeT; fl', fl)4>( -v, fl') dfl' 
2fl 0 

+ 1.. tT(T; fl', fl)4>(v, fl') dfl', 
2fl Jo 

fl > 0, v E (0, 1), v = Vo' (22) 

For v E (0, 1), the above equations constitute a 
system of singular integral equations for Sand T, 
while for v = Vo we obtain two conditions which must 
be satisfied by Sand T. 

Because Eqs. (20) and (22) are the basis for our 
further discussion, we now rederive them rigorously, 
without appealing to the above intuitive invariant­
imbedding arguments. Actually, the rigorous deriva­
tion is even simpler than the intuitive one given above. 

To see this, let us define an albedo problem by the 
following boundary conditions: 

"P(O, fl; T) = 4>(v, fl), 

"P( T, -fl; T) = 4>(v, -fl)e-T/V
, 

fl>O, vE(O,I), v=vo, O~x~r. (23) 

13 s. Pahor and 1. Ku§eer, Astrophys. J. 143, 888 (1966). 
10 S. Pahor, Nucl. Sci. Eng. 29, 248 (1967). 
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It can be easily verified by inspection that the 
unique solution of this particular problem is simply 

(24) 

(because it is a solution of the transport equation and 
obeys the boundary conditions). 

By applying Eqs. (17) and (18) to this solution, we 
get Eqs. (20) and (21). This represents a rigorous 
derivation of Eqs. (20) and (21). The same system of 
singular integral equations, including anisotropic 
scattering, was already derived by Sobolev9 and 
Mullikin.ll However, our derivation of these equations 
is much simpler than that of Sobolev and Mullikin; 
furthermore, it is evident how the described technique 
could be applied to any geometry and scattering model, 
once the complete set of infinite medium eigenfunctions 
is known. (Even if the set is not complete, we obtain 
in this way some information on the surface distri­
bution. However, the resulting equations are not 
uniquely soluble.) 

It is interesting to compare the present approach 
with the approach recently developed by Case,!1i 
where the infinite-medium Green's function is used as 
a starting point. In both cases, first the integral equa­
tions for the surface distributions are derived. How­
ever, the corresponding equations are different, 
though equivalent, and the kernels of Eqs. (20) and 
(21), yielded by the present method, are somewhat 
simpler. 

The functions SeT; "'0' "') and T(T; "'0' "') can be 
expressed in terms of Ambarzumian-Chandrasekhar's 
X(",) and Y(",) functions of a single variable, with T 

as a parameter, which are more suitable for numerical 
computations than SeT; "'0' "') and T(T; "'0' ",). 

Let us integrate Eqs. (20) and (22) over '" from ° 
to I. Defining new X(",) and Y(",) functions as 

1 (1 d ' 
X(",) = 1 + 2 Jo S(T;",',,,,) ;, , (25) 

1 t d ' 
Y(",) = e-T//t + 2 Jo T(T;",',,,,) ;, , (26) 

and using the normalization condition (2d), we get a 
system of equations for X(",) and Y(",): 

1 = fX("")4>(v, ",') d",' + e-T/vf y(",')4>(v, -",') d",', 

(27) 

1 = f X(",')4>(v, -",') d",' + eT/V f y(",')4>(v, ",') d",', 

V E (0, 1), v = Vo' (28) 

15 K. M. Case, Proceedings of the Symposium on Transport Theory, 
April, 1967 (American Mathematical Society, Providence, R.I.) (to 
be published). . 

By introducing new functions Z(",) and W{ft) as 

Z(",) = X(",) + Y(",) , 

W("') = X("') - Y("') , 

(29) 

(30) 

we obtain for these functions two uncoupled equations 

1 + e-T
/

V = fZ("")4>(v, "") d",' 

+ e-T
/

V fZ("")4>(v, -"") d",', (31) 

1 - e-T/V = f W(",')4>(v, "") d",' 

- e-T
/

V lol W(",')4>(v, -"") d",', 

v E (0, 1), v = Vo' (32) 

Singular integral equations, such as Eq. (31) or Eq. 
(32), with the condition for v = Vo included, are equiv­
alent to certain Fredholm integral equations.16 These 
Fredholm integral equations were studied in detail by 
Leonard and MuIlikin17 and they derived conditions 
which guarantee the existence and uniqueness of the 
solution. In our case of isotropic scattering, these con­
ditions are satisfied for all subcritical c and certainly 
for c < 1. Therefore, also Eqs. (31) and (32), Eqs. 
(27) and (28), and Eqs. (20) and (22) are uniquely 
soluble. 

What remains to be done is to express S( T; "'0 , "') 
and T( T; "'0' "') in terms of X{ft) and Y("')' In deriving 
these relations, we obtain for X("') and Y("') a system 
of nonlinear integral equations which are convenient 
for numerical computations. 

We introduce two new functions R(T; "'0' "') and 
U(T; "'0' "') as 

(33) 

and we substitute them for SeT; "'0' "') and T(T; "'0' "') 
in Eqs. (20) and (22). By using the explicit form of 
eigenfunctions (2b) and (2c) for v E (0, 1) and v = vo, 
we get, after a partial-fraction analysis and taking into 

16 N. I. Muskelishvili, Singular Integral Equations (P. Noordhotf 
Ltd., Groningen, The Netherlands, 1953). 

17 A. Leonard and T. W. Mullikin, J. Math. Phys. 5, 399 (1964). 
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account Eqs. (25) and (26), the following four and Y(p) , 

equations: 

(35) 

e-'/YX(p) - Y(p) 

ClI i1v(-r;pl,p)d I 

= -.:I.(1I)V(T; '1', p) - - P I P 
2 0 1I-P 

C'I' -.fvi1 R(T; p', p) d ' --e p, 
2 0 'I' + p' 

(36) 

X(P) - e-'/voy(p) 

C1IOil R(T;p',p) d I =- P 
2 0 '1'0 - p' 

C'I'O]l V( T; p', p) d I -T/-O 
-- pe 

2 0 110 + p' ' 
(37) 

e-r/voX(P) _ Y(p) 

= _ C'I'o rl 
V(T;,.p,', p) dp,' 

2 Jo 11 - p' 

C'I'o -.Ivoi
l 

R(T;p',P)d ' --e p. 
2 0 11 + p' 

(38) 

Now, if we first multiply Eq. (27) by X(p) and 
subtract Eq. (28) multiplied by Y(p), then multiply 
Eq. (27) by Y(p) and subtract Eq. (28) multiplied by 
X(p), we get equations identical to Eqs. (35) to (38), 
except that 

R(T; Po,p)-.".X(p)X(po) - Y(p)Y(Po), (39) 

V(T; Po, p) -.". Y(p)X(po) - Y(po)X(p). (40) 

Thus, the above bilinear expressions are solutions 
of Eqs. (35)-(38). These solutions are also unique, 
because Eqs. (35)-(38) uniquely determine R( T; Po, p) 
and V(T; PO' p). 

By expressing SeT; Po, p) and T(T; Po, p) in Eqs. 
(25) and (26) in terms of X(p) and Y(p) [via Eqs. (39), 
(40), (33), and (34)], we get a system of nonlinear 
integral equations for X(p) and Y(p), 

X(P) = 1 + Cp]l X(p)X(p') - Y(p)Y(p') dp', (41) 
2 0 P + p' 

Y( ) = e-'IP, + CPi
i 

y(p)X(p') - X(p) Y(p') d ' 
p 2 I p, 

o p-p 
(42) 

with the conditions, which must be satisfied by X(p) 

1 C1IOiI X(p') d ' + e1lo -"voil Y(p') d I =- --- p -e -- p. 
2 0 110 - p' 2 0 '1'0 + p' 

(43) 

1 e1l0il X(P/) d ' + ClIo .,voi1 
Y(p') d I (44) =- -- p -e -- '1', 

2 0 110 + p' 2 0'1'0 - p' 

following from Eqs. (27) and (28) for 11 = 110 , 

Let us now also show that the system of nonlinear 
integral equations (41) and (42), together with the 
conditions (43) and (44), uniquely determine X{P) 
and Y(p). 

First, we note that X(P) and Y(p) can be analytically 
continued outside the interval (0, 1), by using Eqs. 
(41) and (42). It can be easily verified10 that if X(p) 
and Y(p) satisfy Eqs. (41) and (42), but not necessarily 
(43) and (44), they also satisfy the integral equations 

A(z)X(z) = 1 _ ez [1 X(p) dp 
2 Jo z - p 

ze -r/zi l 
Y(p) d - -e -- p, 

2 0 z + p 

A(z)Y(z) = e-·I'[1 _ cz II X(p) dP] 
2 Jo z + p 

(45) 

- ~ t Y(p) dp, z f/; (-1,1). (46) 
2 Jo z - P 

By applying the Plemelj formulaI6 to the above equa­
tions for z E (0, 1), we get the singular integral 
equations (27) and (28). Since these singular integral 
equations, together with the conditions (43) and (44), 
uniquely determine X(p) and Y(p), the same is true 
for the nonlinear integral equations (41) and (42) 
combined with the conditions (43) and (44). 

We can now easily prove that X{z) and Y(z) are 
analytic functions in the whole complex plane, 
except at z = 0, where they have an essential sin­
gularity. 

Since A(z) = A( -z), we see at once from Eqs. (45) 
and (46) that X(z) and Y(z) satisfy the relationlO 

Y(z) = e-r/zX( -z), (47) 

which is valid in the whole complex plane. In view of 
Eqs. (41), (42), (45), (46), and the conditions (43) and 
(44), the X(z) and Y(z) could be singular only for 
z = -vo and Z E ( -1, 0). However, since X(z) and 
Y(z) are analytic for z = Vo and z E (0, 1), z = 0 
excluded, the same is true also for z = -'1'0 and 
z E ( -1 , 0), because of Eq. (47), while it follows from 
Eqs. (41) and (42) that, for z = 0, the functions X(z) 
and Y(z) have an essential singularity. 
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B. Green's Function for a Slab 

We now show how other slab problems can be 
solved with the help of the solution for the albedo 
problem. Evidently, what we need is the solution of 
the Green's function problem, defined by the non­
homogeneous transport equation 

(,u :x + 1) G(xo,,uo -+ x,,u; T) 

= E. (1 G(xo, fto -+ x,,u'; T) dft' 
2 J-l 
+ b(,uo - ,u)b(xo - x), ° < Xo < T, (48) 

with boundary conditions 

G(xo,,uo -+ 0, ft; T) = 0, ft > 0, 

G(xo, fto -- T, -ft; T) = 0, ft > 0. (49) 

In order to determine the emergent distributions 
G(xo, fto -+ 0, -,u; T) and G(xo, fto -+ T, ft; T),,u > 0, 
we need the infinite-medium Green's function 
G(xo, ,uo -- x, ft; (0) which satisfies Eq. (48). This 
function can be solved in terms of Case's eigen­
functions3 •6 and is, therefore, considered as known. 

Let us seek the solution of our problem in the form 

G(xo,,uo -+ x,,u; T) 

= G(xo, fto -- x, ft; (0) + 1p(x, ft; T). (50) 

By substituting Eq. (50) into Eqs. (48) and (49), it 
follows that the unknown function 1p(x,,u; T) must 
satisfy the homogeneous transport equation (I) and 
the boundary conditions 

1p(0,,u; T) = -G(xo, fto -+ 0, ft; (0), ,u > 0, 

1p(T, -ft, T) = -G(xo, fto -+ T, -ft; (0), ft > 0. 

(51) 

In this way, the Green's function problem for a 
slab is reduced to determining the infinite-medium 
Green's function and to solving two albedo problems 
discussed in the previous section. 

C. Distribution Inside a Slab 

Once the surface distributions for a slab problem 
are known, the inside distribution can be determined 
by using the full-range completeness and orthogonality 
relations of Case's eigenfunctions. In view of the 
results of the previous section, it is sufficient to show 
how the albedo problem, defined by Eqs. (I) and (9), 
can be solved completely in terms of the function 
SeT; fto,,u) or T(T; fto, ft) and Case's eigenfunctions. 

We start with the eigenfunction expansion given 
by Eq. (10). By using the full-range orthogonality 

relations of Case's eigenfunctions (7a), (7b), and (6), 
we can determine the expansion coefficients with the 
help of the function S( T; fto, ft), for instance, by 
setting x = ° in Eq. (10). In this way we get 

N(Y)A(Y) = ,uor/>(Y, ,uo) -.! (IS(T; fto, ft)r/>(y, -,u) d,u, 
2 Jo 

Y E(-1, 1), Y = ±Yo. (52) 

On the other hand, by using the function T( T; ,uo, ft) 
and setting x = T in Eq. (10), we obtain 

N(Y)A(Y) = ftor/>(y, fto)eTlljY-ljl'o) 

+ ieT
/
Y f T( T; fto, ft)r/>(y, ft) d,u, 

y E (-1, 1), Y = ±Yo. (53) 

By using Eqs. (20) and (22), satisfied by S( T; fto, ft) 
and T(T; fto, ft), it can be easily verified that the 
rhs of Eqs. (52) and (53) are indeed identical. 

IV. HALF-SPACE PROBLEMS 

We now briefly discuss half-space problems and 
show how they can be solved exactly in closed form. 

The equations for the half-space problems can be 
formally obtained from the slab equations of the 
previous section by limiting T to infinity and writing 

lim SeT; fto,,u) = S(fto, ft), (54) 

lim X(,u) = HCp,), (55) 

lim T(T; fto' ft) = 0, (56) 

lim Y(ft) = 0. (57) 

(We assume, of course, that c < 1.) The resulting 
half-space equations are much simpler than the 
equations of the previous section. In fact, it will be 
shown that a closed-form solution for H(ft) can be 
obtained. Once H(,u) is known, all other half-space 
problems can be solved exactly in terms of H(ft) and 
Case's eigenfunctions. 

To show that, let us consider the explicit form of the 
singular integral equation for the function H(ft): 

CY il H(ft) A(Y)H(Y) = 1 - - P -- dft, 
2 Oy-,u 

together with the condition 

(58) 

° = 1 _ evo e H(,u) d,u, (59) 
2 Jo Yo - ft 

resulting from Eq. (27) of the previous section by 
letting T approach infinity. 

We assume that a solution of Eq. (58) exists and 
that it satisfies a Holder condition16 for ,u E (0, I) and 
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the condition (59). Guided by the form of the singular 
integral equation (58), we define an analytic function 
F(z) in the complex plane cut from -I to 1 as 

A(z)F(z) = 1 + cz (1 H(ft) dft. (60) 
2 Jo ft - Z 

Since A(z) is analytic in the whole cut plane, with 
A(z) :;6 0, except for z = ±vo, the same is true also 
for F(z) , in view of our assumption on HC/-t) for 
ft E (0,1).16 For z = ±vo, A(z) has simple zeros, so 
F(z) may have simple poles there. However, it follows 
from Eq. (59) that F(z) is analytic also for z = Vo. 

By applying the Plemelj formula16 to Eq. (60), and 
taking into account Eqs. (58) and (4), it follows that 

F+(x) = F-(x) = H(x), x E (0, 1), (61) 
and 

F+(x)A+(x) = F-(x)A-(x) , xE(-I,O). (62) 

We see from Eq. (61) that F(z) is the analytic 
continuation of H(ft), ft E (0, 1). Therefore, 

H(z) = F(z) (63) 

and H(z) is analytic in whole complex plane, cut from 
-1 to 0, except for z = -Vo, where it may have a 
simple pole. 

Let us now consider the product H(z)H( -z)A(z). 
This is an even function of z, analytic in the whole 
complex plane cut from -I to 1, since H(z) has at 
most a simple pole for z = -Vo. Moreover, this 
product is, in view of Eq. (60), also continuous across 
the cut (-1, 1), with H2(0)A(0) = I, as follows from 
Eqs. (58) and (3). Hence H(z)H( -z)A(z) is analytic 
in the whole complex plane and we have 

H(z)H( -z)A(z) = 1. (64) 

Two important results follow at once from the above 
relation. First, we see that H(z) has indeed a simple 
pole for z = -Vo. Second, by combining Eqs. (60) 
and (64), we get the nonlinear integral equation for the 
function H(z): 

H(Z)[1 + ~ (1 H(ft) dftJ = 1, z ¢ (-1,0). (65) 
2 Jo z + ft 

Now, we turn our attention to Eq. (62). We see that 
H(z) is also the solution of the homogeneous Hilbert 
problem. IS By requiring that the solution is analytic 
in the whole complex plane, cut from -1 to 0, with 
a simple pole at z = -vo, we can solve this problem 
uniquely in a closed form. We obtain18 

H(z) = 1 + z exp [---.:... (lIn A+(x) dx J. 
1 + z/'I'o 27Ti Jo A-(x)(z + x)x 

(66) 
18 s. Pahor, Nucl. Sci. Eng. 26, 192 (1966). 

In deriving the above solution we have also justified 
the assumptions, made in the beginning of this discus­
sion, that a solution of Eq. (58) exists and satisfies a 
HOlder condition for ft E (0, 1). 

It is obvious now, from the results of the previous 
section, how to express the emergent distribution for 
the albedo problem in terms of the function H(ft) and 
how to determine the emergent distribution for the 
half-space Green's function problem. 

However, there is the so-called Milne problem, 
characteristic for the half-space, which should be 
mentioned. It turns out that for the half-space the 
homogeneous transport equation (1) has solutions 
even for a zero incident distribution, if we drop the 
condition that solutions are bounded at infinity. We 
may say that in this case we have sources at infinity. 

The Milne problems [whose solution is defined as 
"P(x, ft; '1')] are conveniently defined by the homo­
geneous transport equation (1) and the boundary 
conditions 

"P(O, ft; '1') = 0, p > 0, 

'P(x, ft; v) ---'>- 4>( -'1', ft)e"'/V, 

x ---'>- 00, 'I' E (0, 1), 'I' = Vo. (67) 

We want to determine the emergent distribution 
"P(O, -ft; v), ft > 0. To do that, let us define the 
following "albedo" problem: 

"P(O, p) = 4>(-'1', p), P > 0, 

"P(x, fl) ---'>- 1>( -'I', fl)e"'/v, 

X---'>- 00, v E(O, 1), v = Vo. (68) 

Obviously, the solution of this problem is 

"P(X,fl) = 1>(-v,fl)err/v, fl E(-I, 1). (69) 

Let us decompose the solution "P(x, fl) into two parts: 

where 

"Pl(O, p) = 0, p > 0, 

"Pl(X, fl) ---'>- 1>( -v, fl)e"'/v, x ---'>- 00, (71) 

and 

(72) 

with "Pl(X, fl) and "P2(X, fl) satisfying the transport 
equation (1). Evidently, "Pi (x, fl) is just the solution of 
our Milne problem, while "P2(X, p) is the solution of a 
"proper" albedo problem with "P2( 00, p) = 0. 
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Therefore, we may apply Eq. (17), with T = 00, to 
"P2(0, 1-'). In this way we get 

"P2(0, -I-') = cf>(v, 1-') - "P(O, -I-'; v) 

= 2~ f S{,l, 1-')"P2(0, 1-") dl-", I-' > 0, (73) 

or, in view of Eq. (72), 

"P(O, -I-'; v) = cf>(v, 1-') - 21 eS{I-", I-')cf>( -v, ft') dl-", 
I-' ./0 

ft > 0, v E (0, 1), v = Vo. (74) 

Now, we express the function S(ft',I-') in Eq. (74) 
in terms in the function H(ft) by using Eqs. (33) and 
(39). By taking into account Eqs. (2c), (2d), and (65), 
it follows that "P(O, -ft; v) can be expressed in terms 
of the function H(z) as 

·(0 ) c p v H(ft) "( ).II( "P ,-I-'; v = - ---- + A v U l' - 1-'), 
2 v - I-' H(v) 

I-' > 0, v E (0, 1), v = Vo. (75) 

Of course, the only physically meaningful solution 
is that for v = Vo. However, the other solutions are 
useful for constructing the half-space solutions inside 
the medium. 

Once the surface distribution for any particular 
half-space problem is known, the complete solution 
can be obtained by using the full-range orthogonality 
relations (6), (7a), and (7b). 

For instance, let us construct the complete solution 
of the albedo problem. This solution, denoted as 
"P(O, 1-'0 -+ x, 1-'), satisfies the transport equation (1) and 
the boundary conditions 

"P(O, 1-'0 -+ 0,1-') = 15(1-'0 - 1-'), I-' > 0, 
"P(O, 1-'0 -+ x, 1-') -+ 0, x -+ 00. (76) 

The emergent distribution "P(O, 1-'0 -+ 0, -1-'), I-' > 0, 
can be expressed in terms of the function S(I-'o, 1-'), 
in view of Eq. (13), as 

Because of the condition (76) at infinity, we expand 
"P(O, 1-'0 -+ x, 1-') only in terms of the exponentially 
decreasing eigenfunctions 

"P(O, 1-'0 -+ x, 1-') = A(vo)cf>(vo , I-')e-xiv• 

+ fA(v)cf>(v, ft)e-xiv dv. (78) 

By setting x = ° and expressing "P(O, 1-'0 -+ 0, -ft) 
using Eq. (77), we determine the expansion coefficients 

as has been explained. Taking into account Eq. (74), 
we finally get 

l./J(O II -+ X 11.) _ "P(O, -flo; vo) "-( ) -xiv. 
T , 1""0 'I"" - ( 'f' vo, I-' e 

1-'0 N vo) 

+ (1 "P(O, -1-'0; v) "-( )e-XiV d (79) 
)0 N{v) 'f' v, fl v, 

and this represents the complete solution of the half­
space albedo problem. 

V. CONCLUSION 

The method presented in this paper is based on the 
ideas introduced into transport theory by Ambar­
zumian, Chandrasekhar, and Case. First, the solution 
for the surface distributions is sought. (In a number of 
applications this is all that is required.) By using the 
infinite-medium eigenfunctions, a system of singular 
integral equations together with the uniqueness 
conditions is derived for the surface distributions in a 
simple and straightforward way. This system is the 
basis of the whole theory. 

One could stop there and determine the surface 
distributions by solving numerically the system of 
singular integral equations combined with the unique­
ness conditions. Or, this system can be reduced to 
certain uncoupled Fredholm integral equations which 
can be then used for numerical computations. Finally, 
the surface distributions can be also computed by 
using the nonlinear integral equations. It is evident 
that the question of how to compute the surface distri­
butions is the most important one, since once these 
are known, the complete solution can be found by 
quadrature. 

As far as we know, the system of singular integral 
equations (27) and (28) (v = Vo included) has not been 
used to compute X(fl) and Y(fl). For numerical 
computations, this system can be rearranged so that 
the principle-value integrals disappear. Then it could 
be solved approximately, for instance, by reducing it 
to a system of linear algebraic equations. 

The other possibility, to solve numerically the above 
mentioned Fredholm integral equations, was con­
sidered by Leonard and MullikinY They showed that 
these Fredholm integral equations converge rapidly 
under iteration for all c and T. Unfortunately, the 
kernels of these equations are not simple functions 
and to compute them requires quite a lot of work. 

So, it seems that the simplest way to obtain numeri­
cal values for the surface distributions is the straight­
forward iteration of the nonlinear integral equations 
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(41) and (42). This was done successfully by Chandra­
sekhar and others.Ll9 Since the system (41) and (42) 
is not uniquely soluble, the conditions (43) and 
(44) should be used as a check. At the same time, 
this would give an estimate of the accuracy of the 
iterations. 

19 S. Chandrasekhar, D. Elbert, and A. Franklin, Astrophys. J. 
115, 244 (1952). 
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The nonlinear realizations of the chiral group SU(2) ® SU(2) are studied from a geometric point of 
view. The three-dimensional nonlinear realization, associated with the pion field, is considered as a group 
of coordinate transformations in a three-dimensional isospin space of constant curvature, leaving invari­
ant the line element. Spinor realizations in general coordinates are constructed by combined coordinate­
spin-space transformations in analogy to Pauli's method for spinors in general relativity. The description 
of vector mesons and possible chiral-invariant Lagrangians, which yield the various nonlinear models in 
specific frames of general coordinates, are discussed. 

1. INTRODUCTION 

Chiral-invariant Lagrangians are currently used as a 
practical tool to study the implications of current 
algebra.I •2 The Lagrangians are to be constructed as 
functionals of fields, which have definite transforma­
tion properties under the chiral group SU(2) ® SU(2). 
Because there does not exist a three-dimensional 
linear representation of the group, it has been sug­
gested3 •4 that the pion field transforms according to 
the three-dimensional nonlinear realization. This 
implies that chiral symmetry is a pure interaction 
symmetry not shared by the asymptotic fields. 

A systematic development of the nonlinear realiza­
tions can depart from different points of view. While 
the transformation laws are nonlinear, the transforma­
tions are still implemented by unitary operators in 
quantum theory. Weinberg has studied the most 
general form for the commutators of generators and 
fields.5 On the other hand, for a better understanding 
of the mathematical nature of nonlinear realizations, 
it seems worthwhile to keep the analogy to linear 
representations as close as possible. 

1 S. Weinberg, Phys. Rev. Letters 18, 181s (1967). 
• B. W. Lee and H. T. Nieh, Phys. Rev. 166, 1507 (1968). 
• J. Schwinger, Phys. Letters 24B, 473 (1967). 
• J. Wess and B. Zumino, Phys. Rev. 163, 1727 (1967). 
6 S. Weinberg, Phys. Rev. 166, 1568 (1968). 

A nonlinear realization is a representation of the 
group in a curved instead of Euclidean space. We show 
in Sec. 2 that the chiral group is the invariance group 
of the metric in a three-dimensional space with 
constant curvature K = Ilf2. This "fundamental" 
nonlinear realization is associated with the pion field. 
While the field components are the coordinates in the 
curved space, space-time derivatives are tangents 
and transform as contravariant vectors under co­
ordinate'transformations. The Riemannian geometry 
of the curved space replaces' the Euclidean geometry 
of linear-representation spaces. Following Pauli's 
treatment of spinors in general relativity, 6 we study in 
Sec. 3 spinor realizations of the chiral group in general 
coordinates by combined coordinate-spin space 
transformations. The realizations associated with 
vector mesons are discussed in Sec. 4. 

The various nonlinear models treated in the litera­
ture7- I2 result from a specific choice of general pion 
coordinates. This is in complete agreement with 
Weinberg,5 but we think that our more geometric 

• W. Pauli, Ann. Phys. (Leipzig) 18, 337 (1933). 
7 G. Kramer, H. Rollnik, and B. Stech, Z. Physik 154, 564 (1959). 
8 M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960). 
• F. Giirsey, Nuovo Cimento 16,230 (1960). 
10 F. Giirsey, Ann. Phys. (N.Y.) 12, 91 (1961). 
11 P. Chang and F. Giirsey, Phys. Rev. 164, 1752 (1967). 
12 L. S. Brown, Phys. Rev. 163, 1802 (1967). 


