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Accurate partitIOn functions and free energies are calculated for the hindered internal 
rotator from the old quantum theory based upon the quantization rule of \Vilson and Sommer­
feld. The description of the system is incomplete and the energy levels may even be incorrectly 
placed, but the partition functions are surprisingly close to those now accepted as correct. 
In the course of the development the lowest energy state of the harmonic oscillator turns 
up in its correct position at the half-quantum level. 

H IGH precision can be achieved in calculating 
the contributions of vibration and pure 

rotation to thermodynamic properties by meth­
ods which omit most of the detail of the energy 
states of the molecule. Vibrations are taken to 
be harmonic, interactions are assumed to be 
negligible, and the contributions are expressed 
by simple equations involving not more than 
one molecular constant for each degree of 
freedom. 

Before these simplifications could be used 
with confidence they had to be justified mathe­
matically or by reference to experimental data. 
For example, Mayer, Brunauer, and Mayerl 

derived the energy levels of the unsymmetrical 
three-dimensional rotator and the free internal 
rotator of the . ethane type from the wave me­
chanics, and showed that the partition functions 
could be represented by summations involving 
only moments of inertia and fundamental con­
stants. Their partition functions proved to be 
the same as those obtained by the classical 
statistics. Consequently, it was possible for 
Kassel2 to use the classical method when he 
developed the general case for the rigid frame­
work with attached symmetrical rotators in 
extension of the important generalization of 
Eidinoff and Aston.3 Kassel's result proved for 
practical purposes to be the same as had been 
predicted by the writer.4 

Another less sweeping simplification is applica­
ble to the rotator in regions where the classical 

1 J. E. Mayer, S. Brunauer, and M.G. Mayer, J. Am. 
Chern. Soc. 55, 37 (1933). 

2 L. S. Kassel, J. Chern. Phys. 4, 276 (1936). 
3 M. L. Eidinoff and J. G. Aston, J. Chem. Phys. 3, 379 

(1935). 
4 J. O. Halford, J. Chem. Phys. 2, 694 (1934). 

statistics are n9 longer accurate. Here the energy 
levels based upon the old quantum theory give 
the same partition functions as those derived 
from the wave mechanics. For the harmonic 
oscillator the old quantum theory may be used 
in spite of the fact that the energy level!> are 
incorrectly located. Consequently, except for 
restricted internal rotation, it appears that the 
finer details of the wave mechanics contribute 
nothing of practical significance to the ordinary 
calculation of thermodynamic properties. 

In this paper it will be shown that a simplified 
method may also be used for the internal rotator. 
,The old quantum theory based upon the Wilson­
Sommerfeld quantization rule yields partition 
functions which do not differ significantly from 
those obtained by more detailed methods. The 
description of the energy states is incomplete 
and the individual levels may be in incorrect 
positions, but the partition functions and, there­
fore, the thermodynamic properties always as­
sume values very close to those now accepted 
as correct. 

The old quantum theory handles this problem 
without any assistance and leads to a minor 
uncertainty only in the region of close approach 
to free rotation. The uncertainty' in the free 
energy, however, remains within about 0.02 
cal./mole/deg., and only a small and unimpor­
tant part of the tables of thermodynamic prop­
erties is affected. 

Even the half-quantum of energy in the ground 
state of the harmonic oscillator is revealed cor­
rectly by the old quantum theory of the hindered 
internal rotator. This unexpected result is a 
consequence of the necessity for establishing a 
consistent scale of quantum numbers to be used 
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in both the vibrational and the rotational regions. 
Thus one of the major faults of the method 
disappears during the present application. 

It is doubtful if any procedure which had been 
so successful in its day has ever been more 
completely discarded than the Wilson-Sommer­
feld quantization method. Confidence in its 
results has reached such a low point that nearly 
everyone, including the writer, would be un­
willing to trust its application to the restricted 
rotator if tabulations derived by methods ac­
cepted as more rigorous were not available for 
comparison. As far as thermodynamic functions 
are concerned, the present study indicates that 
it has not been wise to discard this useful tool 
so completely. 

I t becomes possible to calculate the thermo­
dynamic properties of a compound, except in 
very unusual cases, without recourse to the 
detail of the wave mechanics. This statement 
has valuable practical implications, because i~ is 
evident that the complications inherent in the 
solution of the Schroedinger equation can con­
stitute a serious obstacle and, may lead the user 
into making approximations which tend to 
nullify the advantages of the method. 

The effect of varying the assumed potential 
energy can now be studied in a simpler manner 
than the one outlined by Pitzer and Gwinn. 5 

There appears to be some theoretical justification 
for a function of the form 

V = (Vo/2)[1 +cosnO+k(1-cos2nO)], 

which corresponds roughly to curve C in their 
Fig. 2. Calculations are now in progress to 
determine whether a detailed study of this 
function would be justified. 

RESULTS 

Table r shows the differences between the free 
energies of Pitzer and Gwinn and those obtained 

TABLE I. Deviation of old quantum theory free energies 
(cal./mole/deg.) from the results of Pitzer and Gwinn. 

~Q! VIRT 0 0.1 0.2 0.4 0.55 0.60 0.80 

0.4 +0.0007 -0.004 -0.003 +0.002 -0.003 
1.0 -0.0004 +0.002 +0.006 -0.002 -0.01l 
4.0 +0.0006 -0.002 +0.003 +0.002 +0.005 
9.0 -0.0002 0.000 -0.001 0.000 +0.001 0.00 

10.0 -0.0003 -0.001 -0.001 0.000 0.000 0.000 

6 K. S. Pitzer and W. D. Gwinn,]. Chern. Phys. 10,428 
(1942). 

in this study at twenty-seven points distributed 
over the entire useful range of the variables 
VI RT and 1/Qf. A positive difference means 
that FIT or (F-Ff)IT is greater than the 
Pitzer and Gwinn value. V is the height of the 
simple cosine potential barrier, R the gas con­
stant (1.9869), T the absolute temperature, Qf 
the partition function of the free rotator, 

Qf = 2.8148(1038IT)! In, (1) 

and I is the reduced moment of inertia. 
The largest difference appears at 1IQf=O.55 

and VIRT=1.0. At this point an adjustment of 
the zero state to insure asymptotic approach to 
the free rotator, as described later, becomes 
most uncertain, but the spread of reasonable 
adjustments should not cause deviations larger 
than 0.02 in the column for 1IQf=0.55, 0.015 
for 1/Qf=0.50, and 0.01 for 1/Qf=0.45. Within 
each column, it has been found by calculations 
not included in the table that the deviations 
decrease rapidly from the maximum as VI RT is 
changed in either direction. 

For further application of the old quantum 
theory it would be permissible to adjust the 
values in this region toward those of Pitzer and 
Gwinn. For the present, however, they are left 
as they are in order to show what the method 
produces without assistance from other sources. 
In any case the deviations are u'nimportant in 
relation to the errors of thermodynamic data, 
the arbitrary selection of the potential function 
and the probability that the region of the largest 
deviations wiII not be used unless methyl alcohol 
proves to have an unexpectedly low potential 
barrier. 6 

It is obvious without further calculation that 
the other thermodynamic properties will be close 
to those found by Pitzer and Gwinn. 

ENERGY LEVELS 

The total energy E is expressed as the SUIll of 
the kinetic and potential energies by the equation 

2E=!(J2+ V(1-cosnO), (2) 

in which 0 is a rotational coordinate and n is the 
symmetry number or the number of potential 
minima in the cycle. The momentum p, equal to 

·].0, Halford,]. Chern. Phys. 15, 364 (1947). 
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liJ, becomes 

P=l![2E- V(l-cosnlJ)J 
= (IV)~[2(E/ V -1) + (1 +cosnlJ) J~. (3) 

For states with energy less than V, E/ V -1 is 
equal to -(1+cosnIJ0)/2, where IJo is the ampli­
tude of vibration. 

The \\Tilson-Sommerfeld rule requires that 

rh= fPdIJ=(IV)!f[2(E/V-1) 

+(1 +cosnO)]!dO, (4) 

with r to have only integral values. The sym­
metry number can be factored out of the integral 
by the substitution 'I' = nIJ. Limits are then 
assigned for a complete cycle in 'I' to give 

rk= 2(IV)!/nf" [2(E/ V ~ 1) 
(j 

+(1+cosip)]ldip. (5) 

This equation states that the rotational quantum 
number at a given total energy is one nth of the 
quantum number for the same energy in the 
single minimum case and means that only each 
nth rotational doublet is to be counted. The 
corresponding point in the Pitzer and Gwinn 
development is the assignment of one state to 
each of the regions delimited by their theory. In 
Eq. (5), for convenience, the integration is 
performed over half the cycle and the result is 
multiplied by two. 

The quantum number obtained in this manner 
gives the mean position of the rotational doublet. 
If the integration is performed in the vibrational 
region strictly according to the rule, the upper 
limit is changed to the amplitude, '1'0, and the 
length of the cycle is doubled. Here, to keep 
rotations and vibrations on the same number 
scale, the doubling is omitted and the rotational 
scale is retained into the vibrational region, 
where each quantum number r now gives the 
mean position of two vibrational states. But in 
the harmonic oscillator limit the individual states 
are equally spaced on both the energy and 
number scales. The two number scales, vibra­
tional and rotational, become consistent if the 
vibrational states are placed at r=1/4, 3/4, 5/4, 
.. " corresponding to the vibrational quantum 
numbers 1/2, 3/2, 5/2, .... In this way the 

harmonic oscillator acquires an energy hll/2 in 
the ground state by an argument based upon 
the \\Tilson-Sommerfeld quantization rule. 

The key to the use of the old quantum theory 
in the internal rotation problem is to retain 
under all conditions the rule that the rotational 
quantum number r is the arithmetical mean of 
the quantum numbers of the two components of 
the doublet. 

The manner of arriving at Eq. (5) suggests 
that it should give a solution for the energy 
levels in the single minimum case when there is 
no over-all rotation of the molecule around the 
axis of the internal motion. This interpretation 
is in qualitative agreement with diagrams pub­
lished by Koehler and Dennison 1 for the meth­
anol case in illustration of their general solution 
for the energy levels with the simple cosine 
potential function. 

For states entirely·in the rotational region the 
theory fails to designate the doublet separation. 
This is known, however, at the top of the barrier, 
and can be reasonably assumed to approach 
zero for high energy levels, a situation that can 
be approximately represented by assigning the 
positions r± V/4E. Because of a tendency toward 
cancellation of the errors introduced by this 
assumption, its effect is felt only in those cases 
where the first doublet is at a short distance 
above the top of the barrier. 

The integration of Eq. (5) has been performed 
graphically at chosen values of '1'0 or E/ V. At 

TABLE Il. Energy of the internal rotator in terms of the 
quantum number index. 

_ EIV A (radians) p 

0.03016 0.06724 0.008539 
0.1170 0.26385 0.033505 
0.2500 0.5746 0.07297 
0.4132 0.9749 0.12348 
0.5868 1.4305 0.18165 
0.7500 1.9005 0.24134 
0.8830 2.3344 0.29644 
0.9700 2.6729 0.3394 
1.00 2.8284 0.3592 
1.10 3.2550 0.4133 
1.25 3.7267 0.4732 
1.50 4.3689 0.5548 
1 5.4026 0.6861 
3 7.0071 0.8898 
5 9.4175 1.1959 
9 12.9503 1.6445 

1 J. S. Koehler and D. M. Dennison, Phys. Rev. 57, 
1006 (1940). 
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TABLE III. 0 (Eq. (9» as a function of p. 

p 

0.008539 
0.033505 
0.07297 
0.12378 
0.18165 
0.24134 
0.29644 

0.00002 
0.00024 
0.00098 
0.00215 
0.00235 
0.00000 

-0.00863 

each point from twenty to forty ordinates were 
calculated and the area was approximated for 
the separation !::.rp and the ordinates Yo, Yl, 
Yn, according to the equation 

Apparent areas A for several values of !::.rp were 
plotted against !::.rp and extrapolated to !::.rp = O. 
For this purpose, if the number of ordinates is 
chosen conveniently, only one addition is neces­
sary. For example, with forty ordinates the first 
total is based upon Yo, Ys, etc. To this are added 
Y4, Y12, etc., to give the second total for half the 
spacing first used. The rest of the process is 
evident. Simpson's one-third rule might have 
been used, but the writer is a little suspicious of 
it and preferred the method just described. In a 
few tests the error made with Simpson's rule for 
a given !::.rp proved to be about equal to that 
made with Eq. (6) for !::,rp/2. Any advantage of 
Simpson's rule is partly offset by the extra work 
of adding the ordinates in new combinations and 
the need for enough ordinates to provide three 
points for the extrapolation. 

As the ratio E/ V increases above 1.0 the area 
rapidly approaches that of a rectangle erected 
on the ordinate at rp = 71"/2 and can be obtained 
accurately with quite large spacing of the ordi­
nates. At the top of the barrier the integration is 
carried out analytically to give an area of 2J 

radians and provide a check on the accuracy of 
the graphical method. The difference appears in 
the fifth digit beyond the decimal point. Inci­
dentally the classical picture of a vibration at 
this point is rather amusing. At the maximum 
,amplitude the restoring force is zero, suggesting 
that the period should be infinite and the 
frequency zero. 

Equation 5 is combined with the equation 

(7) 

to give Eq. (8), in which p is a convenient quan­
tity that may be called the quantum number 
index. 

r/[QtCV/RT)t]=A/(271"3)t=p. (8) 

Since the relation between E/ V and A or p is 
the same for all systems within the range of the 
variables a single curve or its equivalent in 
tables and equations will summarize the results 
of the quantization. 

Table II shows in successive columns the 
related values of E/V, the integral A, and the 
quantum number index p. 

The information in Table II can be expressed 
in equations to be used with tables of differences. 
For E/V between zero and 0.75 the equation is 

E/V=3.545p-1.812 p2+ o (p<0.24), (9) 

for which 0 is shown in Table III. 
At higher levels the equation 

E/V=7I"p2+0.5+!::. (p>0.24) (10) 

is valid. The values of !::. appear in Table IV. 
For interpolation in Tables III and IV it is 
convenient to use the graphical method. 

It is evident that the curve of E/V against p 

is asymptotic to the harmonic oscillator line 
E/ V = 271"tp in the low energy limit, and ap­
proaches the parabola E/ V = 7I"p2+0.5 at high 
energies. The latter limit is consistent with the 
statement by Koehler and Dennison that the 
high levels approach the free rotator energies 
plus V/2. The relation to the harmonic oscillator 
and the limiting rotator is illustrated in Fig. 1. 

In terms of the variables used here the 
equations for the harmonic oscillator and the 
free rotator take particularly simple forms. For 
the oscillator the expressions E = 2rhv and 

TABLE IV. A (Eq. (10» as a function of p. 

p ,1. 

0.1817 -0.01683 
0.2413 +0.06703 
0.2964 0.10695 
0.3394 0.10792 
0.3592 0.09471 
0.4133 0.06325 
0.4732 0.04641 
0.5548 0.03303 
0.6861 0.02132 
0.8898 0.01259 
1.1959 0.00695 
1.6445 0.00371 
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v=n(VI2I)!/211" are combined with Eqs. (7) and 
(8) to give E=211"!p V. For the free rotator, the 
relation E= (nrh)2/811"2J together with Eqs. (7) 
and (8) yields E = 1I"p2 V. Although P becomes 
infinite as V approaches zero, the energy remains 
definite for all finite values of the quantum 
number r. 

To find the allowed energies for a given ro­
tator, the quantum numbers r±t and r± VI4E, 
where r is an integer, are divided by the product 
Qr( VI RT)l (which is independent of the temper­
ature) to give the required values of the index p, 

after which the energy ratios EI V are determined 
from Eqs. (9) and (10) and Tables III and IV. 
The sum of the quantities e-(E/V-Eo/V)(V/RT) is then 
the required partition function. 

This simple procedure gives highly accurate 
partition functions and free energies for all cases 
for which three or more individual energy levels 
lie within the potential.valley, and covers practi­
cally all situations for which the thermodynamic 
properties would probably be needed. The special 
treatment used between this point and the free 
rotation limit is considered in a separate section. 

HIGH TEMPERATURE LIMIT 

When l/Qr approaches zero the spac;ing of the 
energy states becomes infinitesimal and the' 
partition function may be expressed by means 
of the following integral: 

f
oo en 

Q=2 e-E/RTdr=2QrCvIRT)I! e-E/R1'dp. (11) 
o 0 

As Pitzer8 originally found, the ratios QIQr and 
the corresponding free energy differences are 
finite, although the partition functions themselves 
are not. 

The integral from p = 0 to p = 0.24 was found 
by the graphical method in the manner described 
above in connection with the quantizations. The 
remainder of the integral was evaluated closely 
enough by a rapid procedure which enlisted the 
aid of tabulated values of the probability integral 

P I= (2111"l) fXI exp( -x2)dx, 
o 

(12) 

found in Mellor's Higher MathematicsY 

R K. S. Pitzer, J. ChC111. Phys. 5, 469 (1937) . 
. "J. \\'. Mellor, Higher Mathematics for Students of Clle1l1-
1stryand Physics (Dover Publications New York 1946) p. 
621. " , 

The integral between the limits Xl and X2 is 
P 2-PI , and for our purposes takes the form 

(13) 

from which, if a = (11" VI RT);, the fraction of the 
partition function of a free rotator which comes 
from the region between PI and P2 is given 
directly by P 2 - PI as found in the table for 
Xl = api and X2 = ap2. If PI and P2 are not far 
apart, the correction ~ of Table IV may be 
regarded as constant, and the contribution of 
the region to QIQr will be given by 

[QIQrJ:~= (P 2-P I )e-(O.5+tJ.)V/RT. (14) 

As the energy ratio approaches the limit 
EIV=1I"p2+O.S, the fractions may be taken over 
increasingly wide intervals. The result is nearly 
as accurate as the direct graphical integration 
when only twelve areas are summed in this 
manner. The procedure is equivalent to replacing 
the E I V curve by a series of' parabolic sections 

,parallel to the free rotator curve before per­
forming the integration. 

APPROACH TO FREE ROTATION 

In the harmonic oscillator limit the ground 
state is found at the position ro = t or 
Po = 1/[4Qr( VI RT)t]. If this relation were applied 
in the region of close approach to free rotation, 

1.5 

J!./V 

1.0 

0.5 

1l.2 p 0.4 

FIG. 1. Ratio of energy to barrier height as a function 
of .the rotational quantum number index. A, harmonic 
oscIllator. B, restricted rotator. C, limiting rotator. 
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TABLE V. Energy levels of methyl alcohol for V = 770 em-I. 

EIV (K and D) EIV 
Min. Max. p (this study) 

0.2482 0.2506 0.25 0.07594 0.2598 
0.6784 0.7187 0.75 0.22782 0.7144 
0.9644 1.1697 1.25 0.37970 1.0329 
1.2152 1.6766 1.85 0.56196 1.5241 

with Qf constant and V/RT approaching zero, 
the zero state would appear to emerge from the 
potential valley at a finite value of V / RT, and 
the ratio Eo/ V would increase indefinitely as the 
barrier decreased toward zero. It is easily shown 
that in the limit the energy would be one­
sixteenth that of the first rotational doublet, and 
that when the zero state was' above V /2, the 
partition function would exceed the free rotation 
value. 

I t is, therefore, necessary to adjust the zero 
state downward if an asymptotic approach to 
free rotation is to be achieved. While it is 
obvious that the ?ero-point energy must disap­
pear in the limit, there.is no evident reason why 
the partition function should not exceed the free' 
rotation value through some limited range of 
very low potential barriers. 

An examination of the graphical illustrations 
of Koehler and Dennison raises the same question 
in connection with the region over which the 
zero state may roam in the triple-minimum 
problem as the potential barrier decreases toward 
zero. The answer would come from a detailed 
study of the combined partition function of the 
coupled internal and external rotations, and will 
be sought at some future date when time 
permits. 

For the present it is assumed that the zero 
state will remain low enough to insure an asymp­
totic approach of the partition function to the 
free rotator limit from lower values. An adjust­
ment is made according to the arbitrary relation 

apo,s+po=1[4Q,(V/RT)!]=pd4. (15) 

There appears to be no way to determine a and 
(3 uniquely, but satisfactory evaluations can be 
made by considering the behavior of the function 
in two limiting regions. It is required, if r is to 
be at the mean position of the doublet, that the 
first term of Eq. (15) shall become negligible' 
when the first doublet is entirely within the 

potential valley, where the separation is fixed 
by the quantization over the vibrational cycle. 
For this situation Po is 0.072, and an error of 
about 0.0004 can be made without introducing 
a significant uncertainty into the partition func­
tion. If (3 is assigned, the corresponding a is 
determined by this assumed error. The behavior 
of the function near free rotation for various 
values of (3 is next examined. It is assumed that 
at 1/Qf=0.55 and V/RT=0.10 the partition func­
tion will be below and very close to the free 
rotator value, and the lowest integral value of (3 

is taken for which this is true. The equation 
then takes the form 

Actually the deviations in Table I are smaller 
for the next higher power of Po. A change in the 
permissible uncertainty at Po = 0.072 will alter the 
selection of a and (3 without producing much 
change in the size of the corrective term. The 
procedure is quite arbitrary, but no reasonable 
change in the assumptions produces serious 
differences in the partition functions and free 
energies. 
. For PI greater than 0.29, Eq. (16) is used to 

.find the position of the ground state. If the 
energy at ro+ 1/2 falls within the barrier, the 
lower component of the first doublet is placed at 
this point and the second component is moved 
upward to 3/2-ro in order to keep PI for r= 1 at 
the mean position. When ro+1/2 is in the rota­
tional region the doublet components are placed 
at r=l± V/4E. 

As might be 'expected, the largest deviations 
of Table I occur near the midpoint, on the Po 

scale, of the region spanned by Eq. (16). 

METHYL ALCOHOL 

The energy levels given by the old quantum 
theory can be compared with those calculated by 
Koehler and Dennison for methyl alcohol with 
an assumed potential barrier of 769.43 cm-I • 

They have described the first four levels in 
detail, showing exactly how the components of 
each triplet change in position with the quantum 
number of the external rotation about the axis 
of the methyl top. In Table V, the first and 
second columns show the ratio E/ V for the 
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minimum and maximum positions of the states 
within each triplet, and the third, fourth, and 
fifth give the values of r, p, and E/ V obtained 
in this study. The reduced moment of inertia 
was calculated from other constants in their 
paper to be 1.116 X 10-4°. 

At the upper levels the old quantum theory 
result appears alternatively toward the upper or 
lower end of the region delimited by the wave 
mechanics. At the same end of each region, 
when the external quantum number is zero, is 
found a component of a separated doublet 
derived from a rotational state whose quantum 
number in the complete system of levels is a 
multiple of 3, or, more generally,a multiple of n. 
The Wilson-Sommerfeld rule, therefore, gives an 

average position weighted toward the true level 
taken by a component of each nth state when 
there is no external rotation. The upward dis­
placement of the odd numbered states, on the 
vibrational scale of quantum numbers, is greater 
than the downward displacement of the even 
numbered states. 

For the same zero level the old quantum theory 
would lead to a lower partition function than 
the one obtained from the mean positions of the 
regions derived from the wave mechanics. In 
Table V, however, the zero state is a little high, 
and our experience indicates that it is just high 
enough in general to compensate for the different 
description of the higher levels and lead to the 
correct partition functions. 
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A Gaussian network is defined as a network of flexible 
chain segments, linked to each other and to a system of 
fixed points, in which each unbranching chain segment can 
take on a number of configurations which is a Gaussian 
function of the distance between its ends. Real molecular 
networks, such as those of rubber, can under certain cir­
cumstances be treated as Gaussian networks. The present 
paper carries out a systematic mathematical discussion of 
the statistical properties of Gaussian networks: the total 
number of possible configurations of the network as a 
function of the fixed-point coordinates, the probability of 
finding a given element of the network in a given position, 
or of finding two elements of the network in given relative 
positions, and so on. All probability-density functions 

RUBBER-LIKE materials consist of molec­
ular networks formed by the random 

bonding together of long flexible molecular 
chains. l In developing the theory of rubber-like 
elasticity it is necessary to study the statistical 
properties of these networks-to determine how 
the total numbers of configurations possible for 
the network depends on the external constraints, 

1 H., M. James and E. Guth, J. Chern. Phys. 11, 455 
(1943). 

appear as exponentials of quadratic forms, with constants 
explicity expressible in determinant form. An explicit 
reduction to a sum of squares is given for all quadratic 
forms occurring in the theory of coherent Gaussian net­
works, and an explicit general formula is found for in­
tegrals of the form 

i:oo dXli: dX2 .. ·i: dx.exp{-~~'YiiXiXj} 
There is described a mechanical analog of a Gaussian 
network, by consideration of which the statistical proper­
ties of the Gaussian network can be determined. The 
method is applied to the discussion of the statistical 
properties of a Gaussian network with the connectivity of 
a regular cubic lattice. 

to compute the probability that a given element 
of the network is in a given position, or that a 
given pair of elements are in giveT\ relative 
positions, 'and so on. It has been shown else­
where 1 that for such purposes it is a reasonable 
approximation (in the case of soft rubber) to 
assume that each unbranched chain segment in 
the network cal). take on a number of configura­
tions which is a Gaussian function of the sepa­
ration of its ends, and this independently of the 


