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In an attempt to understand the conditions under which the neutron transport equation has solu­
tions, and the properties of those solutions, a number of existence and uniqueness theoreIns are 
proved. One finds that the properties of the solution are closely related to the boundedness of the 
source as weIl as to certain velocity-space integrals of the scattering kernel. Both time-dependent 
and time-independent equations are considered as are also the time-dependent and time-independent 
adjoint equations. Although only a very few of all possible existence and uniqueness theoreIns for these 
equations are considered here, the work may serve as a guide to the treatment of similar probleIns. 

I. INTRODUCTION 

VARIOUS theorems concerning the existence 
and uniqueness of solution to the neutron 

transport equation have appeared in the literature. 
For example, Case l has proved uniqueness for the 
one-speed, time-dependent equation under the 
assumption that the kernel is rotationally invariant. 
He has, in addition, shown that under the same 
assumptions the solution of the time-independent 
equation is unique if c(r), the mean number of 
neutrons emitted per collision, is everywhere less 
than one. OIhoefe has considered the more general 
velocity-dependent case, and has shown, subject 
to the same restriction on c, that a unique, integrable 
solution exists for the time-independent equation. 
Davison3 has made some rather general remarks 
concerning existence and uniqueness for the time­
dependent case, but has only outlined the methods 
of proof and has actually said little about the 
restrictions which must be imposed in order that 
the theorems be true. 

Basically, the situation is the following: There 
are a number of possible restrictions which one can 
imagine might be applied to the cross sections 
and sources appearing in the neutron transport 
equation. For certain of these restrictions it is 
pos sible to prove that continuous solutions exist; 
for other Eets of restrictions the solutions may not 
be contjnuous but still integrable functions of one 
, * Eurrortfd in part by the Office of Naval Research, 
DeraJtmfnt. of the Navy, and the United States Atomic 
Ener~y Ccrrmission. 

I K M. Case, Rev. Mod. Phys. 29, 651 (1957). 
2 Jack E. Olhoeft, "The Doppler Effect for Non-Uniform 

T£mreratuJ€s," University of MIChigan Ph.D. Thesis (1962). 
3 B. Davison, Neutron Transport Theory (Oxford Univer­

fiiy Press, London, 1957). 

or more of the independent variables involved 
[i.e., position, velocity, and (in the time-dependent 
case) time]. For other restrictions, it may be impos­
sible to prove anything. We have investigated a 
large number of possible restrictions which might 
reasonably be imposed upon the cross sections and 
sources, and investigated the existence of unique 
solutions for each case. In this way, we have tried 
to bring some order into the chaos of "obvious" or 
partially proved results which at the present exist 
in the literature. 

In addition, we consider not only the transport 
equation but the time-dependent and time-in­
dependent "adjoint equations," and investigate the 
sufficient conditions that unique solutions exist for 
those equations. It turns out that there are many 
cases in which existence and uniqueness theorems 
can be proved for one or the other, but not both. 

In Sec. II of this paper, we convert the transport 
and adjoint equations to integral equations in the 
usual manner. Then, in Sec. III, we discuss the 
restrictions on the sources and cross sections which 
will, for physical reasons, be applied in all cases. 

Then, in Sees. IV and V we consider various 
existence and uniqueness theorems for the time­
dependent transport and adjoint equations. In 
Sec. VI we consider theorems for the time-in­
dependent equations (both transport and adjoint) 
and finally, in Sec. VII, we discuss certain "by­
products" of the theorems-a formula for the 
minimum critical size of a reactor and a proof 
that the time-dependence of the solutions of the 
time-dependent equations must obey certain restric­
tions. 

We have made no attempt to be comprehensive 
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in our treatment of the existence and uniqueness 
problem. Indeed, one can imagine virtually an 
infinite number of possible theorems similar to 
those which we prove. However, we have presented 
some of those which we feel have the most intrinsic 
interest and, in addition, demonstrate well the 
method of proof. In this way, if any of the conditions 
which we consider are not met in a particular 
problem, our work may serve as a guide to the 
correct treatment. 

n. INTEGRAL EQUATION FORMULATION 

A. The Transport Equations 

The time-dependent transport equation is 

aif;(r, v, t)/at 

+ v(a·v + IT(r, v»if;(r, v, t) = q(r, v, t) 

+ J v'lT(r, v' --t v)if;(r, v', t) dV, 

while, in the stationary limit, we have 

v(a· V + O'(r, v»if;(r, v) 

(la) 

= q(r, v) + J v'lT(r, v' --t v)if;(r, v') dV. (lb) 

Here if; is the neutron angular density (i.e., the 
one-particle distribution function); v = va is the 
neutron velocity; IT(r, v) is the total cross section, 
and the kernel IT(r, v' --t v) is the cross section 
for a neutron of velocity v' to be emitted into 
d3v about v. 

Equation (1) may be converted into intergal 
equations in the usual way, i.e., by introducing 
the Green's function of the left-hand side. This 
Green's function is well known. 4 We obtain for 
the integral equation equivalent to (la) 

if;(r, v, t) = Q(r, v, t) 

+ L dt' J dVv' IT(r - vet - t'), v' --t v) 

X if;(r - vet - t"), v', t') 

X exp [ - L vlT(r - vet - t"), v) dt"] , (2a) 

where 

Q(r, v, t) = if;(r - vt, v, 0) 

X exp [ - 10' vlT(r - vet - t'), v) dt'] 

t K. M. Case, F. de Hoffmann, and G. Placzek, Introduction 
w the Theory of Neutron Diffusion (U. S. Government Printing 
Office, Washington, D. C., 1953). 

+ i' dt'q(r - vet - t'), v, t') 

X exp [ - L vlT(r - vet - t"), v) dt"} (2b) 

Actually, we shall prove theorems involving the 
esistence and uniqueness of solutions within a 
given volume of space V bounded by a surface S 
when the incoming (or, in the case of the adjoint 
equations, the outgoing) angular distribution is 
specified on S. The simplest way to modify Eq. (2) 
to describe this situation is to define q(r, v, t), 
if;(r, v, 0), IT(r, v), and IT(r, v' --t v) to vanish for 
r EE V. Then the specified incident angular dis­
tribution if;l(r., v, t) is replaced by a surface source 
q.(r., v, t) on S in the usual manner:4 

q.(r., v, t) 

= v la·nol if;.(r .. v, t), a·no < 0, t> 0, 

= 0 otherwise, (3) 

where no is the outward normal to S. Then Eq. (2) 
still applies [understanding the redefinitions of q, 
if;, IT, and IT(r, v' --t v) mentioned above] with an 
additional term Q. added to Q, Eq. (2b), to account 
for the surface source: 

1 
Q. = - q.(r., v, t - R./v) 

v 

X exp [-a(r, r - R,a, v)]. (4) 

Here a is the usual optical path 

a(r, v', v) = i R 

d81T(r - 8~) , (5) 

where R. is the distance from r to the surface S 
along the direction -!2 (See Fig. 1). Note: R. = 

R.(r, a). 
Equation (2), thus modified, is the general 

integral equation formulation of the time-dependent 
neutron transport problem with which we shall be 
concerned. It is convenient to rewrite it in the 
somewhat more tractable form: 

if;(r, v, t) = Q'(r, v, t) + Kif;(r, v, t), (6a) 

where K is the integral operator 

FIG. 1. 
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Kf(r, v, t) 

= L dt' J d3
r' J dV oCr' - r + vet - t'» 

X exp [ - {vu(r - v(t - t"), v) dt"] 

X v'u(r', v' ~ v)f(r', V', t'), (6b) 

and 

Q'(r, v, t) = Q(r, v, t) + Q.(r, v, t). (6c) 

The integral equation formulation of the time­
independent transport equation (lb) is obtained 
in just the same way, i.e., by introducing the 
Green's function of the left side of Eq. (lb). We 
obtain 

cp(r, v) = Q'(r, v) + Acp(r, v), (7a) 

where A is the integral operator 

Af(r, v) = iR'dR J d3r' J dV oCr' - r + Rn) 

X exp [-a(r, r', v) ]v' u(r' , v' ~ v)f(r', v'), 

Q'(r, v) = q.(r" v) exp [-a(r, r - R.n, v)] 

(7b) 

l
R • 

+ 0 q(r - Rn, v) exp [-a(r, r - Rn, v)] dR, 

(7c) 

and 

cp(r, v) = vif;(r, v). (7d) 

Again we mention that the cross sections and 
sources have been defined to vanish for r EE V 
(or for t < 0). 

B. The Adjoint Equations 

The time-dependent adjoint equation is defined 
to be 

a \f(r, v, t) + ( " (» -( ) at v - n· + 0' r, v if; r, v, t 

= (j(r, v, t) + v J dVu(r, v ~ v')\f(r, v'), (8a) 

while the time-independent adjoint equation is 

v(-n·" + u(r, v»\f(r, v) = (j(r, v) 

+ v J dVu(r, v ~ v')\f(r, v'). (8b) 

The adjoint of a solution of Eqs. (la) and (lb) 
will be taken to be the solution of Eqs. (8a) and 
(8b) subject to appropriate boundary conditions. 

These boundary conditions are that the outgoing 
density on S, if;o(r., v, t), rather than the incoming, 
will be specified. As before, we replace the boundary 
conditions by a surface source: 

(j.(r., v, t) 

= v In·nolif;o(r .. v, t), n·no> 0, t > 0, 

= 0 otherwise. (9) 

We now convert Eqs. (8) into integral equations 
just as for the case of transport equations, obtaining 
for the time-dependent equation 

\fer, v, t) = Q'(r, v, t) + /{if;(r, v, t), (lOa) 

where /{ is the integral operator 

/{f(r, v, t) 

= v L dt' J dV J dV oCr' - r - vet - t'» 

X exp [ - {vu(r + vet - t"), v) dt"] 

X u(r', v ~ v')f(r' , v', t'), 

and 

Q'(r, v, t) = \f(r + vt, v, 0) 

X exp [ - L vu(r + vet - t"), v) dt"] 

+ L dt'{j(r + vet - t'), v, t') 

X exp [ - {vu(r + vet - til), v) dt"] 

+ (l/v)q.(r., v, t - R./v) 

X exp [-a(r, r + R.n, v)]. 

(lOb) 

(lOc) 

As before, cross sections and the initial distribution 
are defined to vanish for r EE V. Also, R, = R.(r, 0.) 
is the distance from r to the surface along the 
direction +0. (rather than along the direction -0. 
as in the case of the transport equation). See Fig. 1. 

For the time-independent adjoint equation we 
obtain similarly 

.;J(r, v) = (l/v)Q'(r, v) + i...;J(r, v), 

where A is defined by 

(lla) 

Ai(r, v) = iR'dR J d3r' J dV oCr' - r - Rn) 

X exp f -a(r, r', v) 1 u(r', v ~ v')i(r', v'), 

and 

(Ub) 
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Q'(r, V) = (j.(r., v) exp [-a(r, r + Ito, v)] (Uc) 

+ iR
• (j(r + RO, v) exp [-a(r, r + RD, v)l dR. 

m. BASIC DEFINITIONS AND ASSUMPTIONS 

In all of our subsequent discussions we shall 
assume that the source functions Q' (r, v, t) and 
Q'(r, v, t) as well as the cross sections u(r, v' ~ v), 
and u(r, v), obey certain physically reasonable 
conditions. 

(1) Q' and Q' are positive for all values of their 
arguments. 

(2) Either Q' and Q' are bounded or they can 
be written as the product of bounded functions 
multiplied by delta functions in one or more of 
their arguments. 

(3) There exists a Vo < <Xl such that for I v I > VO, 

Q' and Q' vanish identically. 
(4) There exists a VI < <Xl such that u(r,v'~v)=O, 

for V > v' > VI' 

Assumptions (3) and (4) permit us to avoid any 
difficulties that the infinite range of the velocity 
variable might otherwise introduce since together 
they imply that there are no neutrons present 
with speeds greater than Vm = max(vo, VI)' Then 
the integrals over v' in any of the integral equations 
can be written as 

J dV ~ J dD' I vm 

V'2 dv'. (12) 

These restrictions can actually be relaxed to some 
extent; we might assume that Q' and Q' go to zero 
sufficiently rapidly as V ~ <Xl that, if other restric­
tions are obeyed, the infinite range of v need not 
cause any trouble. However, assumptions (3) and 
(4) are physically reasonable, and so we shall make 
no attempts to relax them. 

(5) u(r, v' ~ v) can be written in the form 

u(r, v' ~ v) = L: N.(r)u,(v' ~ v), (13) 

where N,Cr) is bounded. [Actually N.(r) represents 
a density of nuclei, and u i is a microscopic cross­
section, so we are merely assuming that there are 
no infinite concentrations of atoms present in the 
systems that we consider.] 

(6) The cross-section u(r, v) can be written 
in the same form: 

eT(r, v) L: N.(r)eT.(v). (14) 

(7) vu,(v) is bounded. We expect eT,(v) to be 
bounded except possibly for v ~ 0, in which case 
we admit eT.(v) ,......, 1/v. 

(8) ui(r, v), eTCr, v' ~ v), eTi(V), and u.(v' ~ v) 
are all positive. 

(9) The function 

c(r, v) = f eTCr, v ~ v') dV /eT(r, v) (15) 

is positive. This assumption is also physically 
reasonable, since c(r, v) represents the mean number 
of neutrons emitted per collision. We define a 
similar microscopic quantity ~i(V) which is also 
bounded 

Mv) = f Ui(V ~ v') dV/Ui(V). (16) 

We shall also have occasion to use two further 
functions, 

c'(r, v) = f u(r, v' ~ v) dV/u(r, v), (17a) 

and 

c"(r, v) = f v'u(r, v' ~v) dV/u(r, v). (17b) 

It may be noted that c' and e" may not always 
be bounded but they (like c) are always positive. 
Similarly the functions 

~~(v) = f u,(v' ~ v) dV/u,(v) (18a) 

and 

~~'(v) = f v'u.(v' ~ v) dV/u,(v) (18b) 

may not be bounded but, like ~i(V), they are positive. 

IV. THE TIME-DEPENDENT TRANSPORT EQUATION 

Bearing in mind the restrictions discussed in 
Sec. III, we consider now various existence and 
uniqueness theorems for the time-dependent trans­
port equation. 

Theorem 1. Let Q' Cr, v, t) be bounded. Then 
if e" (r, v) is bounded, a unique, positive, and 
continuous solution to the time-dependent transport 
equation exists. 

We prove the theorem by constructing the 
Neumann series solution to Eq. (6): 

'" 
",,(r, v, t) = L: "",,(r, v, t), (19) 

where 

""o(r, v, t) = Q'(r, v, t), (20a) 
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and 

1/;nCr, v, t) = K1/;n-l(r, v, t). (20b) 

By hypothesis, 

o ~ t/;o ~ M < CD. (21) 

Furthermore, 

1/;1(r, v, t) = KQ'(r, v, t) 

(22) 

Continuing the iteration we find 

1/;,,(r, v, t) ~ M(c::'axumaxtCt/n!). (23) 

Thus, the Neumann series converges pointwise, 
and the theorem is proved. The fact that ",(r, v, t) 
is positive follows from the fact that every term 
in the series is positive. 

Next, assume that e"(r, v) is not bounded. Then 
we can state: 

Theorem 2. Let Q'(r, v, t) be bounded. Then a 
unique, positive solution to the transport equation 
exists which is a continuous function of t and r 
and an integrable function of v. 

Proof: The proof proceeds along the lines of 
Theorem 1; however, it is sufficient to show that 
the series 

converges pointwise. Consider first 

J d3
v1/;J(r, v, t) ~ M f dt' J v' dV 

(24) 

X J d3
vu(r - vct - t'), v' ~ v). (25) 

However, we have assumed in Sec. III that u(r, 
v' ~ v) could be written in the form 

u(r, v' ~ v) = .L: N,(r)u,(v' ~ v), (26) 

where the N,(r) are bounded, say by N,o. Then 

J d3
v1/;1(r, v, t) 

~ Mt .L: N io f v' dVMv')u,(v'). (27) 

But ~,(v') and u,(v') are assumed in Sec. III to 
be bounded, say by ~;o and u;o. Then 

J d3v1/;ICr, v, t) ~ Mt .L: Niobuio J v' dV, (28) 

and since v' ~ v", (cf. Sec. III), we have 

Similarly, we find 

J K'r 
d3

v", .. (r, v, t) ~ -, ' n. 

O~K< CD. (29) 

o ~ K' < <Xl, (30) 

and the theorem is proved. Again each term is 
positive, so that the solution is positive. 

Next consider the case that Q'(r, v, t) is not 
bounded, but integrable. The following theorems 
are simple to prove by straightforward construction 
of the Neumann series, as above. 

Theorem 3. If Q'(r, v, t) = Qo(r, v)o(t), where 
Qo(r, v) is bounded, then, for the time-dependent 
transport equation: 

(a) If e"(r, v) is bounded, a unique, positive 
solution ",(r, v, t), exists. ",(r, v, t) is a continuous 
function of r and v, and 1/;(r, v, t) - Q'(r, v, t) is 
a continuous function of t. 

(b) If e"(r, v) is not bounded, then the solution 
1/;(r, v, t) may be an integrable rather than a con­
tinuous function of v. Otherwise the conclusions 
are unchanged. 

Theorem 4. If Q'(r, v, t) = QI(r, t)o(v - vo), 
where QI (r, t) is bounded, then: 

(a) If vu(r, v' ~ v) is bounded, a unique, 
positive solution ",(r, v, t) exists. 1/;(r, v, t) is a 
continuous function rand t, and 1/;(r, v, t) - Q' (r, v, t) 
is a continuous function of v. 

(b) If vu(r, v' ~ v) is not bounded, then 
1/;(r, v, t) - Q' (r, v, t) may be an integrable rather 
than a continuous function of v. [In proving part 
(b) we make use of the fact (cf. Sec. III) that v 
and ~;(v) have both been assumed bounded.] 

Theorem 5. If Q'(r, v, t) = Q;(v, t)o(r - ro), 
where Q~(r, t) is bounded, then: 

(a) If e"(r, v) is bounded, a positive, unique 
solution 1/;(r, v, t) exists. 1/;(r, v, t) is a continuous 
function of v and t, and an integrable function of r. 

(b) If e"(r, v) is not bounded, then 1/;(r, v, t) 
may be an integrable rather than a continuous 
function of v. 

The theorems for the cases in which Q' (r, v, t) 
involves a delta function in more than a single 
variable, may easily be constructed by appropriately 
combining the above theorems. We shall not state 
them separately. 

V. THE TIME-DEPENDENT "ADJOINT" EQUATION 

Here we deal with Eq. (10). The theorems will 
all be stated without proof, since the proofs are 
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completely analogous to those given in the previous 
section. 

Theorem 6. If (j'(r, v, t) is bounded, then a con­
tinouous, unique, positive solution exists. [Note 
that in proving this theorem it is necessary to 
make use of the fact that cCr, v) is bounded (cf. 
Sec. III).] 

Theorem 7. If (j'(r, v, t) = Qo(r, v)~(t), where 
Qo is bounded, then a unique, positive solution exists. 
fCr, v, t) is a continuous function of r and v, and 
fer, v, t) - Q'(r, v, t) is a continuous function of t. 

Theorem 8. If Q'Cr, v, t) = Qler, t)~(v - Yo), 
where QI is bounded, then: 

(a) If vuCr, v' -7 v) is bounded, a unique, 
positive solution fer, v, t) exists. fer, v, t) is a 
continuous function of rand t, and fer, v, t) -
(j'(r, v, t) is a continuous function of v. 

(b) If vu(r, v' -7 v) is unbounded but ~:'(r, v) 
is bounded, then the conditions above hold except 
that fer, v, t) - Q'(r, v, t) may be an integrable, 
rather than a continuous, function of v. 

Theorem 9. If Q/Cr, v, t) = Q2(V, t)~Cr - ro), 

where Q2 is bounded, then a unique, positive solution 
fer, v, t) exists. fer, v, t) is a continuous function 
of v and t, and an integrable function of r. 

Again, when Qf involves delta functions in more 
than a single variable, the appropriate theorems 
can be constructed by appropriately combining the 
results above, and so we shall avoid stating them 
explicitly. 

VI. THE TIME-INDEPENDENT TRANSPORT 
AND ADJOINT EQUATIONS 

In certain rather restrictive cases, it can be 
proved that unique, positive solutions of the time­
independent transport and adjoint equations exist. 
In general, the restrictions are much more severe 
than is the case for the time-dependent equations; 
we shall see later that this is to be expected. 

Theorem 10. Let Q'(r, v) be bounded and positive. 
Then if c'(r, v) < 1, a unique, positive, and con­
tinuous solution to the time-independent transport 
equation [Eq. (7)J exists. 

We note that the integral equation (7) differs 
from Eq. (lb) in that in the former, the dependent 
variable is the angular flux </>(r, v) rather than the 
angular density 1f;(r, v). Thus all theorems which 
we shall prove involving the time-independent 
transport equation may not apply to the angular 
density unless 1f;(r, v) vanishes sufficiently rapidly 

as v -+ O. This is not a real worry, since one is 
generally interested in the flux rather than the 
angular density. 

As usual, we prove the theorem by constructing 
the Neumann series: 

</>(r, v) = 2: </>ir, v), (3Ia) 

with 

</>o(r, v) = Q'(r, v), (3lb) 

and 

</>n(r, v) = A"</>(r, v) = A</>n-l(r, v). (31c) 

By hypothesis, </>o(r, v) is bounded and positive: 

o ~ </>o(r, v) ~ M < (x). (32) 

Next assume </>,,_l(r, v) is bounded by M', say. 
Then 

</>,.(r, v) = A</>,,-l(r, v) ~ M'c:"ax E" dR 

X exp [-a(r, r - Ro, v)]<T(r - RO, v). (33) 

The integral is easily shown to be equal to unity. 
Thus 

</>,,(r, v) ~ M'c;"ar. < Mf, (34) 

since we have assumed c' (r, v) < 1. This proves 
the theorem since the Neumann series converges 
pointwise, and each term is seen to be positive. 

The next theorem is readily proved in essentially 
the same manner. 

Theorem 11. If Qf(r, v = QICr, v)~(v - Yo), 
where QI(r) is bounded, then if c'(r, v) < 1 and 
<T(r, Vo -7 v) is bounded, a unique, positive solution 
l/;(r, v) exists. 1f;(r, v) is a continuous function 
of rand 1f;(r, v) - Q'(r, v) is a continouus function 
ofv. 

Theorem 12. If <T(r, v)Q'(r, v) is integrable, then 
if c(r, v) < 1, a unique, positive, integrable solu­
tion exists. 

This is the theorem proved by Olhoeft.2 The 
procedure is to construct the Neumann series for 
the collision density x(r, v) defined by 

x(r, v) = <T(r, v)</>(r, v), 

and prove that 

(35) 

J d3v d3rKx"Cr, v) ~ J d3r d3vx,,(r, v). (35) 

Since the details are given in reference 2, they 
will be omitted here. 
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We next turn our attention to the time-independ­
ent adjoint equation. Here the theorems are quite 
analogous to Theorems 10-12 proved for the 
transport equation, except that the roles of c and 
c' are reversed. Since the proofs are so similar, 
we simply state the theorems. 

Theorem 13. Let (l/v) Q' (r, v) be bounded and 
positive. Then if c(r, v) < 1, a unique, positive, 
continuous solution exists to the time-independent 
adjoint equation. 

Theorem 14. Let (1/v)Q'(r, v) = Ql(r)o(v - Yo), 
where Ql(r) is bounded and positive. Then if 
c(r, v) < 1 and u(r, v ~ Yo) is bounded, a unique, 
positive solution If;(r, v) exists. If;(r, v) is a con­
tinuous function of rand -J; - (1/v)Q is a continuous 
function of v. 

Theorem 15. If c'(r, v) < 1, and if (1/v)u(r, v)Q'(r, v) 
is integrable, then a unique, positive, integrable 
solution exists. 

Note that in each of these theorems we have 
placed restrictions on (l/v)Q' rather than on Q'. 
If we make the reasonable assumption that no 
zero-energy source neutrons are introduced into 
the system, then the conditions can equally well 
be stated as conditions on Q' rather than on (1/v)Q'. 

Next we prove a uniqueness theorem for cases 
in which existence has not been proved. 

Theorem 16: If a solution of class L2 of the time­
independent adjoint equation exists, then an L2 
solution to the time-independent transport equation, 
if it exists, will be unique. 

We sketch the proof. Suppose there are two 
solutions to the transport equation, iftl and ift2' 
Then ift ; iftl - ift2 obeys the equation 

v(n'V + u(r, v»ift(r, v) 

= J v'u(r, v' ~ v)ift(r, v') dV, (37) 

with 
ift(r., v) = 0, n·no < O. (38) 

Consider the adjoint equation with zero outgoing 
angular density: 

v(-n·v + u(r, v»-J;(r, v) 

= iJ(r, v) + J vu(r, v ~ v')lf;(r, v') dV, (39) 

-J;(r., v) = 0, n·no> O. (40) 

(We have hypothesized that such a solution exists.) 

If we now multiply Eq. (37) by -J;(r, v), and multiply 
Eq. (39) by ift(r, v), subtract and integrate over 
r and v, we obtain 

X ift(r, v/)-J;(r, v) 

- J d3
r J d3v J dVvu(r, v ~ v')lf;(r, v')ift(r, v) 

(41) 

The left-hand side of this equation has been obtained 
with the help of Gauss' Theorem, and by virtue 
of Eqs. (38) and (40), it vanishes. Similarly, the 
first two terms on the right side of Eq. (41) cancel, 
and we obtain 

Since ij(r, v) is arbitary (and positive), it follows that 

ift(r, v) ; 0, (43) 

proving the theorem. 
We note that the conditions of this theorem are 

satisfied for (among other cases) c(r, v) < 1; thus, 
Eq. (39) can possess no solution for c(r, v) < 1 
subject to the boundary conditions (38). Since these 
are precisely the equations satisfied by the neutron 
density in a reactor, we have succeeded in proving, 
as a byproduct, the not surprising result that a 
reactor cannot be critical if fewer neutrons are 
emitted than absorbed following each collision 
(c < 1). A simpler proof of this theorem (and of 
the following theorem) for the case that only 
scattering and pure absorption are present (i.e., no 
fission), is given in the Appendix. 

The analog of Theorem (16) is: 

Theorem 17. If an L 2 solution of the time-in­
dependent transport equation exists, then an L 2 

solution of the time-independent adjoint equation, 
if it exists, will be unique. 

The proof of this theorem is essentially identical 
with that of Theorem 16. The implication of this 
theorem is that a reactor cannot be critical if 
c'(r, v) < 1. This can be seen from a slight modifica­
tion of the arguments used above to show the 
same result for c(r, v) < 1. 
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vn. SOME MISCELLANEOUS RESULTS 

In the previous section we have pointed out 
that the uniqueness of the time-independent solution 
is equivalent to the statement that a reactor cannot 
be critical. Thus we have shown (Theorem 16) 
that no reactor can be critical for e(r, v) < 1, 
which is, of course, physically obvious. However, 
such a condition is somewhat too stringent since 
it is clear that, for a system of finite size, neutron 
leakage may prevent a reactor from becoming 
critical even for e somewhat larger than one. 

We can obtain an estimate of the minimum 
value of e for which a reactor of a given size will 
become critical from Theorem 12. The proof, 
which we omitted in Sec. VI, involves the construc­
tion of the Neumann series solution to the following 
integral equation for the collision density X = 1Tc/>: 

Here T is the average optical chord length of the 
system and c is the average value of e(r, v). 

This expression should give a rough estimate 
of critical size since one can write 

T = a-t, (49) 

where a- is the average cross section and l is the 
average chord length (4V/S). The averages of e 
and IT are taken both with respect to r and v. 

A second result which follows from the theorems 
proved in the earlier section is that the solution 
of the time-dependent transport or adjoint equations 
can increase no faster than exponentially if the 
source is of exponential order or less. Consider 
first the transport equation. Let us write the source 
in the form 

Q"(r, v, t) = Qo(r, v)t(t). (50) 

x(r, v) = IT(r, v)Q'(r, v) + Ax(r, v), 

where A is the integral operator 

(44a) For simplicity we shall assume that Qo and e" 

M(r, v) = foR' dR J dVv' v d3r' 

X exp [-a(r,r', v»)IT(r, v) oCr' - r + Ro.) 

X IT(r', v' -+ v) tC' ') 
( ") r ,v . ITr,v 

(44b) 

In the proof, one shows that if 

.r J d3
v d3rXn(r, v) ~ M, (45a) 

then 

Actually, a somewhat stronger condition holds, since 
from Eq. (44b) it follows immediately that 

II d
3
v d

3
rAXn+l(r, v) = I dar I d3

v I dV 

X (1 - exp [-a(r, r + R.o., v))) 

are bounded. Then we wish to examine the time­
dependence of the Neumann series, Eq. (19). Since 
Qo is bounded we have 

1/;0 ~ Mt(t) , 

1/;1 ~ Me::axlTmax { ttU) dt, 

and in general 

X { dtl {- dt2 ••• 1'"-- t,.t(tn) dt,.. 

Now from Euler's identity 

l ' dtl .. ·1'0-- int(tn) dtn 
() 0 

l ' (t t,),,-I 
= t(t') dt' 

5 (n - I)! ' 

we have 

(51) 

(52) 

(53) 

(54) 

(55) 
X IT(r, v' -+ v) Xn(r, v'). 

IT(r, v) 
(46) Thus 

In obtaining (45b) , the exponential in Eq. (46) 
was set equal to zero. If instead we approximate 
Eq. (46) by the expression 

(1 - e-f)c II Xn(r, v') d3r dV, (47) 

we see that an approximate limit for the convergence 
of the Neuman series is 

(48) 

(56) 

or 

if; ~ Mlmax exp (e::axlTmaxt). (57) 

~hus the time behavior of 1/; is asymptotically given 
eIt~er by I~t) or b~ the exponential exp (e" maxlTmaxt), 
whichever IS more Important at large times. 

If I(t) = ea
', the integral in (54) can be evaluated 

explicitly: 
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I (t) = l' (t - t'r-
1 

al'dt' 
n 0 (n _ I)! e 

(5S) 

Clearly, 

al a (1 -a,) 
I .. (t) = (n ~ 1)! (_1)"-1 aan-=r -a

e 
, (59) 

SO that 

.1. < M (C~axumaxr'(-1)"-1 an
-

1 (1 - e- a
,) 

'Yn = (n - 1)! aan-=r a ' (60) 

for n > o. Then 

if; ~ M[ 1 + c~axum .. ,/' 
X 1: (c~axU~ .. x)" (-1)" ann (1 - e-

al
)] , 

n-O n. aa a 
(61) 

or 

arbitrary function to be chosen later. Then Eq. (37) 
becomes 

V o V cf!.. + vucf> = I V' u(v' ~ v) cf>(v') dV (A4) 
F F F(v') , 

with 

cf>(r., v) = 0, Oono < o. (A5) 

[The function F must be chosen so that Eq. (A5) 
is still satisfied.] 

If Eq. (A4) is multiplied by cf>(r, v) and integrated 
over r and v we obtain, with the aid of Gauss' 
Theorem, 

.! 1 dS 1 davn oV cf>\r, v) 
2 0 F(r, v) , 

+ 1 dar I d3vvu(r v) cf>2(r, v) 
, F(r, v) 

= 1" r d3v dVv' (r v' ~ v) cf>(r, v) cf> (r , v') . J u , F(r, v') (A6) 

Next consider the identity 

[cf>(r, v) - cf>(r, V,)]2 ~ 0, (A7) 

where Taylor's theorem has been used to perform or 
the sum. We note that this limit is always positive. 

cf>(r, v)cf>(r, v') ~ !{cf>\r, v) + cf>(r, V,)2}. (AS) A very similar argument can be used to delimit 
the time behavior of the adjoint equation; we 
shall omit it here. 

APPENDIX 

Theorems 16 and 17 may be proved in a different 
manner from that used in the text if we assume that 
no mechanism is present for neutron regeneration 
other than ordinary elastic and/or inelastic scatter­
ing. [We note that in this case c(r, v) ~ 1.] In such 
a case, we expect that the kernel u(r, v' ~ v) obeys 
the principle of detailed balance 

v'M(v')u(r, v' ~ v) = vM(v)u(r, v ~ v'), (AI) 

since in the absence of sources and sinks of neutrons, 
an equilibrium should be approached. The equi­
librium spectrum M(v) is the Maxwell-Boltzmann 
distribution 

M(v),...., v2 exp [-t(Mv 2/kT)]. (A2) 

Consider now Eq. (37) of the text, with the 
boundary condition, Eq. (3S). Define a new depend­
ent variable by the relation 

cf>(r, v) = F(r, v)if;(r, v), (A3) 

where F(r, v) is some well-behaved but otherwise 

Then, by virtue of (AS), the right side of Eq. (A6) 
may be written 

1" r d3v dVv' (r v' ~ v) cf>(r, v) cf> (r , v') 
J u , F(r, v') 

~ ~ 11 d3
v dVv' u(~~:;; v) {cf>2(r, v) + cf>2(r, v')} 

(A9) 

= .! J d3v'v' u(r v')c(r v') cf>\r, v') 
2 "F(r, v') 

+ .! lor d3 d3" u(r, v' ~ v) 2( ) 
2 J v v v F(r, v') cf> r, v 0 

(AIO) 

If we now choose F(r, v') = l/M(v'), the second 
term on the right of Eq. (AlO) becomes 

~ II d3v dVv'M(v')u(r, v' ~ v)cf>2(r, v) 

= ~ II d3v dVvM(v)u(r, v ~ v')cf>2(r, v), (All) 

by Eq. (AI). This becomes, upon integration over v', 

~ I d3vvM(v)u(r, v)c(r, v)cf>2(r, v). (A12) 

writing M(v) for liFer, v) throughout Eq. (A6) , 
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and using (A9), (A10), and (A12), we find 

~ J dS J d3vno·vtlNr, v)M(v) 

+ J asr J d3vvM(v)u(r, v)tI/(r, v) 

- J d3vvu(r, v)c(r, v)vM(v)c/l(r, v) ~ O. (AI 3) 

The first term on the left side of Eq. (A13) is, 
by virtue of (A5), nonnegative. The other two 
terms combine to give 

(A 14) 

which is always nonnegative since e(r, v) < 1. 
However, Eq. (A13) tells us that the sum of these 

JOURNAL OF MATHEMATICAL PHYSICS 

terms is nonpositive. Thus 

cjJ(r, v) == 0, (A15) 

and the theorem is proved. We see that a reactor 
with no fuel can never be critical. 

The uniqueness of the time-independent adjoint 
equation for the case of no reproduction can be 
proved in an entirely analogous fashion. This 
method is a slight generalization of that used in 
reference 1 for proving uniqueness of the one-speed 
equations. 
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In the first part of this paper, it ill investigated, apart from theperturbation-theoreticalbasie,under 
what conditions the perturbation-theoretical integral representations can be derived, and two the­
orems are given concerning this problem. In the second part, the asymptotic behavior of the weight 
function in the integral representation is investigated in perturbation theory. It is proved that the 
weight function vanishes at infinity for an infinite sum over certain graphs which are much more 
general than the ladderlike graphs. This result gives the analyticity in the right half-plane of complex 
angular momentum. 

I. INTRODUCTION 

I N a previous paper,l which is quoted as I, we have 
investigated various analyticity and uniqueness 

properties of the perturbation-theoretical integral 
representations. The purpose of the present paper 
is to make some further investigation on analytic 
properties and to examine the asymptotic behavior 
of weight functions. 

In Sec. II the Deser-Gilbert-Sudarshan-Ida 
(DGSI)-type integral representation2 is investigated. 

* Present address: Brookhaven National Laboratory, 
Upton, Long Island, New York. 
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The conditions under which it can be derived are 
given in a practically more convenient form than 
that given in I. 

The integral representation for the scattering 
amplitude3 consists of three terms, each of which is 
nothing but the DGSI-type integral representation 
for two variables among 8, t, and u. Hence the 
analyticity domain D of the former is the inter­
section of those of the latter. In Sec. III it is proved 
that a function holomorphic in D can always be 
written as a sum of three functions holomorphic in 
the analyticity domain of the DGSI-type integral 

3 N. Nakanishi, Progr. Theoret. Phys. (Kyoto) 26, 337, 
927 (1961). 


