Absolute instability in a traveling wave tube model

L. K. Ang and Y. Y. Lau

Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104

(Received 15 June 1998; accepted 27 July 1998)

A model is constructed to evaluate absolute instability which may lead to bandedge oscillations in a traveling wave tube. Under the assumptions (a) that all modes have forward group velocities, and (b) that the slow wave structure has a parabolic dispersion relation in the ω-k plane, the threshold coupling constant (Pierce’s parameter C) is calculated for the onset of absolute instability. The effect of distributed resistive loss in the circuit is included. The axial wave number and the characteristic frequency of the oscillation at the onset are given. © 1998 American Institute of Physics. [S1070-664X(98)00512-6]

I. INTRODUCTION

There is a rekindling of interest in traveling wave tubes (TWTs), due to the recent advances in microwave power module and to the rapid growth in satellite communication, where TWTs are extensively used. In a TWT, the electron beam interacts with the forward wave of the slow wave circuit, resulting in spatial amplification of the signal. A serious threat to the stability of TWT is bandedge oscillation, characterized by a frequency in the vicinity of the π-mode of the slow wave circuit. A candidate for bandedge oscillation is the excitation of absolute instability, which may occur when the beam current exceeds some threshold value, even if all modes (beam and circuit) of interaction have forward group velocities. In this note, we present a calculation of this threshold current based on a simplified model of TWT.

In general, absolute instability can occur even if the TWT is perfectly matched at both ends. Thus, it is different from the regenerative oscillations caused by partial reflections of the amplified signal at the ends of the tube. It is also different from the backward wave oscillations that occur in the event that the beam mode intersects the circuit mode at a different from the backward wave oscillations that occur in gyro-TWTs, we are not aware of similar calculations on the conventional (slow wave) TWTs. Toward the end of this paper, we briefly discuss the differences in absolute instabilities in fast wave and slow wave tubes.

The helix or ring-bar circuits in a conventional TWT lead to a rather complicated dispersion relation for the circuit mode. To simplify the calculations of the threshold current for the onset of absolute instability, we assume that the circuit mode dispersion relation is a parabola in the ω-k plane (Fig. 1). This could be a reasonable assumption near the π-mode (bandedge), but is entirely inadequate to model over a much wider band that is typical of a TWT. Nevertheless, we choose the parameters in such a way that, for synchronous interaction (defined to be the case where the phase and group velocities are all equal in the beam mode and in the circuit mode), our simplified dispersion relation is identical to Pierce’s standard form. In addition, the simplified dispersion relation allows us to readily investigate the effects of velocity detune and of a distributed resistive loss in the circuit. When the resistive loss is absent, the threshold coupling constant (Pierce’s parameter C), the frequency, and wave number at the onset of absolute instability are derived analytically.

II. ANALYSIS

In our model, electrons drift axially with a velocity v inside a slow wave structure with pinch L [Fig. 1(a)]. The beam mode is $\omega = kv$, with $\exp(j\omega t - jkz)$ dependence in the small signal regime [Fig. 1(b)]. We approximate the structure mode by a parabola $\omega = \omega_B - \alpha(k - k_B)^2$, where $k_B = \pi/L$ is the wave number at bandedge, ω_B is the band-edge frequency, and α determines the “shape” of the parabola. When $v = v_0$, the beam mode dispersion curve is tangent to the parabola at $\omega = \omega_0$, $k = k_0$ [Fig. 1(b)]. We call this case, $v = v_0$, the synchronous case. In terms of k_B, ω_B and α, we find $k_0 = (k_B^2 - \omega_B^2/\alpha)^{1/2}$, $\omega_0 = 2\alpha(k_B - k_0)/k_0$, and $v_0 = \omega_0/k_0$. Note that for $v > v_B$, where $v_B = \omega_B/k_B$, all interacting modes have forward group velocities [Fig. 1(b)]. In this paper, we concentrate only on such cases.

By normalizing ω with respect to ω_0 and k to k_0, we model the TWT dispersion relation as

$$D(\bar{k}, \bar{\omega}) = \left[\bar{k}(1 + \delta - \bar{\omega})\right]^2[P(\bar{k} - 1)^2 - (\bar{k} - \bar{\omega}) + \Delta(1 - j)]$$

$$= \varepsilon,$$ \hspace{1cm} (1)

$$P = \frac{k_0}{2(k_B - k_0)^2}. $$ \hspace{1cm} (2)

Here, $\bar{\omega} = \omega_0/\omega_0$, $\bar{k} = k/k_0$, and $\varepsilon > 0$ (ε is current) is the dimensionless coupling constant. In Eq. (1), the first square bracket represents the beam mode and the second square bracket represents the structure mode, when these square brackets are set equal to zero individually. We have included the effects of beam detuning through $\delta = (v - v_0)/v_0$ (either positive or negative) in the beam mode, and of a distributed resistive loss through $\Delta(>0)$ in the structure mode. We take
the dimensionless parameters δ and Δ to be small, and $0 < k_0/k_{BE} < 1$. In terms of P, we find $\bar{k}_{BE} = k_{BE}/k_0 = 1 + 1/2P$ and $\bar{\omega}_{BE} = \omega_{BE}/\omega_0 = 1 + 1/4P$.

Note that the dimensionless coupling constant, ε, is essentially C^3, where C is the Pierce parameter. To see this, take the synchronous, lossless limit ($\delta = 0, \Delta = 0$). Upon approximating $\bar{k} \approx 1$, Eq. (1) then reduces to $(\bar{\omega} - \bar{k})^3 = \varepsilon = C^3$, which is Pierce’s standard TWT dispersion relation for synchronous interaction. Furthermore, for synchronous interaction, the cold-tube dispersion relation yields $\bar{k} = \bar{\omega} + \Delta (1-j)$ according to Eq. (1). Thus, Δ represents a distributed resistive loss on the circuit. Numerically, $\Delta = Z_L v_0/8.686 \omega_0$, where Z_L is the cold-tube loss rate in dB/m, v_0 is the beam velocity in m/s, and ω_0 is the frequency in radians/second.

We use the Briggs–Bers criterion to calculate the threshold value of ε, ε_δ, for the onset of absolute instability for various combinations of P, δ, Δ. First, for a lossless structure ($\Delta = 0$), we use the techniques of Ref. 4 to show from Eq. (1) that both $\bar{\omega} = \bar{\omega}_s$ and $\bar{k} = \bar{k}_s$ are real at the onset of the absolute instability. We solve $\bar{\omega}_s$ and \bar{k}_s by setting $\partial D/\partial \bar{k} = 0$, $\partial^2 D/\partial \bar{k}^2 = 0$ and choosing the meaningful root.

We then obtain $\varepsilon_s = D(\bar{k}_s, \bar{\omega}_s)$, which reads, for a lossless structure,

$$\varepsilon_s = \frac{27(1+\delta)^6 \Lambda^4}{P^3},$$

where

$$\bar{k}_s = 1 + \frac{1}{2P}[1 - 2\Lambda(1+\delta)],$$

$$\bar{\omega}_s = (1+\delta)\left[1 + \frac{1}{2P}[1 - 8\Lambda(1+\delta)]\right],$$

It is obvious from Eq. (3) that ε_s decreases with increasing P. This occurs when k_0 approaches the bandedge wave number k_{BE} [cf. Eq. (2)]. Note from Eqs. (6) and (3) that when $\delta = -1/2(1+2P)$, $\Lambda = 0$ and ε_s becomes zero. This case of zero threshold current may be shown to correspond to the beam mode intersecting the structure mode at the bandedge ($v = v_{BE}$, see Fig. 1). At synchronism ($\delta = 0$), Eqs. (3)–(5) yield $\bar{k}_s = 1 + 0.4393/P$, $\bar{\omega}_s = 1 + 0.2574/P$, and $\varepsilon_s = 3.66 \times 10^{-4}/P^3$. In Fig. 2(a), $\varepsilon_s^{1/3}$ for $\Delta = 0$ is shown as a function of k_0/k_{BE} at various δ, the corresponding frequency of oscillation at the onset is shown in Fig. 2(b). From Fig. 2(a), we see that the threshold increases (decreases) with positive (negative) δ, and becomes very small as k_0 approaching k_{BE}. The frequency of oscillation, ω_δ, is in the vicinity of the bandedge frequency ω_{BE} [Fig. 2(b)].

The analysis for a lossy structure ($\Delta > 0$) is more involved. Here, $\bar{\omega}_s$ remains real and \bar{k}_s becomes complex at the onset of absolute instability. In this case, we first find a relation $\bar{k} = \bar{k}(\bar{\omega})$ from the condition $\partial D/\partial \bar{k} = 0$. For real values
The stabilization of the bandedge oscillation is more effective at larger \(\Delta \). Here, we see that the presence of loss (\(\Delta > 0 \)) raises the threshold current for absolute instability. The critical value of \(k\bar{\omega} \) at which \(\Re(k\bar{\omega}) = 0 \) at various \(\Delta \). We have checked that in the limit \(\Delta = 0 \) (lossless case), this numerical procedure yields the same results as those derived analytically for the lossless case given above. In Fig. 3, \(\varepsilon^{1/3} \) for \(\delta = 0 \) is shown as a function of \(k_0/k_{\text{BE}} \) at various \(\Delta \). We wish to thank David Chernin, Carter Armstrong, Mark Basten, Baruch Levush, and Mark Baird for many useful discussions.

This work was supported by the Multidisciplinary University Research Initiative (MURI), managed by the Air Force Office of Scientific Research and subcontracted through Texas Tech University, by the Northrop Grumman Industrial Associates Program, and by the Naval Research Laboratory.

ACKNOWLEDGMENTS

We wish to thank David Chernin, Carter Armstrong, Mark Basten, Baruch Levush, and Mark Baird for many useful discussions.

This work was supported by the Multidisciplinary University Research Initiative (MURI), managed by the Air Force Office of Scientific Research and subcontracted through Texas Tech University, by the Northrop Grumman Industrial Associates Program, and by the Naval Research Laboratory.