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Hostler [J. Math. Phys. 11, 2966 (1970) ] has shown that Coulomb Green’s functions of
different dimensionality N are related by GV +2 = ZG™, where £ is a first-order derivative
operator in the variables x and y. Thus all the even-dimensional functions are connected, as are
analogously the odd-dimensional functions. It is shown that the operations of functional
differentiation and integration can further connect the even- to the odd-dimensional functions,
so that Hostler’s relation can be extended to give G+ = #12G™ |

1. INTRODUCTION

Hostler showed in 1970 that Coulomb Green’s func-
tions of varying dimension N were related as follows'™:

G N2 (x,p,k)
= - '_1—' (_a_ - i)G S (x:y,k),
m(x—y)\odx dy
N=1.23,... (1.1)
Here x and y are the two coordinate variables
xXy=ry+r,+r; (1.2)
and k is the wave number variable, such that, in atomic units
(i=p=e=1),
21 2 2
Ezﬁk =k—, vzg. (1.3)
2u 2 k

Thus the odd-dimensional functions G ¥, G%,... are obtained
by successive differentiation of G, while the even-dimen-
sional functions follows analogously from G *. We will show
in this paper that the even- and odd-dimensional Coulomb
Green’s functions can be further connected to one another
by the operations of fractional differentiation and integra-
tion.

By the N-dimensional Coulomb Green’s function we
understand the solution of the inhomogeneous differential
equation:

(‘;"‘ ?+ %va + i)G M (ry, th, k) =8N (ry — 1),

I'n
(1.4)

which is not to be confused with the solution to Poisson’s
equation in N-dimensional space.

il. RESUME OF THE FRACTIONAL CALCULUS

The monograph of Oldham and Spanier® gives a defini-
tive presentation of the fractional calculus. A brief heuristic
account of some relevant results will suffice to make this
paper self-contained.

Multiple differentiation in the complex plane can be rep-
resented by Cauchy’s integral formula:
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f(n)(z) z_f‘_§ f(g)dé‘ (2.1)

2mi ) (£ -z’
for a contour enclosing £ = z. A possible generalization of
(2.1) to derivatives of nonintegral order g defines

P+ [ _fHdg

2mi Je (E—z)F
For g#n, { = z becomes a branch point. Let the contour C
be taken counterclockwise around z and extending on both
sides of a branch cut to a lower limit { = a. The valuesa =0
(Riemann) and @ = — o (Liouville) are the most com-
mon. For g <0, (2.2) reduces to the Riemann-Liouville de-
finition of a fractional derivative, viz.,

@@=

(2.2)

() — 1 : f(g)dé = D9 2.3

fO@ = w5 ) G gY@ @)
The case ¢ = — 1 is called the semi-integral:

aD;VZf(z)\:_l_ _forde (2.4)

\/; . (z— ;) /2"
For ¢> 0 (and 5n) the singularity at { = z can be removed
by integration by parts. Thus the semiderivative, with ¢ = 1,
is given by
1 (Ode
\/; a (Z ad g ) 1/2
(2.5)

We will actually require the limit value a = + . For ap-
propriately behaved f (2):

1 fa)
Dx/z —
at’ z f(Z) \/; (z_a)l/Z

wp;‘”f(z>=# z %_5%, (2.6)
and
DY) = [ LL&e)dE 2.7)

\/1—7- , (é—_z)l/z'

Ill. INTEGRAL REPRESENTATION OF N-DIMENSIONAL
GREEN’S FUNCTION
The Coulomb Green’s function in N-dimensional space

can be expanded as a sum of partial waves as follows®:
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I'(N/2) <

G = (RL+N—=2CY?* Heos )G, 3.1
27V H (N —2) Lz() ) G-h
where C (z) is a Gegenbauer (ultraspherical) polynomial,
Y _ LT(L + 2v) _ . .
Ci(zy=(—-) AT T2 (=L, L+2viv+ 1/2;(1 4 2)/2). (3.2)

The partial-wave retarded Green’s functions are given by®
GV (rprpk) = (k) 1 (rr) ' VAL 4+ N/2 = 1/2 — iv)
XMEFN2=1 _2jkyr YWEFTN2=1(—2ikr_ ), N=345,., (3.3)

where M and W are Whittaker functions as defined by Buchholz.”®
Using Buchholz’s integral representation for the above product of Whittaker functions,

GE,N)z _2( __l')2L+N72(r1r2)1—N/2J dquivqeik(r.+r2)cotth2L+N—_2(2kmcschq)’ (34)
(4]
the summation in (3.1) can be carried out using the Neumann series’:

kz\+—~ = '(u+n)
(—2-) 1,0 =k 5, I o,y 4 5K G+ 20 (2, (3.5)

with the identifications n = L, k = cos(8 /2), z = 2k\r,r,csch g, u = n — 2 and v = (N — 1)/2. The result is the following
integral representation for G ™ (see Ref. 10):

G(N)(x’y’k) — (277.)1/2—1\//2( _ i)NkN/Z— 1/2,'73/2VN/2

Xf dg(csch g) V72— VV2g2agikbcothay, i, (knpeschg), N=1.23,., (3.6)
(4]
where

E=ri+r=(x+»)/2, n=2rr, cos (6/2) = Jxp. (3.7)

The above result for N = 2 follows by a separate derivation. The case N =1 corresponds to Meixner’s one-dimensional
Coulomb system*!

GY= inJ dq csch ge*™e™ <M 4] (kn csch q) = (ik) 7'T(1 — iv)M > ( — iky) W 2 ( — ikx), (3.8)
(]

with the closed form following from Buchholz’ integral representation. For N = 2,

G?= — LJ. dg csch ge*™9e™5°° ™9 cos (kv csch gq), (3.9)
TJo
which can be reduced to a series of Whittaker functions,
1 d 1
G? = I‘(m +——tv)Mﬁ.;"1(—ik YWIm( — ikx), 3.10
irkn ,,,:Z_ - Im| 2 Y ( ( )

but no further reduction to a closed form is known.

DIMENSIONALITIES

Hostler’s operator [cf. Eq. (1.1)], when applied to a
function of £ and 7 [cf. Eq. (3.7) ], reduces as follows:

ﬁE__l_(i_i)zL(i) ~1p, D7, (kn esch )

7(x—y) o/ 2m\onle T 7 =(—kceschg/2)yg="""J,, ,(knpcschg). (4.3)

(4.1)
By the well-known derivative formula for Bessel functions, '? Applying Hostler’s operator succesively to the integral rep-

IV. RELATIONS AMONG DIFFERENT (i ;12) D = (=)L (@) (42)

Identifying z with k7 csch ¢, we have
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resentation (3.6) then gives the odd-dimensional Green’s
function

GN+ . gNGg (4_4)
and analogously, for even ¥,
G+ - NG, (4.5)

The identity (4.2) can be reexpressed as follows (with
Z—»JE):
D27, (Yz) = (= "2~ “+"2, (J2). (4.6)

Taking #n = 1 and integrating between the limits g and z, we
find

&0 i = e AR Y )
4.7

For v>0, the lower boundary term in (4.7) vanishes for
a = + . Thus the analog of (4.6) for negative n (multiple
integration) can be written

D"z, (Jz) = (—2)"2~ "2, (2).
(4.8)

It is now suggested that (4.6) and (4.8) might be general-

ized to fractional #. For the semi-integral, Eq. (4.8) with

n =1, use (2.6) and evaluate the integral.'® The result is

— w2 Jv ( \/35 )

( ;— _ Z) 1/2

o0

. oo g—
tz—l/zz-vfsz(ﬁ)=_'_j g
Jr J-
=i2z=" V4, L (zZ).  (49)

Likewise, Eq. (4.6) works for n = 1. One can therefore write
the square root of Hostler’s operator as

o' = — (INT) DA (4.10)
such that
ﬁ”zG(M — G(N+ 1)’ fN/sz - G(N+ l),
N=123,... (4.11)

This does not, incidentally, provide a closed form for G?
since the semiderivative still involves either an integral or an
infinite sum.
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For Z =0, the above reduce to free-particle Green’s
functions. In particular,

G{.-:,) - (ik)—l[eik(x—y)/z i eik(x+y)/2]’
G = — (i/2)H (kR),
GH = — ™™ /20R,

where R=r;, = (x —y)/2. It can be verified that the
Hostler operator and its square root also transform among
the functions (4.12) in accord with (4.11).

(4.12)
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