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The influence of radial vibrations on forced convection from a sphere placed in a uniform stream of
an incompressible fluid is studied mathematically. Consideration is given to first-order perturbations
of the harmonic vibrations of the spherical surface for both high and low frequencies. Theoretical re-
sults are obtained by means of a Kdrmdn-Pohlhausen method for velocity and temperature distri-
butions, skin friction, heat-transfer rate and the shift in the separation point of the boundary layer.
Numerical calculations are carried out for boundary-layer thickness and velocity profiles in the

fluctuating boundary layer.

INTRODUCTION

N recent years considerable attention has been

focused on the response of boundary-layer flows
to vibrations and flow oscillations’™’. This paper is
devoted to examining the influence of small, har-
monic, radial vibrations of a sphere placed in a free
stream of an incompressible fluid. These vibrations
induce oscillations of velocity and temperature in the
boundary layer. The amplitude and phase angle of
these oscillations are obtained for both high and low
frequencies.

Also studied are the response of both skin friction
and heat-transfer rate and the shift in the separation
point of the boundary layer due to the harmonic
vibrations of the spherical surface.

ANALYSIS

The physical system analyzed consists of a vibra-
ting sphere placed in a stream U,(x) of an incom-
pressible fluid. A spherical coordinate system 7, 6, ¢
is fixed at the center of the sphere. The sphere is
undergoing harmonic vibrations in the radial direc-
tion. Considerations of eompressibility require the
radial velocity of the sphere to be of a lower order
than the velocity of sound in the fluid. The harmonic
vibration of the sphere is represented by its displace-
ment as r, 4+ eree'®’, where r, is the mean radius,
ey is the amplitude of vibration,  is the frequency
of the vibration and ¢ is time.

1 H. Schlichting, Phys. Z. 33, 327 (1932).

2 M. J. Lighthill, Proc. Roy. Soc. (London) A224, 1 (1954).

3 C. C. Lin, Proceedings of the Ninth International Congress
on Applied Mechanics (Université de Bruxelles, Brussels,
1956), Vol. 4, p. 155.

¢ E. Hori, Bull. Japan Soec. Mech. Eng. 4, 664 (1961);
5, 57 (1962); 5, 64 (1962); Trans. Japan Soc. Mech. Eng. 27,
1731 (1962).

§J. Kestin, P. F. Maeder, and H. E. Wang, Appl. Sci.
Res. A10, 1 (1961).

¢ R. J. Schoenhals and J. A. Clark, Trans. Am. Soc. Mech.
Engrs., C84, 174 (1962). )

7T. Y. Na, Ph.D. thesis, University of Michigan (1964).

The sphere is maintained at a uniform tempera-
ture, T and is in contact with the fluid at tempera-
ture 7', and pressure P, flowing in the ¢ direction
with velocity U. at infinity. The fluid has constant
properties. The governing equations of mass, mo-
mentum, and energy may be written in spherical
coordinates as

continuity
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where »* and v* are the velocity components in the
6* and r* directions, respectively; p* is the pressure;
v is the kinematic viscosity; p is the density; « is the
thermal diffusivity; and the superseript * refers to
the stationary coordinate system. The boundary
conditions are
™ =1t ere’ ! Tur = 0, v* = dwre’t, T* = T,;
Uo(x) y T* = Tw.
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806



BOUNDARY LAYER ON VIBRATING SPHERES

It is convenient to analyze the problem in a frame
of reference fixed in the spherical surface, i.e., a
coordinate system moving with the surface. This
shift in reference systems has an advantage in that
the boundary conditions at the surface are simplified.
However, this introduces a relative acceleration be-
tween the moving system and the stationary system
in the radial direction which alters the 7* momentum
equation. The substitution of

™ =y 4+ (r + froeiwt)y g* =6 6y

into the governing equations followed by the bound-
ary-layer simplification yields
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where R(z) is the radius of the section of the sphere
taken at right angles to the direction of the upstream
flow. The_boundary conditions now become

T=T,;
T=T..

y=0 :u=v=0,
y— o 1u = U,

The velocity components and temperatures in the
moving and stationary coordinates are related as
w* = u, v* = v — epiwe’’,and T* = T.

FLOW BOUNDARY LAYER

Equation (8) is integrated to give the pressure
distribution
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Upon the substitution of dp/dz obtained from the
above expression, Eq. (7) becomes
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where § is the unperturbed boundary-layer thickness.
The velocity perturbations in the boundary layer
caused by the harmonic vibrations are expressed as
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u = u(z, y) + ez, ye'’, (12)

b= Ug(l', y) + 61)1(1‘, y)eiwt’
where ¢ is assumed so small that the linearization
of the governing equations and boundary conditions
is possible. 4, and v, are the mean velocity distribu-
tions which correspond to the solution of the steady
flow over a sphere. u, has been found by Tomotika
and Imai® to be

Z—Z =2y - 27 + 9" + % (n — 37" 4+ 39" — 1,
(13)
where
_¥ N = ﬁdeO
5’ v Ox

The fluctuating part of the velocity is given by
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which are obtained by substituting eq. (12) into
eqs. (6) and (11) and retaining the first-order terms
of e.

For low frequency, one writes

ul(xz y) = u,(x, y) + iwut(x) y);

vl(x; y) = vs(xy y) + iwvl(x: Z/), (16)

where (u,, v,) is the quasi-steady solution as w — 0
[i.e., as the vibration of the spherical surface tends
to the steady value (1 4+ ¢)r,] and (w,, v,) is the
acceleration-component of the velocity in the bound-
ary layer. As the frequency approaches zero, the
sphere radius and the fluid velocity vary as er, and
e(u,, v.), respectively. Since (u,, v,) are known to be a
function of z/r, and y(3U,/vr)t it follows that®

(U, v a
O
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8 S. Tomotika and I. Imai, Report of the Aeronautical
Research Institute, Tokyo Imperial University, No. 167
(1938). :

9 H. Schlichting, Boundary Layer Theory, translated by
J. Kestin (McGraw-Hill Book Company, Inc., New York,
1960), 4th ed., p. 188.



808 H.

Now Egs. (17) are substituted into Egs. (14) and
(15). Using the fact that (u., v.) is a solution for
(u;, v,) — 0 one obtains

ou, Uy, U,

. ou; QU U, Qo
U, + vy oy + v, oy + % oz +u

fox

__2 ( duy 61)
T Js "°ax+”'ax dy

3,
ay°

.dé
= Ug — Towl % + 14 (18)

and

ou.k) , owR) _
- + oy 0 19
Their boundary conditions are
y=0u =v,=0; y—> o:uy, = 0.

By means of a Kdrmdn—Pohlhausen integral method,
Eq. (18) is integrated for sufficiently small values
of the frequency. Thus, using equations (17) and
(19), one gets
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Now 1t is assumed that
u, = [(°F@)/m)Q — 0)’[Adn + QA — H»*], (@)

which satisfies the boundary conditions u, = 0,
v(0°u,/0y*)y-0 = F(z) aty = Oand u, = 0, du,/dy =
0, at y = o, where
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With u,, u,, and u, given as Eqs. (13), (17), and (21),
respectively, Eq. (20) now becomes
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Because of the small magnitude of 8, the terms
having high orders of § in Egs. (22) and (23) are
neglected. Under the approximation, A and F(z)
are found to be

2
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Then Eq. (21) may be rewritten as
Uy = Uy + U5, (26)
where
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The amplitude of the oscillating component u, is
[(u, — wue)® +(wu..)?]}. Its phase angle, or the time
lead of the oscillating component of the velocity
ahead of the oscillation of the sphere in the r direc-
tion, is tan ~'[wu,./(u, —wu,;)]. The skin friction =
may be expressed as

’w<6y o T oy ) TNy s

T =
Twe -l . ? d6
= 71+ € {—570—1@%5%
. ’"o_wf@_l<3_)\)]}
where 7, = —pv(0uo/dy),-o is the skin friction at

steady state. By equating 7 to zero in Eq. (27), it
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is seen that for quasi-steady vibration the separation
point remains steady.

For large frequency, another method may be used,
which is based on the theory dealing with differential
equations containing a large parameter. According
to the theory, a first approximation to the solution
may be obtained by retaining only the terms of the
greatest magnitude and of the highest-order deriva-
tive. In the present case, Eq. (14) becomes

2 dd %,
dx + oy

) (28)

ol = T

subject to the conditions v, = 0Oaty = 0 and u, =
finite. Consequently the resulting solution is
w = —irgw (d8/dx){1 — exp [—yGo/n)']}.  (29)

v; may be obtained from the equation of continuity

as
C i, L d [ ds ( 1 —exp [-y(iw/u)*])
=T By [ R] y (/! '
‘ (30)
The skin friction is
%da twt D
T =T — elprTo(Vw) Iz e, (31)

From Eq. (31), it is seen that the amplitude of the
fluctuating skin friction increases with the 3-power
of the frequency but its phase angle lags that of the
radial vibrations of the spherical surface by 45 de-
grees. Equation (31) with = = 0 shows that the shift
in the mean separation point proportional to the
$ power of the frequency.

THERMAL BOUNDARY LAYER

The linearization of the temperature equation
(9) and its boundary conditions by

T = To(x, y) + T(z, yle™'
results in the expressions

o _
Ug +any—aay

2
9 Lo 32)

for the mean temperature T, with the boundary con-

ditions Ty = Ty aty = 0,and Ty —» O asy — o;
aT aT, aT O°T
1wl + U, xl+ o+ o_+ 16_?/0_'013y2l

(33)
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for the fluctuating part of the temperature T'; with
the boundary conditions 7, = O at ¥y = 0 and .
The temperature of the stream may be conveniently
taken as zero.

Using the equation of continuity and Eq. (32),
one obtains

L) [ (2
( B Ty dy = —a 3 o (34)
Let the mean temperature profile be

To/Tw = (1 + an)(1 — an)’, (35)

where a is the ratio of the thickness of the velocity
boundary layer to that of the temperature boundary
layer. Then Eq. (34) has to satisfy the boundary
conditions Ty = Tw, 8°T,/dy> = 0 at y = 0 and
To — 0, 0T,/dy — 0, 3*°T,/dy* — 0 as y — . The
combination of Egs. (13), (34), and (35) results in
the equation for a as

1 dR 7 67 . T .
(dac TR dx)U“ [ @+ 140 36

9 -7 _ 1 )]_Za_a
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For low frequency, as w tends to zero, the quasi-
steady solution is seen to be

Ts = —3y aTo/dy. @7
One then writes for a general
Tl(x; y) = Ts(x; y) + in!(x: ?/) (38)

so that for vibrations of a relatively low frequency
—T,/T, will represent the time lag in the tempera-
ture distribution behind its quasi-steady value.

Using Eqgs. (16) and (38) plus the fact that T, is a
solution of Eq. (33) when w = 0, one deduces the
equation for T', in the form

aT, aT, o°T,
T, + uo + v, 3y @ 6y2
I A

subject to the boundary conditions T, = Qaty =
0, «. The term —7, represents the thermal inertia
of the fluid which resists the quasi-steady fluctua-
tions of temperature, and tends to produce a phase
lag in the heat transfer. The remaining terms repre-
sent the additional heat transfer due to convection
caused by the acceleration-dependent component of
the velocity fluctuations. Integrating Eq. (39) over
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the whole boundary-layer, we get
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A profile for 7', is assumed

7‘5

D
T = g4t (an — 3a’s° + 2a’y"), (41)

which satisfies the boundary conditions

T, =0T,/ oy =0 at =0
and

T, =9dT,/3y =0 at g = 1/a.

Now Eqgs. (13), (21), (35), and (41) are substituted
into Eq. (40). The expression for D is then obtained

as
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The heat transfer rate per unit area ¢ fluctuates

according to
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where k is the thermal conductivity of the fluid and
go = —k(3T,/0%),~0 is the heat transfer rate per
unit area at steady state.

Another approach is used when w is large. The
dominant terms of Eq. (39) are (as discussed in the

previous section for the flow boundary-layer)

°T,
oy

With the substitution of Eqs. (29), (30), and (35),
the terms on the right-hand side of Eq. (44) may be
expressed as functions of y. The resulting solution,
which may be readily obtained, is not presented here
because of its great length. Instead, two approximate
solutions of the equation are given; one for the outer
region and the other for the inner region of the ther-
mal boundary layer. In the outer region away from
the surface, both «, and », do not change very rapidly
and the conduction effect is small. By neglecting the
term o 3°T,/3y°, Eq. (44) gives

7, = L (0 2

for the temperature profile. In the inner region of
the thermal boundary layer where the changes in
u; and v, are quite rapid for this approximation, a
linear profile is assumed for the fluid temperature
near the surface, ie, Ty = Ty + y(07T:/0Y)yw0.
Then Eq. (40) may be solved as

T, dé w\?

T = <6y 6:5),,“0 "o gz \Y + P y exp [ y(v—) ]
i ¥
{exp [-/®)]

OTO

— il = u, =2+, ——"- (44)
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F1a. 2. Profiles of velocity components u,, %, and u for

water flowing around a vibrating sphere with Re = 4070
(low-frequency approximation) at z/rp = 1.
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(46)
NUMERICAL RESULTS AND DISCUSSION

A numerical example is given for a system con-
sisting of water flowing around a vibrating sphere
with a steady mean radius r, = 1 in. The whole
system is at a uniform temperature of 200 °F. For
a water velocity of 1 in./sec, the flow corresponds
to Re = 4070. Using the results obtained in Ref. 8
the boundary layer thickness § and its x derivative
are numerically evaluated for the ideal velocity dis-
tribution in potential irrotational flow past a sphere
of radius r, as given by U,(z) = 3U. sin (z/r,). The
results are graphically presented in Fig. 1.

The profiles of the velocity components u, and
u, at low frequency, as expressed by Eqgs. (17) and
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Fia. 3. Profiles of real and imaginary components u;, and
uy; for water flowing around a vibrating sphere with Re =
4070 (high-frequency approximation).

(26), are illustrated in Fig. 2. u,, and u,; represent
the real and imaginary parts of u, respectively. It
is disclosed that the amplitude of u, is independent
of the frequency, while those of «,, and u,; are pro-
portional to — (rew)?(6°/vU,) (d8/dx)® and (row)(6°/»)
(dé/dz), respectively. The dependency of the param-
eters (6°/vU,)(dé/dx)® and (8°/»)(ds/dx) on z is
shown in Fig. 1. It is observed that the changes in
the magnitude of these two parameters are very
small near the forward stagnation point and become
very rapid near the separation point. Similar changes
in the amplitudes of both u,, and u,; are expected.

The velocity profile of the oscillating component
u;, as described by Eq. (29) for high frequency is
presented in Fig. 3. It shows that u,. and u,;, the
real and imaginary parts of w,, respectively, are
directly proportional to « dé/dz. Since the change
in dé/dx is gradual along the surface, as shown in
Fig. 1, the variation of the u, profile along the surface
would also be gradual. Near the separation point,
these variations become quite rapid.



