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Steady flows of a thin layer of viscous liquid on a horizontal plane induced by the nonuniformity
of surface tension at its free surface are treated. If the film is very thin, surface-tension effects dominate
gravity effects. Under that circumstance and away from vertical boundaries, a binomial of depth &
of the liquid layer is a harmonic function of the Cartesian coordinates x and y in a horizontal plane,
and the surface tension is a function of h. Near any vertical boundary there is a velocity boundary
layer whose thickness is of the order of h. The velocity distribution in this boundary layer is given
explicitly. The diffusion of the surface material affecting the surface tension is considered. Steady flows
of a liquid film induced by gravity are also discussed. Simple solutions are possible if the film flows

over a horizontal plane.

I. INTRODUCTION

Consider a thin liquid layer on a horizontal plane
with a depth A at any point on that plane, very much
smaller than any horizontal scale L defined by the
spacing or size of vertical boundaries confining the
liquid. Figure 1 shows an example of the horizontal
geometry, the vertical boundaries being those of the
circular cylinder and two plane vertical walls.
Figure 2 shows a longitudinal cross section of the
flow, which does not cut the cylinder.

If the surface tesnion at the free surface is not
uniform, it will cause the fluid to move by surface
traction. Only steady flows so induced will be con-
sidered, so that the depth A and the surface tension
o are both functions of the horizontal Cartesian
coordinates = and y only, and independent of the
time. The vertical coordinate is denoted by .

We shall assume that, for a horizontal bottom and
a thin film, the effect of surface tension dominates
the effect of gravity. More specifically, this implies
that

Ao > pghs, (1)

in which A is a characteristic variation in o, p is the
liquid density, g is the gravitational acceleration,
and h, is a vertical scale, which can be taken to be
the maximum of A. The analysis of this case will now
be discussed in detail.

Steady flows of a liquid film induced solely by
gravity will be treated in the last section of this

paper.
II. ANALYSIS FOR FLOWS INDUCED BY
SURFACE-TENSION VARIATION
In addition to the limitations stated in Sec. I, we
assume the Reynolds number to be so small that the
inertial terms can be neglected. The change in % is
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Fi1a. 1. A plan view of a typical flow pattern. Lines with
arrow heads are streamlines. The other lines are lines of
constant surface tension or constant depth.

assumed to be gradual, so that the curvature of the
free surface is of the order of /L? and the pressure
caused by surface curvature is of the order of ¢h/L>.
The shear stress caused by the nonuniformity of
surface tension is of the order of Ag/L. It is therefore
clear, that under the assumption that L is much
greater than A, the effect of the surface shear con-
comitant with the nonuniformity of surface tension
dominates the effect of pressure induced by surface
curvature. Aside from surface curvature and surface
tension, the pressure is also affected by gravity; but
if (1) holds, the gravity effect can be neglected.
Under these assumptions the pressure gradient can
be taken to be zero, and the pressure treated as
constant throughout the liquid. The first two equa-
tions governing steady flows then become simply

0 =pViu, 0=uVr, 2)

in which V* is the Laplacian operator, and « and v
are the velocity components in the directions of
increasing z and y, respectively. The velocity com-
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ponent w, as well as dw/dz, is zero at the bottom, and
hence i is of the order of u(h/L)* throughout.

If the values of % and v on the free surface are
denoted by U and V, and steady flow is assumed,
the equation governing the concentration vy of the
surface material is, with x denoting the diffusivity,

Lo+ Lom=AS+Lh  ©

oz® ' 9y’
in which diffusion into the body of the liquid is
neglected. This neglect is justified, provided the
solubility of the surface material in the liquid is
small, according to Levich' (first equation on page
420). [In a previous paper by this writer,” small solu-
bility is implied in Eq. (1) of that paper, which is the
one-dimensional counterpart of (3)]. The surface
tension ¢ is dependent on y. Within any small range
the relationship between ¢ and v, if not strictly
linear, can always be replaced by a linear one

o= gy — kv,

in which v, and %k are constants, and % is positive if
o decreases as v increases. Thus, (3) can be written as

U 3_‘_’_) 9o do
<"_"°)(ax + dy +U0x+Vay

a* az)
a K(6x2 + oy’ 7

It should be noted that whereas the convective terms
in the equations of motion have been neglected
because the Reynolds number Uk, /v (U, is a repre-
sentative velocity) is small, the convective terms
in (3) and (4) are retained because the Péclet number
U,L/k is not assumed small. For clarity, the analysis
will now be divided into two parts.

4)

III. THE CORE

Since A 1s very much smaller than L, it is clear that
anywhere exeept very near the vertical boundaries
delineating the flow region, the terms 8°u/982* and
d°v/82* dominate the other terms in the two equa-
tions contained in (2), so that these equations can
simply be written

a’u

P 0,

%
37 (5)

Thus, the velocity field is deseribed by

u = Uz/h, v = Vz/h. (6)

1V. G. Levich, Physicochemical Hydrodynamics (Prentice—
Hall. Ine:; Englewood Cliffs, New Jersey, 1962).
2 C.-S. Yih, Phys. Fluids 11, 477 (1968).
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Fig. 2. A cross-sectional view of the flow.
The equation of continuity is

o [ ifh -
axfo udz—l—ay‘ \ vde = 0,

or, by virtue of (6),

@

3 3 3
5z PU) + 3 (V) = 0. (8)

The boundary conditions at the bottom, where
z = 0, are satisfied by (6). The boundary conditions
at the free surface are

ou_do W _ oo
Koz ™~ 9a” Fo: ~ oy’
or
wU _ 9 YV _ oo
h T oex’ R ay ©)

Note that these equations would demand that
¢.: + o, vanish if w were strictly zero, which it is not.
Only w, and w, are assumed small in comparison
with u, and »,. It can also be shown that surface
viscosities (both bulk and shear viscosities) contrib-
ute terms of negligible magnitude, so long as
h/L << 1. The unknowns ¢, U, V, and % are functions
of z and y, and are governed by (4), (8), and (9), all
of which are nonlinear. At first sight the situation
seems rather hopeless. The solution, however, turns
out to be very simple.
Substituting (9) in (8) and expanding, we have

LAV WL S
<6x2+6y2 7T TR Uax+ Vay ’
Now, by virtue of (8), the left-hand side of (4) can
be written as

(10)

% (17 % Qh)
(Uax+ Vay

_ 4 g — gy é_a—-—ao)
_h(Uax h +Vay h ’

oz oy h

so that (4) can be written as

& a_2>_(va 6)6—0'0 ;
K(ax2+6y20—h06z+véz B @)
Comparison of (10) with (4) yields
3 4 poYfe—o _ l_"ﬁ) -
w2erdeze -0 w
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F1a. 3. The boundary-layer region.

Since (8) allows us to define a stream function ¢ for
the surface flow, in terms of which

_ 1y

14y
T hay?

h ox

From (9) it is evident that the constant-o lines are
orthogonal to the streamlines at the surface. From
(11) it then follows that

g - g, K

If along any one constant-depth line ¢ is also constant
(for example, when the upstream flow is parallel),

0 — Gy pK _
Equation (12) allows us to write (9) as
W o= 2 (—Kh + —C—h3) ,
dox 3u (13)
_d (a4 C )
hV = ay( Kh+3uh
Substitution of (13) into (8) produces
L :L)( c ) _
(6$2 + o —«h + 3 r)=0. (14)

Thus, the binomial
- C s
F(h) = —«h -+ 3 h

is a harmonic funetion of z and y, and for any
specified boundary of the flow, (14) can be solved by
any of the known methods for solving two-dimen-
sional Laplace equations. Then, U and V are found
by (13), and ¢ by (12), provided ¢ is known at some
constant-% line. The core flow, therefore, can easily
be determined. Figure 1 shows a well-known flow
pattern merely for the sake of demonstration. The
directed lines are streamlines issuing from an up-
stream reservoir into a downstream reservoir. For
steady flow to be possible, the o and A in the down-
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stream reservoir must be maintained to satisfy (12),
with the C' determined by conditions in the upstream
reservoir.

IV. BOUNDARY LAYERS
Equations (13) show that

—:clnh—l—gh2
2u

is a potential for the surface flow. At a vertical
boundary the normal velocity component is zero, so
that the normal component of the gradient of A
must be zero. Since F(k) is a harmonic function, the
tangential component of the gradient of 4 at such a
boundary cannot be zero without the trivial conse-

‘quence of a constant A all over the field, aceording

to a well-known result in potential theory. Thus, the
tangential component of the velocity at any vertical
boundary, as found by solving (14) and using (13)
and (6), is not zero. However, the physical eondition
at such a boundary demands that the velocity on it
be zero; hence, a boundary layer must exist. In that
layer, the normal derivatives of the velocity are of
the same order of magnitude as its vertical deriva-
tives.

For clarity, we shall denote the horizontal distance
along a vertical boundary by s, the velocity com-
ponent in the direction of increasing s by ¢, and the
distance normal to the wall by n. Then, in the

boundary layer
2 2
(a__ + —%)q = 0.

925 | om (15)

Outside of the boundary layer, ¢ is equal to g,, which
is different from zero, and is given by (13), with 4
satisfying (14). We shall write

qO:%a

(16)
in which @ is the surface speed at the free surface
and £, the depth, both just outside of the boundary
layer.

Due to surface tension, the free surface makes an
angle « (Fig. 3) with the wall, which is less than =/2
if the liquid wets the wall, and more than »/2 if it
does not. The value of @ depends on the nature of
the liquid and of the wall. Since the vertical accelera-
tion is negligible under the assumptions made, the
pressure distribution in the liquid is hydrostatic.
This means that, for small cot «,

O’k

o= = pgh.

an® an
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The solution of (17) is

1/2
h = A exp [_(p?q) n] + h.,
g 172 3
A(%)” -

Since within the boundary layer the component of
velocity in the direction of » is of the order of /L,
as can be deduced from the equation of continuity in
differential form in the usual way, ¢ must be constant
at that part of the free surface which is within the
boundary layer. Hence, the ¢ in (18) and (19) is that
just outside the boundary layer. The region occupied
by the wall is shown in Fig. 3.

If cot & is not small, the free surface near the wall
has to be obtained from the differential equation

hl’
(T‘fﬁh)_a/i = pgh — h.),

(18)
in which

cot a. (19)

in which the accents indicate differentiations with
respect to n. After multiplication by A’, a first
integration of this equation is

—20(1 + )7V = pg(h — h,) — 20,

in which the constant of integration has been
determined by the condition that 2 = h, when 2’ = 0.
At the wall the value of A, denoted by #4,, is de-
termined from '

—2¢(1 + cot’a)™* = pg(h, — h,)* — 2.
A second integration gives

_r 1 — B(h — h)
"= f {1— [ — Bk — )T

1/2 dh,

in which B = gp/2¢. For any B and A,, the integral
can be carried out numerically if necessary. The
fluid region near the wall can, therefore, be un-
ambiguously determined for any a.

Equation (15) is to be solved for the region just
described with the boundary conditions

i ¢=0 at n=0,
(11) g=0 at z=0,
(1) ¢g—> g, at n— o,
.y 92 _ @ _

@iv) % ~ k. at z = h.

Boundary econdition (iii) is, of course, the usual
simplified statement for ¢ — g, as n approaches the

OF A
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outer edge of the boundary layer, the “infinity”
being used for convenience only. It is also evident
that the effect of the boundary layer on the core is
neglected.

The problem thus posed for the boundary-layer
region is defined and solvable for any value of o, pg,
and 2 by numerical methods, such as the method of
relaxation. We shall not attempt to give an example
of the numerical solution. Instead, we shall give an
analytical solution for the special case @ = =/2.
Since, in this case

ah

o 0, 7(20)

h is equal to A, throughout, and for simplicity we
shall drop the subscript e and consider % as constant
throughout the boundary layer. The values of U, V,
and hence Q, are also constant in the boundary layer.
Although @ is not zero even at the intersection of
the free surface with the vertical wall, this fact is not
disturbing. The same situation is encountered at
the intersection of a stationary and a moving
boundary in eontact with a viscous fluid.
We can now simply write the solution of (15)

_ Q= - . 2m — D7
q—h+7’§Am31n—————’2h 2

- exp (_%;_Din) (21)

The boundary conditions at the horizontal bottom,
at the free surface, and just outside of the boundary
layer are all exactly satisfied. It remains to determine
A,, so that ¢ = 0 at n = 0. This is accomplished by
taking

h —
=% zsing—m—zi—l—)zzdz
0

= 8hQ(— )" [2m — D],

An

(22)

in which @ and & are functions of s only. It should
be noted that

(a) the boundary effect dies out exponentially, and
the boundary-layer thickness is of the order of 4,

(b) the velocity distribution in the boundary layer
depends only on the local values of # and @, and

{¢) within the boundary layer the shear forces in
horizontal planes are balanced by shear forces in
vertical surfaces parallel to the wall.

The foregoing analysis can easily be extended for
application to liquid films attached to curved
surfaces.
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Fia. 4. Cross section in a vertical plane containing the line of
steepest descent of the bottom.

V. FILM FLOW INDUCED BY GRAVITY
Consider a plane boundary described by
Zy = ax + by + ¢, (23)

in which Z, is the elevation of the plane, measured
in the direction of the vertical, and z and y are
Cartesian coordinates in the plane. The third
Cartesian coordinate z is measured in the direction
normal to the plane boundary, which we shall call
the bottom. The angle of inclination of the bottom
to the horizontal will be denoted by 8. Boundaries
normal to the bottom will be called walls. A liquid
film on the bottom will flow under the action of
gravity, provided there is a free surface. The depth
of the film, measured in the direction of increasing z,
is denoted by k. Equations governing the flow of the
film under the combined action of gravity and
surface-tension variation can be derived. However,
they are so complicated that their analytical solu-
tions are unlikely to be obtainable. For this reason
we shall consider the effect of surface-tension varia-
tion and the effect of gravity separately. The former
has been discussed in the foregoing sections. We now
consider the effect of gravity alone.
The gravity potential is (Fig. 4)

Q@ =gZ = g(Z, + hcos f)
= g(ax 4+ by + ¢ + k cos B). (24)

As before, the velocity component w is negligible.
The equations of motion are

u %

Oz—”ax‘“‘azz’ 0=- +“62’

(25)
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and these are satisfied in the core by

199
T %oz

v = iéﬂz(Qh — 2),

2(2h — 2), % ay

(26)

which also satisfy the zero-shear condition at the
free surface. Thus,

g 199 ,, /" 199 .,
foudz 3axh 0vdz—sah
and the equation of continuity in integral form is
3 @ﬁ) ]

9 [(a + cos B 9z h

) oh
+ 3 [(b + cos B 55)}13] =0. (28

This partial differential equation is to be solved with
the boundary condition

@7)

% _ 0 or 3Z0
an

ah

+eosB =0 (29)
at the walls, where n is measured in the direction
normal to them. The differential system for the
core is nonlinear. If a solution is obtained, the flow
in the boundary layer is again governed by (15). The
boundary-layer region is as shown in Fig. 3, except
that the bottom has a slope.

We shall deal with the simpler case of the hori-

zontal bottom, for which

The differential system governing the core is,
from (28),

(" + & )h“ -0, 30)
dz”
and

oh

an = 0 @31)

at the boundaries. Since the boundary conditions can
be written as
0

—hr =0

In (32)

at the boundaries, the differential system is linear
in A%, and all the available methods for solving
potential-flow problems can be brought to bear.
After the flow in the core is determined, the flow
in the boundary-layer region shown in Fig. 3 can be
determined by solving (15). If & = /2, the solution
is simple, since % is then constant throughout the
boundary layer. Again using s to denote the distance
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measured along the boundary and ¢ the velocity

component in the direction of increasing s, we have,

outside of the boundary layer,
1 80

Qo = 2 ——Z(Zh - Z),

v 08 . (33)

in which 9%/3s is taken just outside of the boundary
layer. The solution for ¢ is

@Qm — Dz
2h

- exp (—-%—;hﬁ”—g , (34)

q = q0+ EAmSin

m=]
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in which

h
_ . 2m — Dz
2[0 Qo SIN ——-———‘ o dz

_299(
v 08

A, =
2h s
@em — 1)7r) ' (35)
All the comments in Sec. III regarding the nature of
the boundary layer are still valid here.
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