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set of possible, received signal values, after interaction with the
noise. The amount of information Hr actually conveyed by the
definite decision “yes,” or “no,” is given by the well-known?
expression :

Hr=H(x)—H(y|x), 0

where H(x) is the information content of the original, input x,
and H(y|x) is the conditional entropy, or uncertainty in x based
on knowledge of the received wave y, i.e., the equivocation. If p
and g are, respectively, the a priori probabilities of signal and no-
signal, e.g., p4-¢=1, it is clear that

H(x)=—plogp—qlogg, ( )/indication, 2)

the units of information being (bits/indication or decision) if 2 is
chosen as the base of the logarithm, in the usual way. (For
p=g=3%, Huax(x)=1 bit/indication.)

The equivocation may be calculated as follows: let x; be a value
of x associated with a signal; x;, with no signal; and y, a value of
the received wave, associated with a “yes” decision; y; is associ-
ated with a “no” decision. The probabilities of the various possi-
bilities indicated above then are, if we remember that there are
two types of error that can occur in any decision,

Px, 3)=p(1—B}; P(m, y2)=18; 3
P(x, 1) =4ge; P(x3, y)) =q(1—a),
and the equivocation is

X P (2, ye)
H(y|x)=— 2 P(x; lo[-—"—-—]. 4
1§ 439] 2 (i, 1) log POn) @
The marginal probabilities needed here are: P(y1) =p(1—8)+qe;
P(y;)=pB+q(1—a). The equivocation becomes explicitly

H(y|x)=H(x)—[p(1—B) log{ (1—8)/[»(1—B) +ge1}
+p8 log{8/[#8+q(1—a) 1} +ga log{a/[p(1-B) +gaT}
+q(1—a) log{ (1 —a)/[$8+q(1—a) ]}]. (5)

One easily shows that the equivocation is a maximum when
a+B=1, and in fact is equal to H(x), which is not unreasonable,
as with completely wrong decisions no information remains upon
detection, i.e., Hr=0, Eq. (1). One does better to guess on the
basis of the a priori probabilities. At the other extreme, if a=g=0,
Hr=H(x); as expected, no information is lost, since there is no
error in decision.

Two cases of particular interest arise: (a) when « is very small,
in the radar problem (small false-alarm times), and (b) when
a=4, in the many situations where there is no reason to weight
errors of the second kind more heavily than the first.* We have

(@=0; 8>0): H(y|x)=—qlogg— 18 logsB
+(pB8+q) log(p8-+9),
(a=8): H(y|x)=H(x)— (1—a) log(1 —a) —a loge

+z POw logPw). (7)

©

As an example, let us compare the Neyman-Pearson and Ideal
observers! in two instances, assuming equal a préori probabilities
in both cases, and equal input signal-to-noise ratios (i.e., the
constraints on the channel for both observers are the same). The
probabilities of Type I and Type II errors are, of course, different
in general. From the data of Figs. 4 and 5 of reference 1 (Paper II),
and with the help of (6) and (7), (1) and (2), we may tabulate
the important quantities, remembering [see (2)] that H(x)=1
bit/indication when p=g¢=%.

The Ideal observer, for the same input signal-to-noise ratio
(as?), and integration time (~n), is seen to be better than the
Neyman-Pearson observer in the same circumstances: less in-
formation is lost when the decision is made (larger Hr) and this
in turn is reflected in the smaller probability of an incorrect
decision (a+g)/2, p=¢g=3% [from the unnormalized betting
curves, see Sec. (4)—(6) of reference 1]. [For normalized betting
curves, a+f8 represents the total probability of an incorrect
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TaBLE I.

Total
prob.

of error
B8 (e+68)/2 H(y|x)

Threshold
constant
(weak signal) «

Observer Hr

Neyman-Pearson a¢24/2=3.15 10~% 0.73 0.365 0,850 bit 0.150 bit
85 715

Ideal 3.15 005 005 005 0.2 0.7
Neyman-Pearson @¢o24/2=50 10~¢ 0.10 0.05 0242 0.758
Ideal 50 0.01 0.01 0.1 0,080 0.920

decision here (p=¢=4%).] That the Ideal observer is better than
the Neyman-Pearson is consistent with the definition of the former
as minimizing the total probability of wrong decisions (for the
same integration time and input ratio a¢?).!4 Another comparison,
on the basis of equal probabilities of error, confirms the superiority
of the Ideal observer from the point of view of signal threshold.
From the second and third rows of Table I, we find that the
Neyman-Pearson observer loses less information in decision by
0.043 bit/indication than does the Ideal, but requires at the same
time a threshold signal (if the noise background and integration
time are held constant) 2.0 db [=10logi0(5.0/3.15)] stronger.
Finally, we note that the Sequential observer,! for the same
values of «, 8 chosen for the Ideal or the Neyman-Pearson cases,
yields the same equivocations as indicated above, see Table I and
(5), with the same comparisons on that score, but always on the
average for smaller ratios of a¢t(n)}. Thus, for the same input
ratios a®v/n=a¥n)}, « and 8, and hence H(y|x) will be corre-
spondingly smaller. A detailed study of the interdependence of
threshold, integration time, ¢ and 8, and information loss is being
prepared.®
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(Cambridge, Massachusetts), and is published by permission, which is
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HESE papers! represent the first unified presentation of the
application of several types of statistical tests to the
important problem of detection in communication theory.
However, we feel that the comparison of tests considered in paper
II is of somewhat limited scope and that a clearer and more
complete account of the author’s methods of comparison is needed.
A comparison of statistical observers may be made in a number
of ways: in fact, we observe first that in many situations there is
no necessity for comparing the Neyman-Pearson, Ideal, and
Sequential observers*—each is an optimum procedure for the
problem at hand.3+ However, our choice of observers in some
instances may be based on which is the best for a given fotal
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probability (aq+Bp) of decision error. Then the comparisons
discussed at length in paper II, reference 1, follow. (We recall
that a and B are, respectively, the probabilities of a Type I and a
Type II error, and that p and ¢ are the a priori probabilities
associated with signal plus noise, and noise alone.?)

Two possibilities exist under this condition: (1) the comparison
is made on the basis of the unnormalized betting curves W;
(2) the comparison is given in terms of normalized betting curves,?
with the best observer defined in each instance as the one giving
the largest value of the betting curve for a given threshold (a¢®)
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and observations time (x) (or equivalently, the same value on
the betting curve for the smallest threshold). Paper II considered
case (2) only and did not emphasize the normalized character of
the betting curves under comparison. Accordingly, we include a
short table (Table I), comparing the Neyman-Pearson and Ideal
observers, subject to the same value of the sum ag-+8p. (The
equal signs mean “equally good;”’ = indicate “better than” or
“worse than,” and p, g, #» are held fixed for any particular
comparison.)

The tests are identical (for fixed aq, #, p, ¢) When axr=a/(min),
and thus B¥p(min) =B7(min), and K=1, [see Eqgs. (4.5) and (4.6),
reference 1], When the tests are not identical, ayp7asmin), €tc.,
then by definition the Ideal observer is best, in the sense of the
unnormalized comparison, since he minimizes the total probability
of decision error, while the Neyman-Pearson observer has axp
already fixed, and can only minimize 8. On the basis of normalized
betting curves, however, the Neyman-Pearson observer is some-
times better than the Ideal. This is the result of the normalization
procedure. This explains why the former gives a smaller minimum
detectable signal than the latter (same ag--8p), as shown in Fig.
7, =0.05 (reference 1), and why in Fig. 8, a=0.05, the reverse

TABLE 1.
Conditions Unnormalized Normalized

1 ap=0 NP =Ideal NP=1Ideal

anp =al; BNp =81 a(p —g)=0
I (Identical tests) other ap, a(p —¢) NP =Ideal NP >Ideal

Wap <y <HHEZNECA=D) NP <Ideal NP >Ideal

(g<p)

I I(Nearly-identical tests)

aNP #al(min); BNP #BI(min) R

(and not II) NP <Ideal NP <Ideal

- {Non-identical tests)

situation appears. (For a brief mention, see reference 4.) The
normalization also accounts for the apparently greater amount of
information following the decisions operation for the Neyman-
Pearson observer, as shown in the comparison of lines 2 and 3
(Table I), in a recent “Letter to the Editor.”® We remark, finally,
that the Sequential observer, for the same a, 8, 2, ¢, will yield a
lower threshold for:the same average integration time, or equiv-
alently, for the same threshold, a shorter average observation
period, than either the Neyman-Pearson or the Ideal observers.
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The indicated calculation of the betting curves in reference 1 for
the Sequential observer, Egs. (6.2), (6.5), is not correct, although
Eq. (6.1) is valid, provided we determine P, and Q, properly.
Unfortunately, we cannot find P, and Q. as was done for the fixed
sample tests (Neyman-Pearson, etc.), in as much as the Sequential
observer deals at any stage n (before a decision is reached at
n=mn(s)) only with those signals which have not been previously
accepted or rejected. The remaining signals will yield distributions
of the logarithm of the likelihood ratio (the P, Q,) quite different
from the distributions derived on the basis of all possible signals,
on which the calculations [Eq. (4.12)] for the Neyman-Pearson
and Ideal observers are based. Thus, instead of (4.3) or (4.12) we
have for the distributions of the logarithm (x) of the likelihood
ratio, expressions of the type

Prio(x; 0 =6ao |+ [ Waio Ry Rucolas)dRy- -
T'(test)
dRu(nd(x—logAn(n), (1)

Qn(s)(x;ao)=dn(a)f"'an(s)(Rl"'Rn(a)lo)dRI' .
T(test)
dRud(x—logAn), (2)

where ¢,(s) and dn (s are constants such that
o Punxsadz=1= [ Quo(z;o0ds, @)

and the test region I'(test) consists of all envelopes (Ry+-+Ry- -+
X Rns) such that

B haRee - RISEZE for all n<n(s). @
1—«a 3

This makes the explicit evaluation of P and Q technically quite
complicated. For example, in the very simple case where logAn(s)
is proportional to the sum of the squares of the envelope samples,

logA.=g(n) Z R?, (%)
1

for n(s)=2 the test region I'(test) is all (Ry, Ry) that satisfy
condition (4), namely,
1—
tog:2-<p Rz g =2, ©

[+

and is shown graphically in Fig. 1. For n(s) =3, the test region is
all (Ry, R,, Rs), satisfying both Eqs. (6) and (7),

log(i;ﬁsazmumswg@. )

The reason for this is that at the second stage those (Ry, Rz) in the
test region that satisfy

1—
s[R+RAT>log - ®

are accepted, and those in the test region that satisfy
s@)Ra+RI<log; ©

are rejected (leading to the conclusion that only noise was present).
Therefore, the test region for the next (3rd) stage is all those
(Ry, Rz, Ry) that satisfy (7) but not either (8) or (9), and is the
infinite cylinder with base as in Fig. 2. Clearly the test region
becomes more complex at each step, and it appears to be a very
difficult task to describe the test region and calculate the integrals
(1) and (2) for all values of n(s).

When (1) and (2) have been found, Eq. (6.3) may then be used
to obtain the mean betting curve, which results when we average
over all possible #(s) for which the test just terminates. The
discrepancy between the calculations for the Sequential observer
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shown in Figs. 8 and 9 and the expected superiority of this observer
over the others for the same controls is explained primarily in
terms of the foregoing error, The necessarily crude approximations
to the distribution of sample size, as originally indicated in paper
II, also plays a part in this discrepancy.
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XPERIMENTAL research into the physical phenomena
associated with hypersonic flow! and high-temperature
gas dynamics? is characterized by its dependence currently upon
successful generation of shock waves whose strengths correspond
to Mach numbers greater than ten. To this end, attention has
been directed toward development of suitable techniques involving
either explosive charges,? electrical discharge tubes,* or especially
high-pressure-ratio shock tubes.® The shock tube excels in its
simplicity and versatility. The present note is to discuss a simple
modification of the operation of the combustion-powered, high-
pressure-ratio shock tube which permits extension of its range.
The tendency has been to employ as driver a gas, or gases, whose
temperature is high and whose molecular weight is low, so that
the corresponding acoustic velocity is maximized. The influence
of the acoustic velocity in the driver gas is illustrated in Fig. 1,
where the diaphragm pressure ratio required to produce a certain
shock strength is given for various speed-of-sound ratios. A simple
method for obtaining a high acoustic velocity in the driver is by
burning a combustible gaseous mixture in the driver chamber at
constant volume. Unfortunately, the maximum temperature to
which the driver can be heated is limited by the onset of molecular
dissociation. Its molecular weight is likewise limited by practical
combustion mixtures. In general, it is not feasible to operate a
shock tube in which the speed-of-sound ratio exceeds 6.6 (approxi-
mately). Thus, the shaded area in Fig. 1 is unavailable to the
experimenter employing a constant-volume combustion cycle.
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To drive a shock wave through air, a stoichiometric mixture of
oxygen and hydrogen diluted with 80 percent helium has been
adopted at Cornell Aeronautical Laboratory. Shock Mach number
of about 17 with a pressure ratio of 17 200 may be obtained from
this mixture. To maintain appreciable densities in the low-
pressure chamber, however, high pressures in the driver chamber
are required. To accommodate a significant volume within a large-
bore shock tube, then, the structural problems become prohibitive.
Methods for obtaining effectively higher driver speeds must be
developed if the application of the shock tube in the Mach-number
range above ten is not to be severely limited.

In the course of hypersonic-flow investigations with the com-
bustion-powered shock-tube facility at Cornell Aeronautical
Laboratory, it has been discovered that higher shock speeds than
can be explained by the theory of constant-volume burning are
obtained under certain conditions. The anomalous results, al-
though at first dismissed as being due to experimental error arising
from the instrumentation, were eventually shown to be un-
explainable by any orthodox analyses. Furthermore, in every
case, the unexpected “efficiency”” was correlated with the applica-
tion of diaphragms (separating high- and low-pressure regions)
which were accidentally weaker than those designed to withstand
complete combustion at constant volume. As a consequence, a
subsidiary investigation was launched. Diaphragms of varying
thickness to withstand pressures corresponding to the full range
of possible completion of combustion (from none to fully complete)
were tested while holding fixed the initial (pre-ignition) pressures
of the driver and driven gases. The test results are shown in Fig. 2.
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Fi1G. 1. Shock-tube performance curves and test data. pi, p4 are total
pressures acting on the diaphragm at instant of failure, a1, a4 are sound
velocities in the high and low pressure regions after combustion at constant
volume is completed and before the diaphragm bursts. The adiabatic
exponents, 1 and vy, are each taken to be 1.40. Because of the limitation on
a4, the shaded region is inaccessible for constant volume operation.

The excessive scatter arises largely from practical difficulties
involved in determining the shock Mach number, for the shock
front may consist of multiple shock waves for several tube diam-
eters downstream of the diaphragm.

It is seen that the shock Mach number varies snversely as the
measured bursting pressure of the diaphragm. Thus, the highest
shock strength is realized when the diaphragm is destroyed im-
mediately after ignition. In this case, the combustion proceeds
within the driver gases as they issue forth at constant pressure
into the low-pressure chamber. Should the diaphragm fail after
combustion is partially completed, the shock strength is inter-
mediate between the limits represented by constant pressure and
constant volume cycles. Multiple shock fronts are characteristic
phenomena of these “in-between” cycles. It has been demon-
strated by carefully recording and analyzing the pressure history
within the burning gases that detonation phenomena are absent
from the combustion processes here described. Preliminary data
on operation near the constant-pressure limit are shown in Fig. 1
and indicate the extent to which the shaded area becomes ac-
cessible, It appears that for a given diaphragm pressure ratio the
“constant pressure’” process permits attainment of the limiting



