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In this paper we consider a weighted trace formula for Sdinger operators. More
precisely, let zpj" and Ef” denote the eigenfunctions and eigenvalues of a
Schralinger-type operatoH, with a discrete spectrum. Lek s be a coherent
state centered at a poink,§) of a hyperbolic closed orbiy. We show that, as
©—0, the leading term o jo{[E;(%) —E1/A} (¢(x ¢ ,wf‘)|2 can be expressed in
terms of the analytic continuation on the upper and lower half-planes of the positive
and negative frequencies part@fThe result is also related to complex trajectories
surroundingy. © 1998 American Institute of Physids50022-24888)01908-3

I. INTRODUCTION

Consider a Schidinger operatoH = —#2A +V(x) with V smooth, onR" (in which case we
assumeV tends to infinity at infinity and thereford has a discrete spectriror on a compact
Riemannian manifoldM .

The trace(Gutzwiller) formula (Ref. 1) expresses the smeared out spectral density over a
Fourier compactly supported test function:{Et} and{¢;} be the eigenvalues and eigenfunctions
of H. Then, under certain hypothesis on the classical flimw example, that the periodic trajec-
tories of energyE are isolateyl
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wherec, are distributions whose Fourier transform are supported on 0, the second sum is over the
periodic trajectoriey of energyE, andd'y have Fourier transforms supported on the set of periods
of v.

We remarked in Ref. 2 that one can isolate the contribution of a given periodic trajectory by
ponderating the surfl) by the so-called Husimi function af; : let l/f?x,g) be a coherent state at
(x,€) e R?" of “vacuum” ae./(R"):
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(herep is a compactly supporte@”™ function equal to 1 near zeroLet (x,£) € v, wherey is a
periodic trajectory of the classical underlying flow of enefy:£2+ V(x). We showed that
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where they, are distributions whose Fourier transforms are supported on the set of periods of
(iterates of 7.
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Let us suppose for simplicity that the dimensior 2 (the results being immediately extended
to the general cageWe remarked in Ref. 2 that if is elliptic, i.e., if the Poincarenapping ofy
is a rotation of angl®, the distributionyy could be expressed as a Dirac measure on the energies
of the quasimodes associatedjto
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(hereT,, S,, ando,, are the period, action, and Maslov index gf On the contrary, ify is
hyperbolicthe measure/, is Lebesgue continuous.

In this paper we want to give another formulatiomgfthat involves the complex trajectories
of the linearized neay, i.e., the complex trajectories infinitesimally closeydsee Theorem 2.1
below). Before we state the results we would like to comment on the role of complex periodic
trajectories in the study of the semiclassical spectrum of Sithger operators.

Usually the complex trajectories appear to give exponential corrections to the semiclassical
expansions. Among the works dedicated to this problem let us mention the work of Balian and
Bloch on the trace formulathe resurgence method of Ecalle and Votdand more recently, the
work by Fefferman and Secton the correction term of the number of negative eigenvalues of
atomic systems.

More recently, Delandet al® and Eckhardet al.® discussed the trace formula for a mapping
depending of a parameter near a bifurcation.

A formal computation of the contribution of a given hyperbolic trajectory to the trace formula
was given in Ref. 10, where it was remarked, however, that the contribution of different periodic
trajectories should interfere destructively. The use of coherent states in the present paper will
isolate a given trajectory by microlocalizing near a point in phase space. This makes only one
trajectory contributing and the complexified linearized flow near this trajectory present already at
the leading order.

The paper is organized as follows: the results are presented in the next section and proven in
Sec. lll. Section IV contains some concluding remarks.

Il. THE RESULTS

Let H be as in the Introduction. Lef be a hyperbolic closed trajectory of the Hamiltonian
£24+V(x). Let u be the Lyapounov exponent at,€) e y [that is, lete™* be the two eigenvalues
of the Poincaremapping ofy at (x,£)] and ¢ .7(R) be such that its Fourier transforg is
compactly supported. We will denote™ the Hardy and anti-Hardy part af, namely,

e=00= [ pere e ae ©)

We will denoteW, the Wigner function of the symbal (see the next sectipmnd expressV, on
the variablesXt,x, ,Xs,X,), wherexy is tangent toy, X; andx,, are along the stable and unstable
manifold of the Poincarenapping, and, is a transverse direction to the energy shell.

Then we have the following.
Theorem 2.1:Let us suppose that

” 1 e # XX u|k
Z Tre ” J|Wa(xT,xl 0,Xs,Xy)| ———dxq dxg dx, <. (6)
Then ash—0 along any sequence of the type
> 0 k 7
= — 00
Zakto,Ta’ ae[0,1, : (7
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where 7., := (27/T,) (I+i(m+3)u+a), |,meZ. Moreover
if m=0,

1 .
Cim= 1 J Xy A WA(XT, X =0,Xs, X)€" dxr dxs dxy; ©
if m<o,
_ 1 m smypsa — iXgX
Clm_ﬁ Xg aXuW (X7,X. =0,Xs,X,) €7 dXp dXs dX, - (10

Remark:The hypothesi$6) is a condition of concentration in phase space of the symbw@ary
along the stable and unstable manifolds. An example of a symbol satigfing any Gaussian
[since in this case the Wigner function is itself a Gaussian and so safiéfieas an easy
computation showls

The next result gives a dynamical interpretation of the numbgys In the elliptic case,
namely when the linearized flow negris stable, one can think, as in Ref. (dee also Refs. 12
and 13, at the flow aroundy as being integrable, namely, as seating or(iafinitesima) torus
aroundwy. There are then two “actions” arising: the one parametrizing the continuous family of
periodic trajectories thag belongs tosee Ref. 2 and the one coming from the Poincanapping.
This leads to the following normal form:

0
E(A,B)=E.(A)+ T—B, B small A near S, (11
Y
with
JE s B 27 12
ﬁ( 'y )_T_ ( )

Y
Indeed,E(A,B) induces on the angles, ,¢g, conjugate toA,B a flow at timeT,, given by:
oa(T,) = @a(0)+ 2,

es(T,)=g(0) + 6.

The numbers (I7,) (27j +(k+%)0+(8y/ﬁ)+a'y) appearing in(4) are precisely the quantities
[E(A;,B) —E]/%, whereA; andBy are the values of the actions quantized by Bohr—Sommerfeld
conditions:

Aj=S,+(j+o ) and By=(k+ 3)h. (13

We want to show that this situation is still valid in the hyperbolic case if we consider complex
torus and complex actions.

f hLe;P,/ be the Poincarenapping ofy. Sincey is hyperbolicP ., can be represented as a matrix
of the form

( coshu sinhu
=

. . 14
sinhu coshu (149

We will extend this mapping to the complex in the following way: consider the complex sym-
plectic dilationD f in R?®C:

AR ]



4012 J. Math. Phys., Vol. 39, No. 8, August 1998 T. Paul and A. Uribe

Under this transformation, the mappifg, becomes

. B coshi ) —isin}"(ip,))_(cos(m) —sin(iw) o
DaPyDa=li i) costip) |~ |siniiu)  cosin) —Riw), (18

whereR(6) is the rotation of angle.

This means that, thanks to this symplectic complex dilation, we are back to an “elliptic”
situation with complex timeIn particular, we find that there exist complex stable tori and a
complex normal fornt(A,B) satisfying

F(A,B)=EC(A)+iTﬂB, (17)

Y
which gives rise to quantized Bohr—Sommerfeld values of the erfé(dy,B,) with A; and B
given by (13).
We just proved the following.
Proposition 2.2: Let g, as in Theorem 2.1; then
Zm=F(A;.Bn), (18
with
Aj=S,+(j+o,)h and B=(k+ 3)k. (19

We will come back to the interpretation of this result in the final section of the paper.

lll. PROOF OF THE THEOREM

In Ref. 2 we proved that the first coefficieng(¢) in (3) can be written as
vo(@) =2, ey Mt eyl J (8,Z(s(x,£)U")ds o(nT,); (20)
n — 00

here &, ¢) is the tangent vector to the flow ax,§); Z is a Weyl operator defined by
Z(e,f )a(n)=e"'*"Pe7a(n-1 ), (21

andU is the metaplectic operator of the linearized low at tilmg(see Ref. 2
We also showed that one can find a symplectic mappisgch thatd=M(S(T,)), whereM
is the metaplectic representation such that

1 0 a«a
R™IS(T,)R 0e" 0 22
S( 'y) - 0 1 ’ ( )
0 0 0 e*
wherea e R and u is the local Lyapounov exponent ofat (x,£).
Let us denotaa’ :=M(R)a. Then one easily checks that,fifsatisfies(6),
vo(@)=2 ei““J a (p)en@7,e nu2g! (5, 5,6 y))dy ds
n
=> e—”w’z)ei”aj a’(0,m,)a’ (0. #n,)dn,, (23)
n

wherea’ is the Fourier transform of’ with respect ton,. Let us callb(x):=a’(0,x) and let
Wy (X, £) be the Wigner function ob, namely,
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Wp(x, ) ==f b(x—y)b(x+y)e”# dy. (24)

Lemma 3.1: Let us suppose that

°° x flk
Z 1+e w f |Wb(x §)| ——dx d§<oo (25)
then
_ 5 b®(0)b®(0)
e*”(“mf a’(0,772)a'(0,97”772)d772:;0 —a_© g (kF12u (26)
where BY is the kth derivative of b
Proof: We have, by straightforward computations,
fa’(O,nz)a’(O,e‘”nz)dnzzf b(x)b(e™#x)dx
x(1+e™#
:f W, (T)’ e iex(1-e™#) 4y dé (27)
—1+e m be(X £e” 2igx[(1-e #l+e™M)]qy dé; (29)
(25) implies that the RHS 0f27) is convergent. Thereforg6) is also convergent. O

Let us show now that the Lemma implies the form(8a Since is compactly supported we
can plug(20) in the expansion26) and invert the summations. It now suffices to note that
e(‘g)x[oym[ is the Fourier transform of 2/(i —x) and use the Cauchy and Poisson formulas to
get

vo(@)= 27 Cim@® 9™ (z,n), (29)

,me
with

b(k)(O)E)(k>(O)

Cim= k!

(30

We need now to express the hypothd&5) and thec),,, in terms of the Wigner function ai. To
do so let us first remark that 8 is a symplectic mapping andl the metaplectic representation,
we have

Wi(s)a(X,§) =(W,05)(X,§). (31

Together with the fact that
a(0)a(0)= J W,(04)dé, (32

we get easily that25) is equivalent to

|x |k
1+e M) J|Wa(xT,xl 0,Xg, X)) | —— sl ———dxy dxg dx, <, (33

e

and the expressio(®) and(10) for the coefficients.



4014 J. Math. Phys., Vol. 39, No. 8, August 1998 T. Paul and A. Uribe

IV. COMMENTS

Link with “top resonances”although the operatdt is elliptic with discrete spectrum, which
implies that there are no “resonances,” the form(®x suggests that the Hardy and anti-Hardy
parts of the weighted spectral densjifA) ::E(?‘()\—[Ej(ﬁ)— EVR)(#ix.e ,zpf)|2 have poles, in
the semiclassical limit. These poles are precisely located on the same lattice that in the case of the
so-called “top resonances(Refs. 14—18 if the potentialV tends to zero at infinity and if there
is an unstable fixed point or a manifold of unstable fixed points on the energy surface, then one
can prove thaH has resonances at a distaneé from the real axis. Our result gives a microlo-
calized version of this phenomenon.

Link with the “analytic dilation” method:let us look at the poleg,, and the corresponding
coefficientcy,

ClO:f Wa(XT rXLZOIXS 1Xu)eixsxu dXT dXS dXU ' (34)
Calling
Xs+ Xy
X V2
( ),= | (35
£ Xs— Xy
V2
one gets
clozjWa(xT,XL=0,x,§)ei[(§2"‘2)’2]de dx dé. (36)

Using elementary properties of the Wigner function, one gets that

C|o=(b,g+)(gi,b), (37)

whereb was defined in Sec. Ill ang™ (x) :=e*1(</2).
Moreover, the same computation in the casey@liptic gives rise to

c&'=(b,9)(g,b), (39)

whereg(x) =e 2, Let |g)(g| be the orthogonal projector on the vectpin L?(R). If one calls

D, the operator of dilation bya, one sees thaig™)(g~| is the analytic continuation of

D, *g)(g|D, evaluated atr= /i, and so isc)o:=(b,|g")(g~|b). This suggest that the poles of

the weighted spectral measure can be obtained, as the usual resonances do, by analytic dilation.
Link with “normal forms”: in Refs. 17 and 18, Guillemin introduced quantized normal forms

near a closed trajectory. The result of this paper suggests that the complex dilation of this normal

form gives rise to poles of the spectral density suitably microlocalized.
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