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A general formalism to study the dynamics of polyelectrolyte solutions is presented. We show in 
particular that the Berne-Pecora equations for charged pointlike particles are obtained by 
neglecting the memory function and using the Debye-Huckel potential with the linear 
approximation exp( - U /kB T)-===1 - U /kB T. We generalize Berne-Pecora results by 
introducing the effect of hydrodynamic interaction. Our calculations show a plasmon mode 
which corresponds to a nonzero frequency at zero scattering angle. 

INTRODUCTION 

A polyelectrolyte solution is a system that contains sev­
eral species such as long chains of charged monomers (e.g., 
PSS -), small ions usually referred to as counter ions released 
during the ionization process of these monomers (e.g., 
TMA +), positively and negatively charged salt ions added to 
the solution to increase its ionic strength (e.g., N a + Cl- ), and 
a solvent (e.g., water). The equilibrium properties of such 
systems show interesting behaviors that have been subject to 
active current research. 1.2 We have recently investigated the 
dependence on the wave vector q of the static structure fac­
tor using various simple models, in order to interpret the 
peak observed experimentally in scattering from polyelec­
trolyte solutions.3 In the present work we study the dynami­
cal behavior of such a solution by regarding it as a three­
component system consisting of large polyions and small 
counter ions embedded in a solvent which acts as a contin­
uous background. We first present a general formalism 
which does not rely on any particular model. In specific ap­
plications which we consider later, one needs explicit models 
for the internal structure of the polyions, the equilibrium 
distribution of all the particles in the solution, and their dy­
namic behavior. 
GENERAL FORMALISM 

Since our main concern in this work is a theoretical 
interpretation of dynamic scattering experiments on polye­
lectrolyte solutions, we focus our attention on the time evo­
lution of the density of scattering centers. For simplicity we 
assume that all the monomers and counter ions scatter 
equally, and consider a solution of NI chains each having n l 

monomers that are all ionized (component 1), and N2 
counter ions each having the charge of a monomer with op­
posite sign (component 2). The counter ions will be treated as 
point particles. The densities of the two components are de­
fined by 

N, n, 

PI = L L exp(iq-Raj ), 

a= Ij= 1 

N, 

P2 = L exp(iq-R/), 
/=1 

(1) 

(2) 

where Raj is the position vector of monomer j belonging to 

alOn leave from: Departement de Physique. Universite de Tlemcen. Al­
geria. 

the chain a, R/ is the position vector of counter ion I, and q is 
the wave vector. 

In the following discussions, we use the matrix notation 
by introducing the column matrix: 

(3) 

The time evolution of pIt ) is assumed to be governed by an 
equation of the form 

ap = _ 2"p 
at 

(4) 

where 2" is a Liouville-like operator which does not need to 
be specified in the general formalism in this section. Equa­
tion (4) can be transformed into a more appealing form by 
using a standard method in linear response theory based on 
the projection operator technique. We choose a projection 
operator P of Mori-Zwanzig4-6 type, which produces, when 
it acts on a dynamical variable G, a vector PG defined by 

PG = (Gp+).( pp+)-Ip. (5) 

Here p denotes prO) and ( ... ) represents an ensemble average 
with respect to the equilibrium distribution function "'0 
which depends on particle coordinates of both components. 
The p + is the row vector adjoint to p, ( pp + ) - 1 is the inverse 
of the static structure matrix S(q) = ( pp+). Combining 
Eqs. (4) and (5) one finds, with standard manipulations, an 
exact equation for pIt): 

ap(t) + ii.p(t) _ r du i> (t - u)·p(u) = f(t) 
at Jo 

(6) 

which is often referred to as the generalized Langevin equa­
tion. Thequantitiesii and i> (t) are, respectively, thefrequen­
cy matrix 

ii = (p2"p+)-( pp+)-I 

and the memory matrix 

i>(t) = (f(t)f+)-( pp+)-I, 

where the random force fIt ) is defined by 

f(t)=exp[ -t(l-P)2"](l-P)2"p. 

(7) 

(8a) 

(8b) 

Equation (6) can be used to study either the time correlation 
functions between the components of the vector p(t), or to 
obtain an equation of motion for the ensemble average of pIt ) 
itself. In the former case one uses the causality property of 
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fit ): 
(flt)p+) =0, t>O. (9) 

MUltiplying Eq. (6) from the right by P and taking the ensem­
ble average with respect to the equilibrium distribution r/lo, 
one obtains an equation for the dynamic correlation matrix: 

S(q,t) = (p(t)p+) (10) 

in the following form: 

as(q,t) + ii.S(q,t) - (' du ~ (t - u).S(q,u) = o. (11) 
at Jo 

The Laplace transform of Eq. (11) yields 

S(q,s) = [s/ + ii - ~(s)] -I( pp+), (12) 

where s is the transform variable and / is the identity matrix. 
The usual dynamic structure factor S(q,UJ) is obtained from 
S(q,s) as 

S(q,UJ) = (2/1T)Re[iUJ/ + ii - ;p (iUJ)] -I ( pp+), (13) 

where UJ denotes the frequency, and Re means taking the real 
part. The exact formalism presented here is of course well 
known and has been used extensively in recent years in the 
interpretation of dynamic scattering experiments in one 
component solutions. More recently it has also been applied, 
in its matrix form, to the study of dynamic scattering from 
bimodal solutions,7 and the concentration dependence of the 
apparent diffusion coefficient.7 The formalism is exact in the 
sense that it can be applied to Brownian particles interacting 
via an arbitrary potential with or without hydrodynamic in­
teraction. In particular it can be used to study the dynamics 
of polyelectrolyte solutions. In the following section we use 
this formalism to obtain tractable equations for the time evo­
lution of the average density and formulas for the intermedi­
ate scattering function in such solutions. 

HYDRODYNAMIC EQUATIONS FOR THE AVERAGE 
DENSITY 

The ensemble average of both sides of Eq. (6) with re­
spect to the intitial distribution r/I(t = 0) yields an exact equa­
tion for the average density qq,t ) defined by 

qq,t) = pIt ), (14) 

where the overbar is introduced to distinguish the average 
with respect to the initial distribution from the equilibrium 
average 

ac(q,t) + ii.qq,t) - (' du ~ (t - u)·qq,u) = f(t). 
at Jo (15) 

When small deviations from the equilibrium state are con­

sidered, the average value of the random force f(t) can be 
approximated by zero. This approximation implies lineari­
zation of Eq. (15). It is important to note that although the 
resulting equation for qq,t) is approximate, Eq. (11) 
for S(q,t), which has the same form as Eq. (15) is exact. 

In the Markov limit where q-o and t-+ 00 such that qZt 
remains finite the solution of Eq. (IS) is exponential: 

qq,t) = exp( - Ft ).qq,O), (16) 

where F is given by 

(17) 

In the short time limit, however, the effect of the memory 
function tends to vanish and qq,t ) decays again exponential­
ly but with a decay rate ii, i.e., 

qq,t) = exp( - iit ).qq,O). (IS) 

In many cases of practical interest ii can be calculated expli­
citlyas opposed to the memory function ~ which is far more 
difficult to handle. Fortunately, ~ usually contains enough 
information about the dynamics of the system so that the 
memory term can be approximately treated or, in some ap­
plications even completely neglected. Since ii can be mea­
sured by neutronS

•
9 and light lO scattering experiments with 

sufficient accuracy through cumulant analysis, it has been 
used extensively to interpret such experiments on neutral 
polymer solutions. In this paper we calculate ii in the case of 
polyelectrolytes. The definition of ii given by Eq. (7) can be 
written as 

(19) 

~here we have introduced the generalized mobility II matrix 
f.l(q): 

p(q)=q-Z(kBTJ- I( p.?p+) (20) 

andS(q) = ( pp+ ),kB Tis the tem~rature in units of Boltz­
mann factor k B. More explicitl~ {J (q) c,!,n be expressed in 
terms of the matrix elements of f.l(q) and S (q) as 

ii (q) = q
2
k B T 

SllS22 - SIZSZI 

X [f.lllSzz - f.lIZSZI f.l12S11 - f.lllSIZ ]. (21) 
f.lZIS22 - f.l22S21 f.l22S11 - f.l21S12 

Point particles in the free draining limit 

Here we assume that all the molecules including po­
lyions appear as pointlike particles. This is the case when the 
wave vector q is sufficiently small so that the scattered radi­
ation cannot resolve any detailed internal structure of these 
molecules. In this special case the matrix elements Sij are 
given by 

Sll =N1 {I +41T~ (00 dRR2[gll(R)-I] sinqR}, 
V )0 qR 

(22a) 

(22b) 

and similar equations hold for S22 and S2\. Here V is the 
volume of the solution and gij (R ) is the radial distribution 
function for a pair of particles of type i andj, i.e., 

gij(R)=exp[ - Uij(R)/kBT], 

Uij(R) being the potential for the mean force between two 
particles of type i and j. The radial distribution functions 
depend on concentrations of both polyions and counter ions. 
In this application, however, we need their infinite dilution 
limit, in which U ij (R ) reduces to the interaction potential for 
an isolated pair. When combined with the linearization ap­
proximation gij (R ) reduces to 
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(23a) 

In polyelectrolytes U ij (R ) can be chosen as the screened De­
bye-Huckel model: 

e2 

Uij(R) = Z;Zj €oR exp( -KR), (23b) 

where Z; e is the charge of particle i, €o the dielectric permit­
tivity, and K -I is the Debye screening length: 

or 

K2 = €;:T [~ (Z l e)2 + i (Z2ef]. 
Substitution ofEqs. (23) into Eq. (22) yields 

Sl1 =N1 [1-
S22 = N2 [1-

(23c) 

(23d) 

(24a) 

(24b) 

(24c) 

The calculation of the matrix elements of the mobility 
tensor requires a model for the time evolution operator !f. 
In the absence of hydrodynamic interaction (i.e., Rouse or 
free draining limit) one can use the familiar Kirkwood-Rise­
man 12 model, which in the case of point particles is given by 

!f = - I Dj [Vj + Vj(ln "'o)]·Vj , 
j 

(25) 

where Dj is the diffusion coefficient of a single particle, i.e., 
D 1,2 = kB Tis 1.2 in whichS 1,2 is thefriction constant ofei­
ther a monomer (I) or a counter ion (2), Vj = a I a Rj . Substi­
tution of Eq. (25) into Eq. (20) yields 

IL11 = NIDllkB T, 

IL22 = N2D21kB T, 

(26a) 

(26b) 

IL12 = IL21 = O. (26c) 

The matrix elements of ii [ef. Eq. (21)] can be readily ob­
tained in the Rouse limit using the point particle description. 
When the results are inserted into 

ac(q,t) = _ ii.qq,t ), 
at 

one obtains explicitly 

aC1(q,t) 

at 

aC2(q,t) 

at 

(27a) 

These equations were also obtained before by Berne and Pe­
cora 13 using a phenomenological approach. In the appendix 
we present the derivation of these equations using yet an­
other method. This simple example involving point particles 
in the absence of hydrodynamic interactions elucidates the 
various approximations one has to introduce to obtain 
Berne-Pecora equations from the exact equations (15), 
namely (i) the linearization ofEq. (15) and the neglect of the 
memory effects, (ii) the infinite dilution limit for gij(R ), (iii) 

the linearization ofexp( - UijlkB T)as 1 - UijlkB Tand(iv) 
the use of the Debye-Huckel form for the pair interaction 
potential. We shall return to these points once more in a later 
section. 

The present formalism enables one to immediately gen­
eralize these results by introducing the effect of hydrody­
namic interaction. 

Point particles with hydrodynamic interaction 

In this case the operator !f becomes 

!f = - I [Vj + Vj(ln "'o)]·Dj/.V/. 
j,/ 

(28) 

Moreover, since we are considering point particles in this 
example also, the effect of hydrodynamic interaction ap­
pears only in the interparticle generalized mobilities IL 12 and 

IL21: 
N. N2 

IL12 =IL21 = I I (T33(Rjt!exp(iq.Rjt!) (29a) 
j~ I/~ 1 

which can be written as 

IL12 = IL21 = N 1N2(T33(R)exp(iq.R), (29b) 

where T33(R) is the component of the Oseen tensor along the 
direction of the wave vector q: 

(30) 

in which 1]0 is the viscosity of the solvent, a is the cosine of 
the angle between Rand q, and R is the vector distance 
between two particles of different kinds. Substituting Eq. 
(30) into Eq. (29b), and using the approximations for the pair 
distribution function which are described by Eqs. (23) one 
obtains 

_ _ ~NIN2 KIK2 C;( IK) IL12 -IL21 - 8 J q , 
1T1]0 q 

(31a) 

where the function Y(x) is defined by 

Y(x) =x- I 
- (x- 2 

- l)tan- 1 x. (31b) 

We note thatIL11 andIL22 remain unchanged when hydrody­
namic interaction is included, and are still given by Eqs. (26). 
Hence, the components of ii in the presence ofhydrodynam­
ic interactions become 

2 2 kB T KiK~ C7( IK) il 11 =D1(q +Kd+ ----.'Y q . 
81T1]0 q 

(32a) 

k K2( 2+K2) 
il12 =DIK~ + 8 BT 

1 q 2 Y(qIK), 
1T1]0 q 

(32b) 

and analogous equations for il22 and il2l . 
A comment is in order here, concerning the equilibrium 

distribution for the point charged particles and the approxi­
mations in Eqs. (23). One observes that Uij is positive when 
the particles i and j are of the same kind, and hence g ij (R ) 
increases from zero to one as R varies from zero to infinity. 
However, Uij is negative when the particles i and j are of 
opposite charge, and consequently gij (R ) increases to infinity 
as R approaches zero. This implies that the integral in Eq. 
(22b) diverges and the definition of S12 becomes ambiguous. 
In fact, by allowing R to tend to zero one includes the possi­
bility of recombination of oppositely charged particles to 
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form either a new charged particle with a charge Z I - Z2' or 
a neutral particle, and thereby changing the composition of 
the system. This problem is encountered in computer simu­
lation of fully ionized plasmas by Baus and Hansen. 15 They 
replaced the bare Coulomb potential for ion~lectron pairs 
by [1 - exp( - KR lJ/R with an appropriate value for K, to 
prevent recombination. The situation bears a certain resem­
blance to the condensation phenomenon 16 encountered in 
polyelectrolyte solutions in the case of macroions with inter­
nal structure. It is interesting to note that this difficulty was 
avoided in the present case by virtue of linearization of the 
pair distribution function and the use of the Debye-Huckel 
potential which leads to a mathematically well-behaved and 
integrable quantity in Eq. (22b). Although we have consid­
ered only pointlike molecules in the present application, the 
general formalism described earlier is also useful in cases 
where the internal structure of these molecules has to be 
taken into account, as in neutron scattering in which q-I 
may be of the order of the size of a monomer. 

INTERMEDIATE SCATTERING FUNCTION 5(q,t) 

In this section we obtain an approximate expression for 
the intermediate scattering functionS (q,t) in polyelectrolyte 
solutions starting from the exact generalized Langevin equa­
tion in matrix form. In the Markov limit Eq. (10) reduces to 

8 (q,t ) = exp( - Ft ).8 (q), (33) 

where the relaxation matrix F is given by 

(34) 

In the three-component description considered in this work, 
the intermediate scattering function S (q,t), actually mea­
sured in dynamic scattering experiments, is related to the 
components of8(q,t) by 

2 

S(q,t) = L Sij(q,t), (35) 
i,j= I 

where Sij(q,t) are defined by 

Sij(q,t) = (Pi(tlp;). (36) 

One can show that 7 

S(q,t) r l +AS-I(q) ( r) 
--- = ----"---"-= exp - It 

S(q) r l -r2 

r 2 +AS-I(q) ( r) 
- exp - 21, 

r l -r2 

(37a) 

whereS(q) = S(q,t = 0) is the total static structure factor and 
the quantity A denotes 

A = (SII + Sd(F2I - r22) + (S22 + S21)(F12 - rll)' 

(37b) 

Hc:!.e, Sij are the elements of the matrix 8 (q), andr ij are those 
of r. We have suppressed the arguments showing the explic­
it q dependence to ease the notation. The relaxation frequen­
cies r l and r 2 are given by 

r 1,2 = rav ± ~r~v -.1, 

r _ r ll +r22 
av - 2 ' 

(38a) 

(38b) 

(38c) 

In the absence of memory effects, r ij coincides with flij 
which we have calculated explicitly for pointlike charged 
particles in the previous section. We present the expressions 
of the relaxation frequencies in two extreme limits: 
(i) Small q limit (q-G) 

Assuming DI = D 2 , one has in this limit.1 = 0, r2 = 0, 
and 

(39) 

where we have used Eq. (32a). This constant relaxation fre­
quency when q = 0 is referred to as the "plasmon mode" by 
analogy with the total plasma frequency. II We note that r I 

depends on the properties of both components indicating a 
strong coupling. 
(ii) Large q limit 

Combining Eqs. (32) and (38), and replacing Fby ii, one 
finds in this limit r l = Dlq2 and r 2 = D2q2 which indicates, 
as expected a decoupling between the two components. 

CONCLUSIONS 

In this paper we have summarized a general formalism, 
based on the linear response theory, for the interpretation of 
dynamic scattering experiments in neutral polymer solution 
developed by Akcasu et al.,1 and demonstrated its applica­
tion to the dynamics of pointlike charged molecules in solu­
tion. We have shown that the linearized version of Berne­
Pecora equations for the mean particle densities are obtained 
in this formalism by neglecting the memory effects. The lat­
ter approximation is sometimes referred to as the mean field 
theory. 17 We have extended these equations to include hy­
drodynamic interactions among the charged particles. The 
alternative derivation of Berne-Pecora equations in their 
nonlinear form presented in the appendix elucidates further 
the approximations inherent in these equations and suggests 
ways for improvement within the framework of the above 
formalism. We have pointed out that, although the equa­
tions for the mean concentrations are approximate, the gen­
eralized Langevin equation satisfied by the dynamic struc­
ture factor is exact. We solved this equation in the case of 
pointlike charged particles including hydrodynamic interac­
tions ignoring memory effects. The main difficulty in this 
approach, as is well known in statistical mechanics, is the 
calculation of the memory functions. Several methods 18 

have been attempted either to calculate these functions di­
rectly, or to study indirectly their effects on the time evolu­
tion of S (q,t ). Any direct calculation using Eq. (8) is compli­
cated by the presence of the modified propagator 
exp[ - 1 (1 - P ).2"]. There are, however, several indirect 
methods which seem to be promising, in particular in appli­
cations in polyelectrolyte solutions. 
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APPENDIX: AN ALTERNATIVE DERIVATION OF 
BERNE-PECORA EQUATIONS 

Here we follow a procedure similar to that used by Kli­
montovich l9 in plasma physics. We start with the density of 
one of the components in the configuration space: 

NA 

PA = L 8{R - Rj ), (AI) 
j~ I 

where R is a field point in space. PA satisfies apA I at 
= - if P A • In the case of pointlike particle description and 

in the absence of hydrodynamic interaction the operator if 
is given by Eq. (25). Taking advantage of Dirac 8 functions, 
one can verify that 

D NA 

ifPA = -DA vi PA + _A_VR' L 8{R - Rj)Fj{RN), 
kBT j~ I 

(A2) 

where 

Vi =VR,VR,VR = alaR, and RN=R1, ... ,RN. 

The force acting on the jth particle is denoted by Fj 

- Vj U (RN), where U is the potential energy of the sys­
tem. In the case of pure Coulomb interaction between parti­
cles, Fj = ZA eA Ej where Ej is the electric field at the posi­
tion Rj of the jth particle, e!oduced by the other particles in 
the system. We shall use Ej instead of Fj for convenience 
even in the case of nonCoulombic interaction by treating 
e A Z A as a property of a particle of kind A. By virtue of the 
Dirac8 function in Eq. (A2), Rj inEj canbereplacedbyRso 
that Ej becomes E{R1, ... ,Rj = R, ... ,RN)' In the Klimonto­
vich theory one includes the self-energy of particles in the 
potential energy of the system. This allows us to replace Ej in 
Eq. (A2) by E{R,RN), which is the field at a point R produced 
by all the particles including thejth one. The inclusion of the 
self-energy term enables one to perform the summation of 
8 (R - Rj ) over j, and to introduce PA . Taking the average of 
the resulting equation with respect to the initial distribution 
tJ!{O,RN

), one can obtain an equation for the mean density 

CA{R,t) = PA{R,t) as 

aCA{R,t) 2 ZAeA --
--- = - DAV CA + --DAV· (PAE). (A3) 

at kBT 

If one uses the mean field approximation 

(A4) 

where E is the mean field, and substitutes Eq. (A4) into Eq. 
(A3), one recaptures the Berne-Pecora equation [Eq. (9.2.7) 
in Ref. 13]. In general, the mean field E(R,t) does not satisfy 
the Poisson equation. Assuming a pairwise additive interac­
tion potential, we can obtain an equation for E(R,t ) starting 

from 

E(R,RN) = - VR ~ I d 3R' ¢B{R - R'loB{R'), (A5) 

where <PB (R - R') is the potential at R due to a particle of 
kind B at R', and the summation is over the kinds. By taking 
the average of Eq. (A5) over the initial distribution, we find 

V·E = - ~ I d 3R' vi ¢B(R - R')CB(R',t). (A6) 

This, of course, reduces to the Poisson equation in the case of 
Coulomb interaction for which ¢B(R) = ZBeBIR and 
V 2¢B = - 417ZBeB8{R). 

If the mean field approximation in Eq. (A4) is not intro­
duced, Eq. (3) becomes 

aCA(R,t) 

at 

+ Z::A:A ~I d 3R'Vi¢(R-R')PA{R,tloB(R',t) 

(A7) 

which involves the doublet density PA PB . The mean field 
approximation corresponds to replacing this product by 
C A C B' It is of course possible to generate a hierarchy of 
equations by treating the doublet density as a new dynamical 
variable as is done in the kinetic theory. Since it is a well 
known procedure we do not pursue this path any further. 

IE. Selegny, M. Mandel, and U. Strauss, in Polyelectrolytes, (Reidel, Dor­
drecht, 1974). 

2C. E. Williams, M. Nierlich, J. P. Cotton, G. Jannik, F. Boue' , M. Daoud, 
B. Farnoux, C. Pieot, P. G. de Gennes, M. Rinaudo, M. Moan, and C. 
Wolff, J. Polym. Sci., Polym. Lett. Ed. 17, 379 (1979). 

3M. Benmouna, G. Weill, H. Benoit, and A. Z. Akcasu, J. Physique (Paris) 
43, 1679 (1982). 

4H. Mori, Prog. Theor. Phys. 33, 4235 (1965). 
sR. Zwanzig, J. Chern. Phys. 33, 1338 (1960); also in Phys. Rev. 124,983 
(1961). 

6A. Z. Akcasu and J. J. Duderstadt, in Kinetic Equations, edited by R. L. 
Liboffand N. Rostoker (Gordon and Breach Science, New York, 1971). 

7 A. Z. Akcasu, B. Hammouda, T. P. Lodge, and C. C. Han, Macromole­
cules (to appear in April, 1984 issue). 

8L. K. Nicholson, J. S. Higgins, and J. B. Hayter, Macromolecules 14,836 
(1981). 

9D. Richter, J. B. Hayter, F. Mezei, and B. Ewen, Phys. Rev. Lett. 41, 1484 
(1978). 

lOA. Z. Akcasu, M. Benmouna, and C. C. Han, Polymer 21, 866 (1980). 
"F. Nallet, G. Jannink, J. B. Hayter, R. Oberthiir, and C. Picot, J. Phys. 

(Paris) 44, 87 (1983). 
12H. Yamakawa, Modern Theory of Polymer Solutions (Harper and Row, 

New York, 1971). 
I3B. Berne and R. Pecora, Dynamic Light Scattering with Applications to 

Chemistry, Biology, and Physics (Wiley, New York, 1976). 
14M. Benmouna and A. Z. Akcasu, Macromolecules 11,1187 (1978). 
15M. Baus and J. P. Hansen, Phys. Rep. 59, 1 (1980). 
16F. Oosawa, Polyelectrolytes (Marcel Dekker, New York, 1971). 
I7W. Dietrich and J. Peschel, Physica A 95,208 (1979). 
18W. Hess and R. Klein, J. Phys. A IS, L669 (1982). 
19y. L. Klimontovich, Zh. Eksperim. i. Teor. Fix. 37, 735 (1959), [Transl. 

Sov. Phys. JETP 10,524 (1960)). See also T. H. Dupree, Phys. Fluids 6, 
1714 (1963). 

J. Chem. Phys., Vol. 80, No.6, 15 March 1984 


