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The dispersion relations for the classical electromagnetic modes in a uniform, magnetized, 
monoenergetic plasma, are reconstructed from a fluid approach. Under study are the Alfven waves 
(parallel propagation) and the magnetosonic waves (perpendicular propagation). This fluid theory 
accounts for finite Larmor radius effects to all order, and is shown to yield identical results from the 
Vlasov formulation. Q 1995 American Institute of Physics. 

1. INTRODUCTION II. THE MODEL 

In a previous paper,’ hereafter called I, the classical elec- 
trostatic modes, such as the Bernstein modes, the loss cone 
modes, and the Harris dispersion relation are reconstructed 
from a fluid theory. The theory begins with the assumption of 
a monoenergetic plasma. By simply calculating the displace- 
ment x1 of a fluid element from its equilibrium position x0, 
the charge perturbation density nt , and the dispersion rela- 
tion, immediately follow. The effect of a general equilibrium 
distribution function is included only at the end, by a trivial 
superposition of the result obtained for the monoenergetic 
plasma. Finite Larmor radius effects to all order and kinetic 
effects are fully accounted for, as this fluid theory is shown 
to yield identical results from the solution to the linearized 
Vlasov equation. 

We consider a uniform, neutral, plasma subject to a uni- 
form external magnetic field, B,=z^Bo. On this equilibrium, a 
small signal electric field of the form 

EI=EIo exp(iot-ikex), (1) 

is imposed. From Faraday’s law, the accompanying magnetic 
field perturbation is 

B1 =Blo expjiwt-iksxj, 

kxE,o 
BIO= o . 

In this paper, we extend the fluid theory to treat electro- 
magnetic modes, where the magnetic field perturbations are 
important. We need to calculate the perturbation current den- 
sity Ji , in response to a small signal electromagnetic field. It 
suffices to demonstrate the equivalence between the fluid and 
the Vlasov approach for a monoenergetic plasma, as the re- 
sult for a general equilibrium distribution function may be 
obtained from a trivial superposition, as in I. As is well 
known, and explicitly demonstrated here once more, the dis- 
persion relation is simply a statement of the conservation of 
energy-the electromagnetic energy of the mode is derived 
from the work done by the fluid displacement x1 on the small 
signal electromagnetic field. This dispersion relation will be 
derived for both parallel propagating waves (Alfven mode) 
and perpendicular propagating waves (magnetosonic mode). 
For both cases, it is shown to be identical to the Vlasov 
formulation. 

For the Alfvdn wave and the magnetosonic wave, we 
may focus mainly on the small signal current carried by the 
singly charged ionic component. For simplicity, we assume 
that, in equilibrium, the ions have a monoenergetic velocity 
uI perpendicular to the magnetic field, and zero veIocity 
along the field line. Let xO=(~o,yo,zo) be the unperturbed 
position of an ion fluid element. Then 

xo=xg- 2 sin(fit+ $), 

yo=yg+ 2 cos(Rt+ l),), 

zo=P=const, s 

In Sec. II, we describe the model. In Sets. III and IV, we 
use the fluid theory to derive the dispersion relations, respec- 
tively, for the kinetic Alfvin waves and for the kinetic mag- 
netosonic waves. The corresponding Vlasov theories are 
given in the Appendices. Discussions of some interesting is- 
sues are given in Sec. V. 

where $2=eBolm is the ion cyclotron frequency and the con- 
stants p, 4, xg I and y, are used to label the fluid element. In 
the presence of perturbation, this element suffers a displace- 
ment x1 from its equilibrium position. Hence, its instanta- 
neous position is 
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x=xo+x~(x().t). (4) 

Hereafter, the subscript 1 is used to denote linearized values 
and the subscript 0 the unperturbed values. The independent 

0) 

(3) 
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variables (x,,t) in Eq. (4) are known as the polarization 
variables2 In these variables, the current density perturbation 
is given by2 

Jl(xo,t)= & (enox,)+Vx(enox,xvo), (5) 

where va is the unperturbed velocity and no is the density 
attached to the fluid element. Equation (5) is valid for a 
general equilibrium density and velocity profile. For the 
present study, vO=(XO,~O,iO) is obtained from (3) and tie is 
a constant. For perturbation quantities given in the form of 
Eqs. (1) and (2), Eq. (5) becomes 

Jl=eno[iwxl-ikX(xlXvo)]. (6) 
Since we are only dealing with small perturbations, we 

rewrite Eq. (1) as 

E,=iE,,e iwt-ik.x efE,Oeiwf-ikh%, (7) 
where e^ is a complex vector of unit magnitude and El0 is the 
(arbitrary) small signal complex amplitude. The Maxwell 
equations, combined as, 

02 
kx(kxE,)+ c2 E,=iwpOJ,, 

yield 
6.J2 
7-(kxe^).(kxi*)= 

iwpoJI 2” 

EIO 

(8) 

(94 

Equation (9a) is obtained by substituting Eq. (7) into Eq, (8) 
and then dot multiplying the result by 2*, where the asterisk 
denotes the complex conjugate. Since J, is linearly propor- 
tional to E,o, Eq. (9a) is the dispersion relation, after aver- 
aging its right-hand member over a Larmor period. Equation 
(9a) is a statement of energy conservation: the electromag- 
netic mode, represented by the left-hand side, is powered by 
the work done of the radio frequency (RF) current J, onto 
the RF electric field E,,, the latter is represented by the 
right-hand side of Eq. (9a). Alternatively, Eq. (6) yields the 
appealing relationship, 

J,~Ef=enoiwx,~(ET+voXB~), Pb) 

where use has been made of Eq. (2) The right-hand side of 
Eq. (9b) is simply the work done per unit volume on the fluid 
displacement xi by the small signal electromagnetic force, 
expressed in complex notation. 

Since we are considering a uniform medium, we set 
xg = 0 hereafter. 

III. AL&N WAVE 

We first consider the Alfvin wave, which propagates 
parallel to the external magnetic field ?B,. We postulate that 
E, will be mainly polarized in the x direction3 (This as- 
sumption, as well as the role played by the electrons that has 
been implicitly assumed, is discussed more fully in the last 
paragraph of this section.) Then B, is in the y direction, and 
we have [Fig. l(a)] 

k= ik, , ;=z*=; W,o , B,=j--e iwr- ik,z 
6J 

(a) A&en Wave (b) Magnetosonic Wave 

FIG. 1. The propagation vector k, and the electromagnetic fields E, and B, , 
for (a) the Alf&n mode and (b) the magnetosonic mode. 

If we use the equations in (10) in Eq. (9a), the dispersion 
relation becomes 

w2 
--g-k:= 

iwpoJ, .i 
El0 

e-iut+iktzo(tl 

To calculate J,, we start from the linearized Lorentz 
equations, 

.Z,= -Qj,+ i Eloeiwt- ikp, (124 

j$=.n.t,, (12b) 

Equations (12a)-(12c) can be solved to yield 
( e/~)ElO@-ik:P 

Xl= -rdw23.~* ’ (134 

,-i(fh+&)+iwf-ik:p 

c W) 

which may be used in (6) to obtain J, . The dispersion rela- 
tion (11) then yields, upon averaging over the cyclotron 
period,’ ‘~ 

where wP = dc is the ion plasma frequency. We 
show in Appendix A that the dispersion relation (14) can be 
obtained from the Vlasov approach, Thus, this dispersion 
relation retains all finite Larmor radius effects according to 
this model [Fig. l(a)]. It reduces to the well-known results 
when u ,-+O [cf. Eq. (7.211) on p. 162 of Ref. 31. As it 
stands, Eq. (14) yields unstable modes when wp and uI are 
sufficiently large. 

A few words on the polarization and on the role played 
by the electrons are in order. Once the propagation vector, k, 
is specified, the small signal electric field, El, can no longer 
be specified independently. It is well known4 that the fre- 
quency and the associated electromagnetic field, E, , need to 
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be determined, respectively, as the eigenvalue and the eigen- 
vector obtained from the conductivity tensor corresponding 
to the (prespecified) wave vector It In the case of the low- 
frequency Alfvin wave, k]lB,, the small signal current J1 that 
drives the electric field [Eq. (9a)] originates mainly from the 
polarization drift of the ionic component. This comes about 
because (a) the polarization drift of the electronic component 
is smaller by the mass ratio between an electron and an ion, 
and (bj the El XB, drift, which is the same for both eleCtrons 
and ions, does not contribute to a net current.3 Thus, we 
postulate that the RF electric field is polarized in the x direc- 
tion and consider only the ionic perturbation current in that 
direction [Eq. (Sa)], as is done in this paper for both the 
Alfv6n wave and the magnetosonic waves.5 

IV. FAST MAGNETOSONIC WAVE 

The fast magnetosonic wave propagates perperidicular to 
the external magnetic field, say, in the y direction. Again, we 
postulate that the electric field is polarized in the x 
direction.3 Thus, we have the following [Fig. l(b)]: 

b ,i. 
2 c~(tn+l--Ll> 

+ V,+I + v,,-~l Jn(b)einm’2, 1. (21) 

k=k,y^, ;=e^*=; which may be simplifit5d to read as 

Equation (9a) becomes 

oJ2 
F-k;== 

io,uoJ1~~ _. 

El0 

e zot+ib cos(Ot++) 
9 

where b = k,,v,lfi. 
The Lorentz force law is linearized to yield 

06) 

(174 

(17b) 

Zl . . =() I (174 

where El, = ,glOeimf-ib cos(nt+6), B,,= -k,E,,/~, and i. 
and y0 are equilibrium velocities derived from Eq. (3). To _ 
solve these differential equations we write the solutions in 
the form :_ 

m 
x1 -,“,E;; 2 gneiof-in(nr+~), 

nz-CQ 

m 
rl=Z!$ x ?Ineior-in(fh++). 

n=-03 

where W=C& and a prime (‘) denotes the derivative with 
respect to the argument. We have used the Bessel function 
identities, 

ib cm $- @... Gi 5 .Jn(b)e’in@in?r’2, 
n=-m 

e -ib tos q5= a*.. jn(n(bje+ind-inr/2, 

.I” 

@O) 

in which either the + or - sign may be used in (+) in the 
right-hand members. We insert (18a) and (18b) into (6), and 
take the x component. Equation (16) then gives, upon aver- 
aging the right-hand side over a cyclotron period,’ 

The following Bessel identities have been used: 

c J,(b)[J,~I(b)-J;,,(b)]=O,. 
n 

2 J,@J;tb)=O, J-,(b)=(-l)“J,(b), (23) 

c .$(b)=l. . 

U8d 
V. DISCUSSIONS 

(18b) 

5 = f,,(b)(ti-n)2+bJ:(b) 
‘* o(G-n)[-(&M#+l] 

e -ind2 

’ 

B =I-an 1 -- 
II i 

+- in Jn(b)e-i”=‘2, 

In Eqg. (22) and (23), the summation index n runs from --6o 
to ~0. In Appendix B, we shall recover the same dispersion 
relation (22j using the Vlasov approach. This dispersion re- 
lation yields unstable mode solutions when wP and vI are 
sufficiently large. Equation (22) reduces to the well-known 
result3 as vI-+O, i.e., as b-+0. 

Substitution of Eqs. (18a) and (18b) into Eqs. (17$ and 
(17b) yields - 

(194 

WW 

The reconstruction of the major electrostatic modes in I 
and the -electromagnetic-modes that is give-n here-still makes 
one wonder whether the fluid approach is capable of offering 
an equivalent formulation of &l11 kinetic effects. While we 
have so far only explicitly demonstrated the equivalence for 
a uniform plaSina,5 we believe that such a linearized fluid 
theory may be extended to a nonuniform plasma, as Eq. (5) 
is valid for a nonuniform medium.’ 

In a “weakly” nonuniform plasma, the eikonal approxi- 
mation is essentially one in which the equilibrium quantities 
are regarded as a local constant. Thus, the expression for J, , 
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Eq. (6), gives the current response in a weakly nonuniform 
plasma under the eikonal approximation. It accounts for all 
kinetic effects under such an approximation. 

The a local theory clearly needs modification when there 
is a sharp boundary, or when the local wavelength is compa- 
rable to the inhomogeneous scale length. However, in the 
latter case, considerable insight may still be gained, as the 
asymptotic theories are known to yield reliable answers even 
when the (small or large) expansion parameter in such theo- 
ries turns out to be of order unity. 

There are subtleties that require some discussions. In any 
treatment of electromagnetic modes, the propagation vector 
k is first specified. The polarization in El needs to be calcu- 
lated and cannot be independently assigned.3” In our treat- 
ment of both kinetic Alfvin waves and magnetosonic waves, 
we did specify a priori the polarization in El in addition to k. 
In spite of these potential inconsistencies, the finite Larmor 
radius effects from both the fluid approach and from the 
Vlasov approach turn out to be identical. This is even more 
remarkable in the case of the magnetosonic waves. In its 
fluid description, the perturbed displacement x,, and there- 
fore the perturbed current density J,, depends on the per- 
turbed magnetic field B, =kXE,/w, which admittedly may be 
inherently inconsistent, since the electric field Et has been 
assigned a priori. On the other hand, in the Vlasov approach, 
the perturbation current density Jl does not even depend on 
the perturbed magnetic field [cf. Eq. (82) and the last para- 
graph of Appendix B]. Identical dispersion relations are ob- 
tained, however. 

Questions may also be raised on the justification of re- 
placing the curl operator (VX) in Eq. (5) simply by (-ikx) 
in Eq. (6). This is not an easy question to answer, even 
though this simple replacement apparently yields the correct 
answer for a uniform medium.5 Care is to be exercised in an 
analysis involving an equilibrium flow with velocity shear. 
Thus, while we have demonstrated that the fluid theory is 
able to formulate all kinetic effects without explicitiy solving 
the linearized Vlasov equation, it remains to be seen to what 
extent the present fluid theory of kinetic modes can profit- 
ably be applied to a spatially nonuniform plasma, or to a 
nonlinear theory under the eikonal approximation. 
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APPENDIX A: ALFVliN WAVE-VLASOV APPROACH 

In this appendix, we obtain the dispersion relation for the 
kinetic Alfv& waves from the Vlasov formulation. For the 
polarization given in Fig. l(a), we need to calculate the cur- 
rent response Jl, in Eq. (8): 

where 

Jlx= en0 
I &uf,) 

=enojoLdu, I,‘“*l db~~~dU,(V, cos #JY, * 

(AZ) 

The perturbed distribution function fr in Eq. (A2) is deter- 
mined from an integration over the unperturbed orbits:3 

fl= j-;Kdtf( -;)[E;+v’xBi]+ 2, 

wherefe=fo(u,, vZ) is the equilibrium distribution function 
and the primes (‘) designate quantities evaluated along the 
unperturbed orbits. The equations for the unperturbed orbits 
are 

~,(t’)=u~ sin[St(t’-r)+#], 

u,(t’)=vz, 
tA4) 

X(P)” 5 sin[0(c’--t)-l-+I- 2 sin 4+x, 

Y(t’)=-- $- cos[Wt’--r)-l-$]-I- $ cos 4-t-y, 

z(r’)=u,(t’-f)+z, 

SO that at t’=t, U.r(t’)=vx=vI cos q5, 
u?(~‘)=u,=u~ sin 4, uZ(t’)=nZ, x(t’)=x, y(t’)=y, and 
z(t’) =z. Then using these expressions and Eqs. (1) and (2) 
of the main text into Eq. (A3), we obtain 

In this paper, we consider only a monoenergetic plasma 
with the equilibrium distriburion function: 

fo(v) = & s(vl-vlo)~(~z)~ 

where 6 is the Dirac delta function. Upon substituting Eq. 
(A6) into (A$ and the resultant expression into Eq. (A2), 
we obtain from Eq. (A 1): 

$-k;=$[ -Il;zw’+l~ll((w:n)f 

1 
+t )i o-t-k)2 ’ (A71 

which is identical to Eq. (14), the dispersion relation con- 
structed in Sec. III using the Auid approach. 
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APPENDIX B: FAST MAGNETOSONIC WAVE- 
VLASOVAPPROACH 

For the magnetosonic wave [Fig. (lb)], the dispersion 
relation (8) becomes 

and J1, is given by Eq. (A2). 
Again we determine the perturbed distribution function 

by integrating over unperturbed orbits. For the magnetosonic 
wave, with electromagnetic fields as specified in Fig. l(b), 
Eq. (A3) may b e simplified to read as 

S,=y&df( -;)( q. 2). 0321 

If we let &+o/Cl and b=k,vl10 as in Sec. IV, and use Eq. 
(7) and the unperturbed orbit equations. (A4), .we obtain, 
from Eq. (B2), 

co ind2 

X 2 J,(b) + 
,-i(n-I)$ 

II= -a i(8-a+ 1) 

e-iln+l)d 

+ 
i i(8--n-l) ’ 033) 

where we have used the Bessel function identities (20). We 
next use the unperturbed distribution function (A@ in Eq. 
(B3), and substitute the resultant expression in Eq. (A2). The 
dispersion relation (Bl) then reads as 

f&k:;(;) 3(i) 

xg (d/db>([b(d/db)J,(b)12} 
0-m 9 034) 

,n= -0) 

where we have used the following Bessel function relations: 

J:(b)=-;J:n(b)- 

J,-,(b)-J,+,(b)=2J~(b), 035) 

2m 
J,-l(b)+J,+l(b)=bJ,(b). 

Equation (B4) can be shown to be equivalent to Eq. (22) of 
Sec. IV 

If is interesting to note that even though the fluid ap- 
proach and the Vlasov approach produce equivalent disper- 
sion relations, the vXB, term is absolutely necessary in the 
fluid approach [cf. Eqs. (9a) and (9b)], but does not contrib- 
ute to the Vlasov theory of the magnetosonic waves [cf. Eq. 
W)l. 
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‘We have also used the fluid approach given in this paper to reconstruct the 
dispersion relation for the Weibel instability [E. S. Weibel, Phys. Rev. Lett. 
2,83 (1959)]. In this case, the polarization of the small signal electric field 
and the role played by the electrons are vastly different from the kinetic 
Alfven mode, even though both modes are electromagnetic and are char- 
acterized by k//B,. The Weibel instability is a high-frequency kinetic 
mode, in which the ions may be taken as infinitely massive. For an elec- 
tron equilibrium distribution function given by Fq. (A6) of Appendix A, 
the small signal electric field, Et, is no longer linearly polarized. By as- 
suming a general polarization orthogonal to the external magnetic field, we 
solved for the fluid displacement x1 in response to Et [and to B, by virtue 
of Bq. (Z)]. We next used Bq. (6) to recalculate the small signal current 
density, J, . The eigenvector Et constructed out of Bq. (8) for the electro- 
magnetic modes then turns out to be circularly polarized, and the disper- 
sion relation obtained from this fluid reconstruction is identical to Bq. (8’) 
of K. R. Chu and .I. L. Hirshfield [Phys. Fluids 21, 461 (19’78)]. 
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