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In this paper we consider a weighted trace formula for Schro¨dinger operators. More
precisely, let c j

\ and Ej
\ denote the eigenfunctions and eigenvalues of a

Schrödinger-type operatorH\ with a discrete spectrum. Letc (x,j) be a coherent
state centered at a point (x,j) of a hyperbolic closed orbitg. We show that, as
\→0, the leading term of( jw$@Ej (\)2E#/\%u(c (x,j) ,c j

\)u2 can be expressed in
terms of the analytic continuation on the upper and lower half-planes of the positive
and negative frequencies part ofw. The result is also related to complex trajectories
surroundingg. © 1998 American Institute of Physics.@S0022-2488~98!01908-2#

I. INTRODUCTION

Consider a Schro¨dinger operatorH52\2D1V(x) with V smooth, onRn ~in which case we
assumeV tends to infinity at infinity and thereforeH has a discrete spectrum! or on a compact
Riemannian manifold,M .

The trace~Gutzwiller! formula ~Ref. 1! expresses the smeared out spectral density ov
Fourier compactly supported test function: let$Ej% and$w j% be the eigenvalues and eigenfunctio
of H. Then, under certain hypothesis on the classical flow~for example, that the periodic trajec
tories of energyE are isolated!,

(
j

wS Ej2E

\ D;(
k50

`

ck~w!\2n111k1(
g

(
l 50

`

dg
l ~w!\ l , ~1!

whereck are distributions whose Fourier transform are supported on 0, the second sum is o
periodic trajectoriesg of energyE, anddg

l have Fourier transforms supported on the set of peri
of g.

We remarked in Ref. 2 that one can isolate the contribution of a given periodic trajecto
ponderating the sum~1! by the so-called Husimi function ofw j : let c (x,j)

a be a coherent state a
(x,j)PR2n of ‘‘vacuum’’ aPS (Rn):

c~x,j!
a ~y!5r~y2x!~2p\!23n/422n/4e2 ixj/2\ei jy/\aS y2x

A\
D ~2!

~herer is a compactly supportedC` function equal to 1 near zero!. Let (x,j)Pg, whereg is a
periodic trajectory of the classical underlying flow of energyEªj21V(x). We showed that

( wS Ej2E

\ D u~c~x,j!
a ,w j !u2;(

k50

`

nk~w!\2n11/21k, ~3!

where thenk are distributions whose Fourier transforms are supported on the set of perio
~iterates of! g.

a!Electronic mail: paulth@zin.ceremade.dauphine.fr
40090022-2488/98/39(8)/4009/7/$15.00 © 1998 American Institute of Physics
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Let us suppose for simplicity that the dimensionn52 ~the results being immediately extende
to the general case!. We remarked in Ref. 2 that ifg is elliptic, i.e., if the Poincare´ mapping ofg
is a rotation of angleu, the distributionn0 could be expressed as a Dirac measure on the ene
of the quasimodes associated tog:

n0~w!5 (
j ,kPZ

ckwS 1

Tg
S 2p j 1S k1

1

2D u1
Sg

\
1sgD D ~4!

~hereTg , Sg , and sg are the period, action, and Maslov index ofg!. On the contrary, ifg is
hyperbolicthe measuren0 is Lebesgue continuous.

In this paper we want to give another formulation ofn0 that involves the complex trajectorie
of the linearized nearg, i.e., the complex trajectories infinitesimally close tog ~see Theorem 2.1
below!. Before we state the results we would like to comment on the role of complex per
trajectories in the study of the semiclassical spectrum of Schro¨dinger operators.

Usually the complex trajectories appear to give exponential corrections to the semicla
expansions. Among the works dedicated to this problem let us mention the work of Balia
Bloch on the trace formula;3 the resurgence method of Ecalle and Voros;4–6 and more recently, the
work by Fefferman and Secco7 on the correction term of the number of negative eigenvalue
atomic systems.

More recently, Delandeet al.8 and Eckhardtet al.,9 discussed the trace formula for a mappi
depending of a parameter near a bifurcation.

A formal computation of the contribution of a given hyperbolic trajectory to the trace form
was given in Ref. 10, where it was remarked, however, that the contribution of different pe
trajectories should interfere destructively. The use of coherent states in the present pap
isolate a given trajectory by microlocalizing near a point in phase space. This makes on
trajectory contributing and the complexified linearized flow near this trajectory present alrea
the leading order.

The paper is organized as follows: the results are presented in the next section and pr
Sec. III. Section IV contains some concluding remarks.

II. THE RESULTS

Let H be as in the Introduction. Letg be a hyperbolic closed trajectory of the Hamiltonia
j21V(x). Let m be the Lyapounov exponent at (x,j)Pg @that is, lete6m be the two eigenvalues
of the Poincare´ mapping ofg at (x,j)# and wPS (R) be such that its Fourier transformŵ is
compactly supported. We will denotew6 the Hardy and anti-Hardy part ofw, namely,

w6~x!ªE
R6

ŵ~j!e2 i jx dj. ~5!

We will denoteWa the Wigner function of the symbola ~see the next section! and expressWa on
the variables (xT ,x' ,xs ,xu), wherexT is tangent tog, xs andxu are along the stable and unstab
manifold of the Poincare´ mapping, andx' is a transverse direction to the energy shell.

Then we have the following.
Theorem 2.1:Let us suppose that

(
k50

` S 2
12e2m

11e2mD kE uWa~xT ,x'50,xs ,xu!u
uxsxuuk

k!
dxT dxs dxu<`. ~6!

Then as\→0 along any sequence of the type

\5
Sg

2pk1sg1a
, aP@0,1@ , k→`, ~7!

(
j

wS Ej~\!2E

\ D u~c~x,j!
a ,c j

\!u25\2n1 1/2 (
l ,mPZ

clmwsign~m!~zlm!1O~\2n1 3/2!, ~8!
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where zlmª (2p/Tg) „l 1 i (m1 1
2)m1a…, l ,mPZ. Moreover,

if m>0,

clm5
1

m! E xu
m ]xs

mWa~xT ,x'50,xs ,xu!eixsxu dxT dxs dxu ; ~9!

if m,o,

clm5
1

m! E xs
m ]xu

m Wa~xT ,x'50,xs ,xu!eixsxu dxT dxs dxu . ~10!

Remark:The hypothesis~6! is a condition of concentration in phase space of the symbola nearg
along the stable and unstable manifolds. An example of a symbol satisfying~6! is any Gaussian
@since in this case the Wigner function is itself a Gaussian and so satisfies~6!, as an easy
computation shows#.

The next result gives a dynamical interpretation of the numberszlm . In the elliptic case,
namely when the linearized flow nearg is stable, one can think, as in Ref. 11~see also Refs. 12
and 13!, at the flow aroundg as being integrable, namely, as seating on an~infinitesimal! torus
aroundg. There are then two ‘‘actions’’ arising: the one parametrizing the continuous famil
periodic trajectories thatg belongs to~see Ref. 2!, and the one coming from the Poincare´ mapping.
This leads to the following normal form:

E~A,B!5Ec~A!1
u

Tg
B, B small, A near Sg , ~11!

with

]E

]A
~Sg ,B!5

2p

Tg
. ~12!

Indeed,E(A,B) induces on the angleswA ,wB , conjugate toA,B a flow at timeTg given by:

wA~Tg!5wA~0!12p,

wB~Tg!5wB~0!1u.

The numbers (1/Tg)„2p j 1(k1 1
2)u1(Sg /\)1sg… appearing in~4! are precisely the quantitie

@E(Aj ,Bk)2E#/\, whereAj andBk are the values of the actions quantized by Bohr–Sommer
conditions:

Aj5Sg1~ j 1sg!\ and Bk5~k1 1
2!\. ~13!

We want to show that this situation is still valid in the hyperbolic case if we consider com
torus and complex actions.

Let Pg be the Poincare´ mapping ofg. Sinceg is hyperbolicPg can be represented as a matr
of the form

Pg5S coshm sinh m

sinh m coshm D . ~14!

We will extend this mapping to the complex in the following way: consider the complex s
plectic dilationDAi in R2

^ C:

S x
j D→DAiS Aix

1

Ai
jD ªS z1

z2
D . ~15!
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Under this transformation, the mappingPg becomes

DAi
21Pg DAi5S cosh~ im! 2 i sinh~ im!

i sinh~ im! cosh~ im!
D 5S cos~ im! 2sin~ im!

sin~ im! cos~ im!
D 5R~ im!, ~16!

whereR(u) is the rotation of angleu.
This means that, thanks to this symplectic complex dilation, we are back to an ‘‘ellip

situation with complex time. In particular, we find that there exist complex stable tori and
complex normal formF(A,B) satisfying

F~A,B!5Ec~A!1 i
m

Tg
B, ~17!

which gives rise to quantized Bohr–Sommerfeld values of the energyF(Aj ,Bk) with Aj andBk

given by ~13!.
We just proved the following.
Proposition 2.2: Let zlm as in Theorem 2.1; then

zlm5F~Al ,Bm!, ~18!

with

Aj5Sg1~ j 1sg!\ and Bk5~k1 1
2!\. ~19!

We will come back to the interpretation of this result in the final section of the paper.

III. PROOF OF THE THEOREM

In Ref. 2 we proved that the first coefficientn0(w) in ~3! can be written as

n0~w!5(
n

ein@~Sg /\!1sg#E
2`

`

~a,Z„s~ ẋ,j̇ !…Una!ds ŵ~nTg!; ~20!

here (ẋ,j̇) is the tangent vector to the flow at (x,j); Z is a Weyl operator defined by

Z~e, f !a~h!5e2 i ~e f/2!eieha~h2 f !, ~21!

andU is the metaplectic operator of the linearized low at timeTg ~see Ref. 2!.
We also showed that one can find a symplectic mappingR such thatU5M „S(Tg)…, whereM

is the metaplectic representation such that

R21S~Tg!R5S 1 0 a 0

0 e2m 0 0

0 0 1 0

0 0 0 em

D , ~22!

whereaPR andm is the local Lyapounov exponent ofg at (x,j).
Let us denotea8ªM (R)a. Then one easily checks that, if\ satisfies~6!,

n0~w!5(
n

einaE a8~h!ein~a/2!]h1

2
e2n~m/2!a8~h12s,e2nmh2!dh ds

5(
n

e2n~m/2!einaE a8~0,h2!a8~0,e2mh2!dh2 , ~23!

wherea8 is the Fourier transform ofa8 with respect toh1 . Let us callb(x)ªa8(0,x) and let
Wb(x,j) be the Wigner function ofb, namely,



hat
to

,
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Wb~x,j!ªE b~x2y!b~x1y!e2i jy dy. ~24!

Lemma 3.1: Let us suppose that

(
k50

` S 2
12e2m

11e2mD kE uWb~x,j!u
uxjuk

k!
dx dj<`, ~25!

then

e2n~m/2!E a8~0,h2!a8~0,e2mh2!dh25 (
k50

`
b~k!~0!b̂~k!~0!

k!
e2~k11/2!m, ~26!

where b(k) is the kth derivative of b.
Proof: We have, by straightforward computations,

E a8~0,h2!a8~0,e2mh2!dh25E b~x!b~e2mx!dx

5E WbS x~11e2m!

2
,j De2 i jx~12e2m! dx dj ~27!

5
2

11e2m E Wb~x,j!e22i jx@~12e2m/11e2m!#dx dj; ~28!

~25! implies that the RHS of~27! is convergent. Therefore~26! is also convergent. h

Let us show now that the Lemma implies the formula~8!. Sinceŵ is compactly supported we
can plug ~20! in the expansion~26! and invert the summations. It now suffices to note t
e(2j)x [0,1`[ is the Fourier transform of 2p/( i 2x) and use the Cauchy and Poisson formulas
get

n0~w!5 (
l ,mPZ

clmwsign~m!~zlm!, ~29!

with

clm5
b~k!~0!b̂~k!~0!

k!
. ~30!

We need now to express the hypothesis~25! and theclm in terms of the Wigner function ofa. To
do so let us first remark that ifS is a symplectic mapping andM the metaplectic representation
we have

WM ~S!a~x,j!5~WaoS!~x,j!. ~31!

Together with the fact that

â~0!â~0!5E Wa~0,j!dj, ~32!

we get easily that~25! is equivalent to

(
k50

` S 2
12e2m

11e2mD kE uWa~xT , x'50,xs ,xu!u
uxsxuuk

k!
dxT dxs dxu<`, ~33!

and the expression~9! and ~10! for the coefficients.
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IV. COMMENTS

Link with ‘‘top resonances’’:although the operatorH is elliptic with discrete spectrum, which
implies that there are no ‘‘resonances,’’ the formula~8! suggests that the Hardy and anti-Har
parts of the weighted spectral densityr(l)ª(d„l2@Ej (\)2E#/\…u(c (x,j)

a ,c j
\)u2 have poles, in

the semiclassical limit. These poles are precisely located on the same lattice that in the cas
so-called ‘‘top resonances’’~Refs. 14–16!: if the potentialV tends to zero at infinity and if there
is an unstable fixed point or a manifold of unstable fixed points on the energy surface, the
can prove thatH has resonances at a distance;\ from the real axis. Our result gives a microlo
calized version of this phenomenon.

Link with the ‘‘analytic dilation’’ method:let us look at the poleszl0 and the corresponding
coefficientc0 ,

cl05E Wa~xT ,x'50,xs ,xu!eixsxu dxT dxs dxu . ~34!

Calling

S x
j DªS xs1xu

&

xs2xu

&

D , ~35!

one gets

cl05E Wa~xT ,x'50,x,j!ei @~j22x2!/2#dxT dx dj. ~36!

Using elementary properties of the Wigner function, one gets that

cl05~b,g1!~g2,b!, ~37!

whereb was defined in Sec. III andg6(x)ªe6 i (x2/2).
Moreover, the same computation in the case ofg elliptic gives rise to

cl0
ell5~b,g!~g,b!, ~38!

whereg(x)ªe2x2/2. Let ug&^gu be the orthogonal projector on the vectorg in L2(R). If one calls
Da the operator of dilation bya, one sees thatug1&^g2u is the analytic continuation o
Da

21ug&^guDa evaluated ata5Ai , and so iscl0ª(b,ug1&^g2ub). This suggest that the poles o
the weighted spectral measure can be obtained, as the usual resonances do, by analytic d

Link with ‘‘normal forms’’: in Refs. 17 and 18, Guillemin introduced quantized normal for
near a closed trajectory. The result of this paper suggests that the complex dilation of this n
form gives rise to poles of the spectral density suitably microlocalized.
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