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The stability of a viscous fluid between rotating cylinders and with a radial temperature gradient
against the formation of axisymmetric disturbances (Taylor vortices) is considered, and it has been
found that viscosity has a dual role. If the circulation increases radially outward (so that the flow
would be stable in the absence of density variation) but the density decreases with the radial distance,
the situation can arise that viscosity actually has a destabilizing effect. In the opposite circumstance,
thermal diffusivity is always destabilizing. Detailed results for small spacing of the cylinders and
sufficient conditions for stability of a revolving fluid of variable density or entropy also are given.

I. INTRODUCTION

OR a homogeneous fluid flowing between rotating

concentric cylinders, Synge' has shown that if
the circulation increases with radial distance the
flow is always stable. If the density of the fluid
also has a radial variation, the arguments of von
Kéarman, as presented in the book by Lin,* can be
used to show that, in the absence of viscosity, the
flow in the case of a liquid is always stable if pT'?
increases with the radial distance, with p denoting
the density and TI' the circulation of the fluid in
jts undisturbed state. In this paper the stability
of a liquid between coaxial rotating cylinders and
with a radial density gradient is considered. The
disturbances are assumed to be axisymmetric, not
two dimensional, as assumed by Chandrasekhar.’
The chief points to be made are that, even if pI'®
increases with the radial distance, the flow can
actually become less stable or even unstable (1)
for increasing kinematic viscosity if I' increases but
¢ decreases outward, and (2) for increasing thermal
diffusivity if T' decreases but p increases outward,
and that the flow is stable if both p (of a liquid)
and T increase with radial distance.

The destabilizing effect of thermal diffusivity in
case (2) is almost exactly the same as in the very
interesting case of gravitational instability dis-
covered by Stommel et al.* In their case a fluid
(water) has a temperature increasing and a salinity
increasing with height in such a way that their
combined effect is to make the density decrease
with height, and, superficially, to make the fluid

1]J. L. Synge, Proc. Roy. Soc. (London) A167, 250-256
(1938).

2 C. C. Lin, The Theory of Hydrodynamic Stability (Cam-
brid%e University Press, New York, 1955), pp. 49-50.

38, Chandrasekhar, J. Ratl. Mech. Analysis 3, 181-207
(1954). .

+ H. Stommel, A. B. Arons, and D. Blanchard, Deep-Sea
Research 3, 152-153 (1956 ).

stable. However, since the thermal diffusivity of
water is much greater than its salinity diffusivity,
a displaced particle will harmonize with its new
surroundings more readily in temperature than in
salinity. Consequently, the original cause for sta-
bility ean be diminished to such a degree that
instability due to adverse salinity gradient actually
occurs. In the present case (2) thermal diffusivity
plays exactly the same role, although the cause of
instability is not gravity but centripetal acceleration.

The destabilizing effect in case (1) lies in the
fact that as a material ring is displaced, its density
may harmonize with that in the ring's new sur-
roundings less readily than the circulation along it,
because of the diffusive effect of viscosity, and
consequently the product pT* of the ring may exceed
that in its new surroundings, causing the ring to
move further.

Inasmuch as viscosity is a momentum diffusivity,
its destabilizing effect in case (1) is similar to that
of thermal diffusivity in case (2) or in the case
considered by Stommel ef al., but not entirely.
Aside from being an agent for momentum diffusion,
viscosity is always a dissipative agent responsible
for the eventual conversion of kinetic energy into
heat. Thus, except in the case of Tollmien-Schlicht-
ing waves for which viscosity also plays a dual role,
the effect of viscosity has always been to stabilize
a flow. Certainly in the case of flow of a homogeneous
fluid between rotating cylinders, Sir Geoffrey Taylor®
showed, among other specific results, that viscosity
ig stabilizing. Therefore, if viscosity is found to be
destabilizing in the case of a nonhomogeneous fluid,
it must have a dual role which thermal diffusivity
cannot have. In the case of Bernard cells, thermal

diffusivity is entirely stabilizing. In the case of

& G. I. Taylor, Phil. Trans. Roy. Soc. London A223, 289-
343 (1923).
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Stommel’s ‘‘salt fountain’’ or in the present case (2},
thermal diffusivity is entirely destabilizing. It can-
not play af once the dual role which viscosity
stmultaneously plays. Since the destabilizing effect
of viscosity is so rare that it is now exclusively
associated with Tollmien-Schlichting waves, it seems
worthwhile to present an essentially distinct instance
of the same effect.

The second part of this paper is a discussion of
the effect of compressibility on the stability of a
revolving gas. A new criterion for stability is derived
by neglecting the effects of viscosity and diftusivity.
But since either viscosity or diffusivity can be de-
stabilizing, as will be shown, even this criterion is
not very useful and must be replaced by a more
stringent one in the form of two conditions to be
simultaneously satisfied.

1I. FORMULATION OF THE PROBLEM

The radii of the cylinders will be denoted by
r. and r, (with r, > r,). The angular velocities of
the cylinders will be denoted by ©, and ©,. Thus
the velocity of mean flow is, in cylindrical coordi-
nates (r, 9, 2),

V=Ar+ B/, 1
in which
Qi — (9 — Q)i
Ay = rp—r By = s — 1, )

If the temperatures at the walls are T, and T,
the temperature distribution in the primary flow
is given by

Inr —Innr

T=T+@-T) Inr, —Inr,’

®3)

The density distribution is then given by
p=pll —aol —T))], €

in which « is the coefficient of volume expansion.

If axisymmetry of the disturbance is assumed,
the linearized equations of motion are, with 6 as
the temperature perturbation,

du 2V V2]
”‘[at Ty T of r

_ ap . u
-y (vl @

i}
p1<—ai; + 2A*u> = M<V2v - %), (6)
dw _ _dp \V&i
P1 EY, 3z I w, (7)
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in which u, », and w are the components of the
velocity of the disturbance, p the perturbation pres-
sure, ¢t the time, x the viscosity, which is assumed
constant, and

19

v 12, 2 ®
The equation of continuity is
[0(rw)/dr] + [8(rw)/d2] = O. 9
The diffusion equation is
86/9t + w(dT/dr) = xV’0, (10).

in which, as stated before, 6 is the temperature
perturbation (not the second coordinate which is
not needed because of axisymmetry), and « is the
thermal diffusivity.

Assuming, after Taylor,

(, v, 6) = [w,(@), n(), 6:(r)] cos \ze”,
w = w,(r) sin Az €™,

and utilizing the equation of continuity, we can
write the equations of motion and of diffusion as

2 V7

VL<L — A\ = %)u, = 2° 7Vv1 —a\ -6, (1D
WL — N — (o/0)]0, = 24, u,, (12)
KL — N — (o/0)]6, = dT/dr)u,, (13)

in which

The conditions that the velocity components vanish
at the boundaries can be written, by virtue of (9),
in the following form:

u = 0, du,/dr = 0, v, =0

at r =7 and 7. (14a)

The boundary conditions for 6, are, if the walls
are assumed much more conductive than the fluid,

6, =0 at r=r, and 7. (14b)

The differential system consisting of (11)—(13) and
the boundary conditions define an eigenvalue
problem.

III. CASE OF SMALL SPACING

Since the purpose of this paper is to investigate
the roles of » and «, we shall, for simplicity, assume
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r, — 7, < r;. In this case it is appropriate to use
the dimensionless quantities

E=(0—r)/lrn—r1), k= Xr, —r),
R = 91(7'2 - 7'1)2/1’, (15)
in which & varies from zero to 1, k is the dimension-

less wave number, and R’ a Reynolds number. If,
furthermore, the substitutions

(U2, U’) = (erl)—l (uly vl) alnd 0 = a01 (16)

are made, Egs. (11) to (13) become, if higher powers
of (r, — r)/r. are neglected in the differential
operators on the left-hand sides,

a'R')
KLU

2 2 2 7.2 _
(D —k)(D F-%

= k%R — k2w2R'<1 + Q;——rlé)ﬁ', 17
L .

[D? — k? — (oR’/Q)) = 2AR"s,

2 _ g2 _ oR ),_
(D B =5 Pr)o =

(18)

Pé(ozr1 (d;??,—)uz (19)

In these equations, Pr is the Prandtl number »/«,
D = d/dg,

Pé = Qi(r, — r)%/k (20)
is the Péclet number, and
o=V =A+B[1+ @ —r)t/r]? (21)
with
R e
(rs — )9’ (r3 — )
Thus
A+ B-=1,
and
w=14a% o =@/ —1, (23

with higher powers in (r, — r,)/r, neglected. Now,
from (3) it follows that

ﬂ___Tg—Tl(l_rz_rls)

dr Te — T r

— o1 - ?’T‘”—z) (24)
so that for r, — r, << 1y,
dT/dT =g = (Tz - Tl)/(rz - 7'1)- (25)

It will now be assumed that for neutral stability
o is zero, and not merely equal to a purely imaginary
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number. Furthermore, the following calculation is
based on the assumption that o' is moderately
small, so that a’® < 1. Under these assumptions, (17),
(18), and (19) become, after the term &(r, — r,)/r,
is neglected in (17),

(D* — k’u; = 4AR”K*(1 + o’E)v,

— PéR'afrk*(1 + 2a'8)6,, (26)
(D* = KWy = 1w, 27
(D* — k8, = us, (28)
with
v, = v'/2AR’ and 6, = 0'/Pé («fr)). (29)
The boundary conditions are
u, = 0, Du,=0 at £¢=0 and 1, 30)
=0, 8,=0 at £=0 and 1. (31

Since the differential equations and the boundary
conditions are identical for », and 4,, and the left-
hand sides of (27) and (28) are not zero, we conclude
that

32)

0, = vy,
and can write (26) and (27) as
(D* — &, = K’[(C — D) + o/(C — 2D)lv,, (33)

(D* — K, = u,. (34)
with
C = 4AR", D = Pé R'ofr,. (35)

Comparing this pair of equations with that treated
by Chandrasekhar,® we see that

D—-C=T, (36)
«(C = 2D)/(C — D) = a, (37)

in which 7T is the Taylor number —4A4R’"* obtained
by Chandrasekhar in the case of no density gradient,
and a, (denoted by « in his paper) is the value of
Q. — ©,)/Q for that case. Chandrasekhar found
the critical value (7.) of T for a variety of values
of a,, all corresponding to Q,/Q, less than 1. Later,
in considering a case of hydromagnetic instability,
Yih" encountered a similar differential system and
found the relationship between T, and «, (denoted
by 8 in Yih's paper) for three values of &, which
are positive.®

¢ S. Chandrasekhar, Mathematika 1, 5-13 (1954).

7 C. -S. Yih, J. Fluid Mech. 5, 436-44 (1959).

¢ These positive values of ay correspond to stability (for

whatever T') in the problem studied by Taylor and Chand-
ragekhar, but not in the problem studied by Yih.
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Tasrg I. Critical Taylor numbers for various values of Q./Q..

Q/Q 2 1.5 1.25 1 0.50 0.25
ag 1 0.5 0.25 0 —-0.50 -0.75
3.12# 3.12= 3.122 3.12 3.12 3.12
T, 1138® 13662 1518» 1708 2275 2725
/0 0 —0.25 —0.50 —0.60 —0.70 —0.80 -0.90
ag -1 —1.25 —1.50 -1.60 —-1.70 —1.80 —1.90
k 3.12 3.13 3.20 3.24 3.34 3.49 3.70
T, 3390 4462 6417 7688 9433 11820 14940
Q/Q —0.95 —-1.00 —-1.25 —-1.50 -1.75 —~2.00
ag —1.95 —-2.00 —2.25 —2.50 —-2.75 —3.00
k 3.86 4.00 4.61 5.06 5.60 6.05
T, 16760 18680 30460 46190 67590 95630

s Values given by Yih.” The rest of the values were given by Chandrasekhar.s

The values of T, against a, are given in Table I,
with the corresponding wave numbers. The first
three lines are reproduced from Yih and the rest
from Chandrasekhar.® With 7T, substituted for T
in (36), solution of (36) and (37) yields the para-
metric relationship between C and D:

= [(ao/e’) — 2IT., (38)
D = [(a/a’) — 1]T.. (39)

For a given o/, values of o, are assumed, and the
corresponding values of T, read off from Table I,
and C and D are then computed. Since both C' and
D contain R’, in order to separate the effects of
viscosity and diffusivity, the value of D/|C|? is
plotted against C. The curves for various values of
o’ are given in Fig. 1. For each value of &’ (corre-
sponding to a positive value of ©,/Q,) there is a
curve consisting of one or two branches, above
which the flow is unstable and below which the flow
is stable. The ordinate of the curves is

D/|C)} or Péapr,/2 A}, (40)

which is independent of the viscosity. The graphs
show that for a given value of this parameter, there
is a region in which the flow is destabilized as the
viscosity is increased, i.e., the region to the right
of the point of relative minimum of the ordinate
of the curve for the particular value of o' considered.
Outside of this region viscosity is always stabilizing.
Furthermore, for negative values of C the curves
eventually dip below the horizontal axis. For each
such curve the region below the horizontal axis is a

Tasirk II. Classification of cases.

Case 1 A4 <0, g >0,
Case 2 A <O, 8 <0,
" Case 3 A =0, g8>0,.
Cage 4 A =0, 8 <0,
Case 5 A >0, g >0,
Case 6 A >0, 8 <0.

region in which thermal diffusivity has a destabilizing
effect. Outside of this region thermal diffusivity is
always stabilizing.

A. Special Case of Nearly Rigid Rotation

For the special case Q, >~ €,, o’ =~ 0, and by
virtue of (37) a, also vanishes approximately. This
makes T, = 1708. With

S = —4AR’” + Pé R’afiry, (41)

the dual roles of viscosity and diffusivity can be
brought forth very clearly by means of graphs.
There are six cases, which are given in Table II.
The first four cases are realistic because o’ is only
nearly, not exactly, zero. The cases in which 8 = |
will not be discussed here, because they have been
discussed thoroughly in the existing literature. It
may be mentioned here that for o' equal to zero
the method of Pellew and Southwell’ can be used
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Fre. 1. Stablhty chart for the case of small spacing. C =
4AR?, D = Pé R'afr,, so that D/|C]} = (1/|4A|§) Pé afr;.
For each value of Q;/(, the region above the curve or curves
corresponds to instability, and the region below corresponds
to stability.

¢ A. Pellew and R. V. Southwell, Proc. Roy. Soc. (London)
A176, 312-343 (1940).
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Unstable

Stable

6 4

F1g. 2. A schematic drawing showing the stabilizing or
destabilizing effect of viscosity for the special case 2; ~ Q.
Here S = —4AR’* 4+ Pé R'afri, and the numbering of the
curves corresponds to the six cases (or subcases) considered.

to show that for neutral stability ¢ = 0 exactly.

If S is plotted against R’ (Fig. 2), the curves
are parabolas (concave upward) in cases 1 and 2,
straight lines in cases 3 and 4, and parabolas (con-
cave downward) in cases 5 and 6. In cases 1 and 3
the effect of viscosity is stabilizing. The reverse is
true in cases 4 and 6, although the destabilizing
effect is never great enough to make the flow actually
unstable. In case 2 the effect of viscosity is mainly
to stabilize, although there is a region in which
viscosity can render the flow less stable. This
destabilizing effect is again never great enough to
make the flow actually unstable. Case 5 is the most
interesting. To the left of the crown of the parabola,
viscosity has a stabilizing effect. To the right, it
has a destabilizing effect. The destabilizing effect
can actually bring about. instability if the value
of S at the crown of the parabola is greater than

3 Unsiable

6 4 2

Fia. 3. A schematic drawing showing the stabilizing or de-
stabilizing effect of thermal diffusivity. The symbol S and
%he numbering of the curves have the same meanings as in

ig. 2.

CHIA-SHUN YIH

1708 (as shown in Fig. 2). In general, the effect
of viscosity is to stabilize if dS/dR’ > 0, and to
destabilize if dS/dR’ < 0.

S can also be plotted against Pé (Fig. 3). The
effect of diffusivity is clear-cut. In cases 1, 3, and 5,
diffusivity has a stabilizing effect. In cases 2, 4,
and 6, the opposite is true. Except in case 2, the
destabilizing effect is never great enough to make
the flow actually unstable.

From Figs. 2 and 3 it can be seen that in cases
4 and 6, i.e., when neither the circulation nor the
density decreases outward, the flow is stable. This
is not limited either to the case of small spacing or
to the special case of @, ~ £, so long as ©,/Q, is
positive. Indeed, there are only two causes for
instability: outwardly decreasing circulation and
outwardly decreasing density. When both causes
are present, viscosity and thermal diffusivity can
only be stabilizing. When only the first cause is
present, thermal diffusivity has the effect of re-
moving the stabilizing effect of the positive radial
density gradient and of bringing out the destabilizing
effect of circulation variation, possibly to such an
extent for actual instability to occur. When only
the second cause is present, viscosity has a dual
role, as mentioned before. On the one hand it is,
as usual, a dissipative agent. On the other, it tends
to equalize the circulation of a displaced fluid ring
with that of its new surrounding, and thus to re-
move the stabilizing effect of the outward increase

of cireulation and to bring the destabilizing effect

of negative density gradient in the radial direction
into prominence. When neither cause is present,
the flow is definitely stable. Consequently, the
criterion that the flow is stable

d(eV?®)/dr > 0,

derived by Rayleigh and von Kérméan (see Lin?)
from different viewpoints is not only not necessary,
but also not sufficient for stability, if diffusive
effects are taken into account. The criterion is much
more stringent when p also varies, and now reads
that the flow is stable if

dp/dr > 0 and d(Vr)’/dr > 0,

(42
or, in the case under consideration, if
B<L0 and 4 > 0. (43)

IV. EFFECT OF COMPRESSIBILITY

Siﬁce the stability of the flow of a gas between
rotating cylinders kept at different temperatures
bears upon that of the flow of a gas around a convex
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surface, which has been discussed by several authors,
it is appropriate to discuss here very briefly the
effect of compressibility.

With V denoting the velocity parallel to a solid
surface and r the normal distance measured from
the center of curvature, the criterion that for

d(p V%) /dr > 0 (49)

the flow of a fluid along a convex surface must be
stable is correct only if the fluid is a liquid and if
the effects of viscosity and diffusivity are neglected.
For a gas, a material ring displaced from r = r,
to r = r, will not maintain its density, and it is
not true that the strongest destabilizing effect is
obtained if we take 5, = p;, In which j, is the
density of the fluid ring when it has reached its
new position r = r,. In fact, the radial pressure
gradient is pV?/r, so that the pressure increases
outward, and the fluid in a material ring will be
compressed as it moves out, and have a density
5, greater than its original density p,. Thus, assuming
isentropic process, we obtain

pr = e/, (45)
and (44) should be replaced by
d(pV7r*/p'")/dr 2 0, (46)
or
d[V*® exp (—8/c,)]/dr > 0, 47

in which S is now the entropy and ¢, the specific
heat of the gas at constant pressure. The criterion
(44) obtained by Lees'® and Lessen'' is therefore
approximately correct if the change of pressure is
small. The pressure gradient, being equal to oV?/r,
is usually not large enough to cause any significant
pressure variation with r, provided the pressure at
r = r, is not exceedingly low. If only the stability
of the boundary layer (which is usually very thin)

10T, Lees, J. Aeronaut. Sci. 25, 407-8 (1958). )

11 M. Lessen, “Hydrodynamic stability of curved laminar
compressible flows,” IAS Preprint No. 812 (cited by Lees)
(1958).
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is considered, the approximate criterion used by
these authors is practically identical with (46),
and, within the implied limitations, usually quite
accurate. However, if pV** does not change with
r, the destabilizing effect of pressure variation is
quite critical, and, but for mitigating circumstances
brought about by diffusive and dissipative agents,
would actually cause instability. This is true both
in gas flow between cylinders and in gas flows around
a convex surface.

Actually, the density 5, defined by (45) is a
potential density (at a reference pressure p,, say),
the concept of which is very familiar to meteor-
ologists. Thus if we identify the pin (44) as the poten-
tial density, (44) and (46) become identical.

Neglecting pressure variation with r, Lees'® has
reached the conclusion that cooling at a convex
surface can never cause instability. This is again
usually true, provided the effects of diffusivities
can be neglected. But even under this provision
it may not be true when pressure variation plays
an important role, such as when the pressure at
the surface is low (so that pressure variation con-
tributes heavily to density variation), or when there
exists a region where d(Vr)/dr is nearly zero (pre-
sumably outside of the boundary layer).

As has been demonstrated for the case of incom-
pressible fluids, the effects of viscosity and thermal
diffusivity can be destabilizing, so that even (47)
is insufficient for the stability of real fluids. The
sufficient conditions for stability of real fluids are
more stringent, and are

dS/dr <0 and d(Vr)?/dr > 0.
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