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Statistical properties of the output fluctuations of a photon detector measuring the intensity of radiation
at a given frequency emitted by a dispersive blackbody are investigated using Langevin’s technique. The
variance-to-mean ratio of the accumulated counts, and the power spectral density of the count rate are
obtained in terms of properties of the emitting medium. The possibility and limitations of obtaining informa-
tion about the emitter by measuring these quantities are discussed. It is found in particular that the tem-
perature of the emitting medium can be determined in principle by observing the intensity fluctuations of
the radiation at a single frequency. The photon fluctuations in a microwave cavity are also discussed in the
framework of the present formalism and compared to previous work.

1. INTRODUCTION

The purpose of this paper is to investigate the in-
tensity fluctuations in radiation emitted by a dispersive
blackbody. The experiment which we intend to analyze
is illustrated in Fig. 1. The photons from the emitter
are detected by a photon detector, e.g., photocathode,
whose output, Z(¢), is assumed to be in the form of
an electric voltage, and proportional to the number of
photons absorbed per second in its active volume.
Hence, Z(f) can be identified as the “Instantaneous
count rate.” The detector is visualized as a uniform
absorbing medium described by the microscopic ab-
sorption rate per photon, 7p(k), for photons with wave-
vector k.

The emitter is assumed to be a homogeneous finite
medium in which the atoms are in thermal equilibrium
at a temperature,  (units of energy). The medium is
characterized by «(k) and e(k) which are the absorp-
tion and emission rates, respectively, of photons with
wavevector, k. The scattering of photons in the medium
is neglected. The medium is allowed to be dispersive
with a photon speed v(k) which is different than the
speed, ¢, In vacuum.,

Let N(x, k, {) denote the instantaneous number of
randomly polarized photons at time ¢ per unit volume
about x in configuration space, and per unit volume
about k in wavevector space. We shall denote a point
in the six-dimensional space by r=(x, k) to compress
the notation. The instantaneous value of the photon
density N(r, ) is a fluctuating function of time with
a stationary mean value (N (r)). These fluctuations
are due to the statistical nature of the absorption and
emission processes. We shall denote the fluctuating
part of N(r,t) by n(r ), ie, n(r,)=N(r, )~
{N(r)). The aim of this paper will be to investigate
some of the statistical properties of #(r, {) in terms of
the observed fluctuations z(f) in the count rate (or
absorption rate) of the detector, i.e., z(f) =Z()—
(Z(#)). In particular we shall consider the autocorre-
lation functions and the power spectral density associ-
ated with z(¢) which are defined by

®,(r)= ((Da(t+7), (D)
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and
oo
G.(w)= L  exp(—iar)&.(r)dr. 2)

We shall also discuss the variance-to-mean ratio of the
accumulated counts,

c(r) = f T, 3)

0

as a function of the gate time, 7, which is defined as?

W T)Y=(CHT))/T{Z)
=2/(Z) f " (l=r/ TV, (r) dr. (4)

The interest in these particular statistical quantities
stems from the fact that they are the quantities which
are usually measured in fluctuation experiments.

The fluctuations in the count rate can be expressed as

2= [ ava(r,), (3)
D

where z(r, ¢) is the fluctuating part of the “count-rate

density” at rin the phase space, i.e., z( 1, f) =rpn(r, ) +

sP(r, t), where sP is an appropriate noise source associ-

ated with the removal of photons by the detection

process. The autocorrelation function ®.(r) can be
expressed in terms of z(r, {) as

&, (r) = [D o fD & (a(r, 03T, 141)). (6)

Both, in Eqs. (5) and (6) the integrations are per-
formed in the active volume of the detector in the
phase space. It follows from Eq. (6) that the statistical
quantities ®,(r), G.(w) and 4(T) can readily be ob-
tained once the correlation function

¢2(r; rly T)E<Z(r, t)z(r', t+7) >; (7)
! Use

T T r
/dt/ dt’¢,(t—t')=f (T—[ 7 )a(r)dr,
0 0 -T
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Fic. 1. Intensity-fluctuation experiment.

associated with the count-rate density is determined.
Thus, our main task will be to calculate ¢.(r, I/, 7) in
terms of the parameters a(k), e(k), and 7p(k) de-
scribing the optical source and the emitter. In order to
achieve this, we must first determine the correlation
function.

¢u(1, 1, 1) = (u(r, On(r), i47)), (8)

appropriate to the photon-density fluctuations and then
use the relations between ¢, and ¢, as discussed in
Sec. 3, by Eq. (31). '

2. CORRELATIONS IN PHOTON-DENSITY
FLUCTUATIONS

The mean photon density, (N (r, {)), in an inhomo-
geneous, dispersive medium satisfies, when the photon
scattering is neglected, the following approximate trans-
port equation

L(0/00+Q-Vo(r)+o (D) N (1, ) )=e(1)p(k), (9)

where o(r) =a(r)—e(r), p(k)=density of photon
states=1/4x%, and Q=k/k We consider the optical
source, vacuum and the detector as a single inhomo-
geneous medium. Then, both a(r) and e(r) are zero
in the vacuum, and o(r) =7p(k) within the detector.

Equation (9) is a simple statement of photon balance.
The right-hand side represents the spontaneous emis-
sion, the term e(r) (N (r, {) ) denotes the rate of stimu-
lated emission, and the terms -Vu(r)(N(r,{)) and
a(r){N(r, t)) account for the rates of loss of photons
by streaming and absorption. A careful derivation of
Eq. (9) can be found elsewhere.?

In a stationary system, as we assume here, the mean
photon density is independent of time. Therefore, Eq.
(9) reduces to

Q-VF(r)+Z(r)F(r) =S¢(r), (10)
where we have defined
F(r)=v(r) (N (1)), (11a)
2(r) =a(1)/2(1), (11b)
Sy(1) =e(r)p(k). (11c)

2 E, H. Klevans, Fh.D. thesis, University of Michigan (1962).
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Clearly, F(r) is the mean photon flux. Equation (10)
can readily be solved by the method of characteristics
to obtain

F(1) =/°’ duSo(x—Qu, k) plu, 1),  (12a)

0
where

p(u, r)=exp [—/u 2(x—-u'Q, k)du’]. (12b)

The photon density (N (r)} in various regions can be
obtained from Eq. (12) as:

(a) In the emitter
(N (15))=Su(k) {1 —exp[ —Z (k) Is(xs, @)}/ (k) }.

13
(b) In the detector (1)
e 2(0) 1—exp[— 2 (k) Ls(xs, )]
(N (1) )=So(k) . )
XeXp[_ED (k) Ip (x) Q) J; (14)

where the distances Is(xs, Q), Ls(x, Q) and Ip(x, Q),
as well as Lp(x, Q) which will be used later, are indi-
cated in Fig. 1.

We shall now investigate the fluctuations, #(r, ?), in
the photon density by means of Langevin’s technique.
The discussion of this technique as a method for in-
vestigating fluctuation phenomena in other physical
systems can be found elsewhere? and will not be
reproduced here in detail. This approach, which is
somewhat phenomenological, is adopted in this work
for its simplicity as opposed to the more deductive
kinetic approach.# The Langevin technique starts with
the “stochastic” equation

L(6/08) + 8- Vu(1)+o(r) In(r, ) =s(1, ),

where s(r, {) is a random source introduced to account
for the fluctuations about the mean photon density.
Since {#(r, t) }=0 by definition, one requires that
(s(r, ))=0. (16)
Physically, s(r,t) represents the natural fluctuations
in the rate of absorption, stimulated emission and
spontaneous-emission processes. In addition to Eq.

(16), one attributes the following statistical property
to s(r, f) as a postulate:

(s(x, £)s(¥, ) =0s(D)8(r'~1)8(t—1), (17)

where

(15)

0s(1) =[a(D)+<() IV (D H+Su().  (18)

3 A. Z. Akcasu and R. K. Osborn, Nucl. Sci. Eng. 26, 13 (1966).
For a more general discussion see Melvin Lax, Rev. Mod. Phys.
38, 541 (1966).

1R, K. Osborn and M. Natelson, J. Nucl. Energy, Part A/B,
19, 916 (1965).
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Equation (17) implies that the fluctuations in the
noise-equivalent source are uncorrelated in phase space
and id time. Equation (18) is based on the assumptions
that (a) absorption, stimulated emission, and spon-
taneous emission of photons are statistically inde-
pendent, and (b) each of these processes is described
by a Poisson distribution.

The foregoing statistical properties, ie., Egs. (16)
and (17), are sufficient to investigate the space, time,
and energy correlations of the photon-density fluctu-
lations, viz., ¢,(r, v/, 1) = (x, Hn(r’, t-+7)). In order
to obtain ¢,, we must first solve Eq. (15) for #(r, ¢).
Defining
' J(r, )=v(r)n(1,9), (19
and taking the Fourier transform of Eq. (15), one finds

Q- Vi(r, i) +[ie/v(r) 4+ 2(1) 1 (r, iw) =3(r, iw),
(20)
where f and § denote the Fourier transforms of the

respective time functions. This equation is readily
solved in a similar fashion to Eq. (10) to obtain

F(r, i) = f " s (x—uQ, k, i)
0

. d du’

The inverse Fourier transform yields
n(x,0=[o( T [ du
, 0

du’

Xs [x—uﬂ, k, l—"/o m

]P(u, r), (22)

which is the desired solution of Eq. (15).

We are now in a position to evaluate ¢,(r, r’, ) in
terms of the assumed statistical properties of s(r, ¢).
Substituting Eq. (22) into the definition of ¢, in Eq.
{8), one finds

du(r, ', 1) =/m du /m aw'p(u, v)p(, ')

¢ 0
X Qs(x— 1, k)3 (&' —K) 6[x' —x — o' Q'+ 1]
? dg
2(x'— g, K

+fo g9, B } (23)

where we have used Egs. (17) and (18) to evaluate
(s(r,$)s(r, ). This equation can be simplified by
making use of k'=k, Q'=Q and x'=x+(«'—%) Q in

X[o(1)o(r) s [1'-—/:
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appropriate terms:

¢a(r, ¥, 1) =8(K'~K) [o(r)o(r') I

X [ * duQs(x—ug, k) $*(u, 1) f *

3

Xexp [—fu - 2(x+¢Q, k)dq] x —x— (o' ~u) Q]

1]
X5 [T— / T dg/r(x 2, k)]. (24)

We shall now perform the integration on #’ assuming
that +>>0. The case of 7<0 need not be considered
separately because the following relation holds

(}5,,(1', rfr —l T l) =¢n<rly r, IT l); (25)

which can be verified easily using the definition of
¢n(r, r',7) in Eq. (8).

The last delta function in Eq. (24) can be replaced
by®

8(u' —u—ry) o x+rQ, k], (26)
where ro=7,(r) is a number obtained by
r= f " dg/v(x+@, k). (27)
[}

In the case of a constant speed, Eq. (27) yields ry==vr.
The integration on %’ can now be performed easily
vielding

(1, Iy 7) =6(kK' ~K)8[X ~x~Qr]
X exp [-["’ S(x+9q, k)dq]v—l(r)/w du
0 (i}

Xﬁg(uf I') Qs(x—-uﬂ, k):
where Qs(x—«Q, k) and p(u, r) were defined before
in Eqgs. (17) and (12b), respectively.

We shall now specialize Eq. (28) to the case of a
uniform emitter, vacuum, and detector as indicated in

Fig. 1. We shall be interested in the values of ¢, (1, I', 7)
within the detector. One can see that

Qs(x—uQ, k) =rp(k) (N (x—uQ, k) ) for 0<u<y
= [ (k) +e(k) NV (x~uQ, k) )+ So(k)

for wa<u<us

(28)

=0 elsewhere.

Hence, the integration on # will be performed only in
the intervals (0, ;) and (uy, u3). On the other hand
Eq. (27) gives ro=7c because v(x-+¢Q, k) =¢ in the
detector and in vacuum.

After some lengthy but elementary calculations, one

5 Use 6[¢(x) J=Zild(x—~x:) /| ¢'(x:) |1, where the x; are the
roots of ¢(x) =0 which are assumed to be simple, and ¢’ =d¢/dx.
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finds
o1, 1, 7) =8(k'~K)§(x'—x—Qrc)
Xexp[ —rpr (N (1))[1+Q(1)]
where
Q(r)=[e(k)/o(k)Jexp[—~Zp (k) (x, Q)]
X {1—exp[—Z(k)Ls(x, @)}, (29b)

and where the distances Ip and Lg are already indicated
in Fig. 1.
When 7<0, one obtains from Eqs. (25) and (29)

(1, 1) =0k ~K)6(x' ~x+Q |7 ]¢)
Xexp[—rp | 7 [N () [1+Q(1) ]

for >0, (29a)

for r<0.
(30)

3. FLUCTUATIONS IN THE COUNT RATE

This section is devoted to the calculation of the count-
rate correlation function defined previously in Eq. (7).
1t is shown in Ref. 3 that ¢,(r, ', 7) can be expressed
in terms of ¢, (1,7, 7) as

¢z(ry I", 7) =<N(r) )"D(k)5<t,_’r)a(7)
+rp2(k) {ou (1, 1/, 7) = (N (£))au(1, ¥, 7) }
for >0, (31)

‘where gi(r, r',7) is the Green’s function which satisfies
the photon transport equation in the detector, i.e.,

[(8/87) +cQ + Vxrtrp(k) Jau(r, ¥, 7) =8(r' —1)3(7).
(32)

Here we have used explicitly the fact that the detector
medium is nondispersive and a pure photon absorber.

R. K. OSBORN AND A. Z. AKCASU

The solution of Eq. (32) is readily found to be
g(r, v, ) =8k ~k)6(x' ~%~Qrc) exp[ —rp(k)7].
(33)

Substituting Egs. (29a) and (33) into Eq. (31), one
obtains
.1, &, 7) = {N{r) rp(&) (k' —k) {6(x'—x)5(r)
+rp(B)Q(1)6(x'—~x~Qrc) expl —rpT 1} 7>0.
(34)
The Autocorrelation Function

The autocorrelation of the detector output, defined
by Eq. (6), is now obtained by integrating Eq. (34)
on r and r’. The result is

&, () = [D Prrp (k) (N (£))8(r) 470 (k) exp[—!7 | 7p]

XQ(r) Ullp'(x, @) —| 7| c]},
where U[«x] is the unit step function arising from®

[ #xsw~x—airio= dpa-ir|o
¥ v

=0 (x, Q) =] 7]|c].

Observe also that we have replaced = by |7 | since
after the integration over r and r’, Eq. (34) becomes
an even function of the time lag 7.

THE POWER SPECTRAL DENSITY

Fourier transforming Eq. (35) with respect to 7 yields
the power spectral density associated with the count
rates:

Gulw) = [ e (8) (V () )[14+Q(D) I(1, )], (36)

(35

where

15,0)= [ dr expl—r ()| 7 [T (x, @) =1 | ] exp (iam) 7o (k)

- exp[ —Zplp'] [ (w/rp) sin(wlp’/c) —cos{wlp'/c) 141 .

(37

1+ (w/rp)?

The Variance-to-Mean Ratio

The variance-to-mean ratio, 3(T), was defined in
Eq. (4). We first note that the mean count rate is
(Zy= f drro (k) (V (1) ). (38)

D

We then perform the integral indicated in the right-
hand side of Eq. (4). The final result is found to be

2T =1+[z [ o002 V(550 T>/<z>},
(39)

where
5k, T) =rp(k) f " (=) T) exp[—rpii]
¢

X ULl (x, ) —uc]
=[1~exp(—~Ip'Ep) ]~ (Trp){1—(14Ip'Zp)

Xexp{—1'Zp) ], Te>p'(x, @), (40a)
={1—[1~exp(—rpT)/rpT]},
Te<lp'(x, Q). (40b)

sUse d(x'—x—&|r|ch=8(g— | 7] c)s(2g~R) /¢ where
q=x"-x,
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The limit of large gate time, ie., Tc>Lp(x, Q) and
Trp>>1, is of particular interest because large gate
times are easier to work with experimentally. In this
case, the second term in Eq. (40a) can be ignored as
compared to the first one, and Eq. (39) reduces to

(T—w) =1+[2 /D Errp(R)Q(r) (N (1))

X (1—expl — iy’ (x, n)]}/<z>]. (41)

We shall now apply these general results to a par-
ticular geometry in order to gain more insight into the
intensity-fluctuation phenomenon,

4. SLAB GEOMETRY

We consider an experiment indicated in Fig. 2. The
source is an infinite slab of thickness a, and the detector
is a cylinder of length /, and cross section 4. We look
at the photons with wavevector, ko, which is parallel
to the axis of the detector. The relative positions of
the detector and the source are shown in Fig. 2,

The following quantities are needed to calculate the
autocorrelation function, power spectral density, and
variance-to-mean ratio:

LD=l, lD'=l—x, lD=x,

Lg=a,
Q(x) = (¢/0) exp(—Zpx)[1—exp(—2Za)],
(N (x) y=(v/c) (ep/0) [1—exp(—Za) ] exp(—Zpx),
(Z)=v(ep/o)[1—exp(—Za) [1—exp(—Zpi) ]A.

We shall discuss only the power spectral density and
the variance-to-mean ratio, because the autocorrelation
function is usually used only to obtain the power
spectral density. Equations (36) and (41) reduce in
the present case to

G.(w) ={(Z) {1+€/0’ U;‘”‘M

1+(w2/f'1)2)
1+exp(—2Zpl) —2 exp(—Zpl) cos(lw/c)
X 1—exp(—Zpl) }’ (42)
and
n(T—0) =14 (/) [1—exp(—2a) T1—exp(—Zp)) ]
(43)

Two limiting cases are of particular interest:
(a) Za1, Zpil.

These conditions imply that the emitter is optically
thick and that all the photons entering the detector
are detected. One finds

Go(w) = (v4) (ep/0) {1+ (e/0) /[14(w/rp) %]},  (44)

]

SLAB EMITTER

——
x=0| I

CYLINDRICAL
DETECTOR

Fic. 2. Slab geometry.

and
p(T—w)=1+(¢/a).

(b) a1, Splkl.

(45)

This case differs from the previous one in that the
detector is now optically thin:

, (sin(lw/20) Y
G.(w) =(v/a>m<ep/a>v[1+e/a<zpn (Gt ) ]
(46)
and
9(T—x) =14 (¢/0) (Zpl). (47)

where V=4I, i.e., is the detector volume.

5. DISCUSSION

It is observed from Egs. (44) and (46) that the
break frequency in the power spectral density, i.e.,
rp or (¢/l) depending on the value of Zpl, is related
to the characteristics of the detector only, and hence
does not yield any information about the optical prop-
erties of the source medium. This implies that one
does not gain more information by measuring G,(w)
at different frequencies. However, one can measure
(¢/e), which is related to the source, by determining
G.(w) for very small [wmin(¢/l, rp)] and very large
(w>>rp) values of w. Indeed, one finds from Eq. (42)
that

[G.(0) —G.()]/G.()
=(¢/o)[1—exp(—Za) J[1 —exp(—2pl)]
=n(T—»)-—1 (48)

As already indicated in Eq. (48) this quantity (e/o) is
also obtainable from the variance-to-mean experiment.
The choice between these two experimental techniques
may depend on the mode of operation of the detector,
If the detector is operated in the current mode, i.e.,
the output Z(#) is a continuous fluctuating voltage,
the power spectral density can be determined by con-
ventional techniques. If the detector is operated in
the pulse mode, i.e., Z(Z) is a train of pulses, then the
variance-to-mean experiment is the natural choice.
Consider now the information contained in ¢/¢, as-
suming that it is measured. If we are looking at a
blackbody system in which the atoms are in thermal
equilibrium at a temperature 7', one can show that

a=ecexp(fuw/KT), (49)

where K is Boltzmann’s constant and #w is:the energy
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of the observed photons. Recalling that o =a—¢, one
finds

¢/o=Lexp(+haw/KT) —11
= KT/, (hwo/KT)<<1
—exp[—hw/KT],  (w/KT)>1.  (50)

Thus, one can obtain the temperature of a black-body
source by observing the fluctuation in the intensity of
radiation at a single frequency.?

According to Eq. (50), it appears that it would be
preferable to measure the fluctuations of the low-energy
photons (#iw,/KT<<1). However, it must be borne in
mind that both the power spectral density and the
variance are proportional to the average photon density
which is, in turn, proportional to the ratio of the
photon speed in the emitting medium and the speed of
light in a vacuum. In at least some circumstances this
fact presents a significant limitation on the feasibility
of such measurements at very low frequencies. To il-
luminate this point a little, consider the case in which
the emitter is a plasma—at least insofar as its dis-
persive properties are concerned. According to Ref. 1,
the speed, v, which appears in Eq. (9) is defined to be

v=c2/(w/k) =cn, (51)

where 7 is the index of refraction and w as a function of
k is given by the dispersion relation for the propagation
of transverse electromagnetic waves in the medium.
In the plasma case, at a sufficiently low order of ap-
proximation, this dispersive relation is

W =wiltwd,

(52)

where w, is the plasma frequency and wy is the vacuum
frequency of the photons observed. Thus, for this ex-
ample, one finds that

v/c=[1+ (w./wo) 22 (53)

Therefore, if one were to attempt to measure the
fluctuations in the emergent photon distribution at
frequencies for which wo/w,&1, one must expect that
both the variance and the power spectral density will
be proportional to this small quantity and that hence
the feasibility of a statistically significant measurement
is called into question. Thus the desirability of measur-
ing the variance at frequencies such that fw,/KT<K1
is in competition with the feasibility of any measure-
ment at all if the corresponding index of refraction is
small. .

Finally, it must be pointed out that the present
theory is predicated upon the assumption that the
principal mechanisms for the emission and absorption
of radiation involve free—free particle transitions
only, i.e., that particle states of short lifetime do not
play a significant role in the observations discussed

” R. Hanbury Brown and R. Q. Twiss, Proc. Roy. Soc. (London)
243A, 291 (1958),
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above. The point is that Eq. (15), which purported
to describe the fluctuating photon density, has been
derived with the explicit use of a coarse graining, or
averaging, in time which implies a loss of information
regarding the fluctuations in time intervals of the
order of, or less than, the lifetime of atomic-bound
states. Consequently the effects of emission and
absorption on Eq. (15) cannot be represented simply
by a term of the form, on. Instead there should be
resonant elastic and inelastic scattering terms, as
well as fission—like terms which describe the multiple
production of photons following the absorption of a
single one. In such an event, the equation describing
the fluctuating photon density is not simply solvable
as is the case in the present example. Furthermore,
because of the possibility that two or more photons
may have common ancestors due to the fission-like
processes, an entirely new mechanism for correlation is
introduced into the system (quite analogous to the
correlations observed in neutron-counting experiments
in multiplying media). The contribution to the vari-
ance, or spectral density due to this latter mechanism
may be as important—or even more so—than the one
investigated in this work.

The present approach based on the stochastic Eq.
(15) has been applied also to the study of photon
fluctuations in a microwave cavity as a special case in
which the transport effects can be neglected. The
description of the physical system and the results are
given in Appendix A. The results agree exactly with
those obtained by McCombie® using the master equa-
tion.
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APPENDIX A: FLUCTUATIONS IN A CAVITY

The system under consideration consists of a micro-
wave cavity, a source and two detectors. The source
and the detectors are located at the center of the cavity,
which supports a radiation mode of frequency, wp. The
dimensions of the source and the detectors are small as
compared to the wavelength of the radiation. This
assumption eliminates transport effects which play an
important role in the general problem treated in the
text. The source is described by e(ko) and e, (ko) which
are the emission and absorption rates. The detectors
consist of atoms which absorb photons. The re-emission
of photons by the detector atoms is neglected. Thus,
the detectors are described only by the absorption rate

8 C. W. McCombie, Fluctuation, Relaxation and Resonance in
Magnetic Systems, Scottish Universities Summer School, 1961,
D. Ter Haar, Ed., (Plenum Press, Inc., New York, 1962), p. 193.
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rp (ko). Dropping the arguments in e(ko), o,(ko), and
rp(ko), and defining a=2rp+ s, one obtains the sto-
chastic Eq. (15) in present case as

[(9/00)+oJn(d) =s(1). (A1)

The mean number of photons in the mode under
consideration, N, is obtained from Eq. (10), by drop-
ping the streaming term, as

N=e¢)/o, (A2)

where p is the density of photon states, and is unity if
there is only one mode with frequency, wy. If there are
degenerate modes with the same frequency, then p will
denote the number of such modes. The correlation
function of the noise source follows from Eqs. (17) and
(18) as _

(s(O)s(t) y=2aNs(-V). (A3)

The correlation function associated with the photon
density, #(f), is obtained by solving the stochastic
Eq. (A1) as

n () =/m du exp(—ou)s(t—u),
0

and forming (#(#)n({47)). The result is
n(t)n(t47))=(aN/o) exp(—a|7]). (A4)

We now consider the statistical properties of the
count rates and the accumulated counts. The mean
count rates of the detectors (1) and (2) are equal and
given by (Z)=rpN.

The stochastic equation for the count rate is z(f) =
ron(t) +sP (1), where sP () is the noise-equivalent source
accounting for the statistical fluctuations in the count-
ing process, and has the following statistical properties:
(P(8))y=0 and (sP(H)sP(¥))=—+rpNo(t—1'). Since a
detector removes a photon, the noise-equivalent sources,
s() and sP(f), are correlated, ie., (sP($)s(¢))=
—rpN&(t—1').

The cross correlations between the count rates of
the detectors, i.e., 2:(£) and 2:(f), consists of four terms:

(@) (7)) =ro*n(On(t47) )+ e () s (141))
+rp{s 2 (On(t+7) )+ (P () s (¢+7) ).  (AS)

The last term vanishes because the fluctuations in
the absorption process in the detectors are uncorrelated.
The second and third terms are zero, respectively,
when 7> 0 and 7 <0. When they are not zero, they both
are equal to

w(@)sL(t+7)y=—rpN exp(—a | 7). (A6)

Combining these results, we obtain the count-rate cross-
correlation functions as

(@O z(t+r))=((Z)"/p) exp(—a |7 ),

which is a special case of Eq. (34).
Finally, the cross correlation between the accumu-

(A7)

S171

lated counts of the detectors in a collection time, T, is
obtained from Eq. (4) as

T
(GNCAT))=2 [ (T=D) @(Dali+n), (A3)

0
which yields

(G(T)CAT) y=2(C(T)
X{[1+oT—exp(—oT) )/ (aT)%}, (A9)

where (C(T))=T(Z), the mean number of counts in
one of the detectors in 7. For large gate times, 1.e.,
¢T>>1, this reduces to

(G(D)G(T))=2(C(T) }*/ Top, (A10)

which is identical to Eq. (4.14) of Ref. 8, apart from
differences in notations.

APPENDIX B: THE RELATION BETWEEN COUNT
RATE CORRELATIONS AND PHOTON
CORRELATIONS

Though described in some detail in Ref. 3 (by Akcasu
and Osborn), the derivation of Eq. (31) in the text is
sketched here for completeness. Recall that the count-
rate correlation function was defined by [Eq. (7)],

¢:(r, ¥, 1) = (a(x, Dz(r', t47)), (B1)
with the fluctuating count rate given by
2(r, ) =rpn(r, H)+sP(r, 1). (B2)

In Eq. (B2), rp is the probability per unit time per
photon for the occurrence of a detection event, and s?
is the detection-rate noise source. In general, rp, may
be a function of the photon wavevector. Inserting Eq.
(B2) into Eq. (B1); and recalling the definition, Eq.
(8), in the text; we find

¢2(r) r’) T) =7’D(k) p (k,) ¢n( r, r,) T)
+(s2(x, )sP(1, t47) )F+rp(k) {n(x, )sP (1, t+7))
+rp (k) (P (x, Hn(r, i+7)). (B3)
According to Eq. (17), the second term on the right-
hand side of Eq. (B3) reduces to
(s2(x, )sP(r', t47) ) =rp (&) {N (1) )d3(r—1')8(7)
(B4)
within the detector.
The fluctuating photon distribution is described by
Eq. (15), which, in the detector, becomes

L(8/00)+Bln(r, 1) =s(r, 1),

B=¢Q- V+1'D(k) .

(BS)
where

(B6)
Thus

n(r,t)=f°°dxexp(—x3)s(r,t—x), (B7)

0
and the third and fourth terms on the right-hand side
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of Eq. (B3) become

ro (k) / * dw exp(—xB) (s(1, 1—x)s (', t47) )
0

Trp (k) f % gz exp(—xB) (21, O s(T, t4H7—3)).

(B8)
As discussed in Ref. 3 (by Akcasu and Osborn), the
cross-correlation between the noise sources for photon
loss and detected particle gain in the detector reduces
to
((xr, 0s2(r', 1) )= ~rp(k) (N (1) Yo (r—1")8(1—1').
(B9)

AND A. Z.

AKCASU

Inserting Eq. (B9) into Eq. (B8), we find for >0
that Eq. (B3) becomes

¢.(r, U, 7) =rp*(K) ¢ (1, ', 7) +rp (k) (N (1))
X8(r—1)8(r) —rp2(K) (N (1) ) exp(—+B")é(r—1').
(B10)

Here we have used Eq. (B4), and the fact that
¢.(r, ', 7) contains the factor, §(k—k’). Recognizing
that gi{r, t', 7) defined in Eq. (32), is given by

alr, v',7) =exp(—1B"){(r—1), >0, (Bil)

it is seen that Eq. (B10) and Eq. (31) of the text are
the same.
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A study of the crystallographic orientation of the single-crystal grains of large (8.5-cm-diam) polycrystals
of CdS and of thin films of CdS has been made. Chemical and sputter-etching observations, x-ray crystal-
lographic techniques, and piezoelectric polarity measurements have been used to classify the growth habits of
the thin films as a whole and of the individual grains of the bulk crystals.

Three types of grains have been identified in the bulk CdS polycrystals. These are type I: ¢ axis normal
to a Cd-rich growth face; type II: ¢ axis greater than 15° from the normal to an S-rich growth face; and
inverted type IL: ¢ axis greater than 15° from the normal to a Cd-rich growth face. Type I and inverted
type I grains exhibit negative compression piezovoltages, while type II grains are positive. Type I grains are
identical to the type I single crystals previously discussed by Reynolds, and type II grains are similar to the
14° misoriented type IT single crystals of Reynolds.

Similar results were obtained from the evaporated CdS thin films which could be classified as type I and
type II, with the normal to the type II films about 20° off the ¢ axis, indicating a close parallelism between
the processes occurring in evaporated thin films and in bulk crystal growth. Sputtered CdS films were
always type L It is suggested that the variable efficiencies that have been ohserved in piezoelectric thin-
film transducers with similar crystallographic orientations are related to orientation inversions in the films.

INTRODUCTION

In many binary semiconducting compounds it is
possible to orient a single crystal such that the opposite
faces of the same sample exhibit different electrical,
chemical and physical properties. Basically it is the
lack of inversion symmetry in the (111) directions of
the cubic III-V compounds and (00.1) directions of
the hexagonal TI-VI compounds which gives rise to
the differences observed. Gatos and co-workers,! on the
basis of x-ray and chemical studies, have been able to
characterize the influence of crystal orientation on
surface properties for many compound materials. These
techniques have also been used by Brafman ef al* on
studies of the polar properties of ZnS platelets grown
from the vapor phase. It is also possible to distinguish
the polar faces of piezoelectric materials by the sign of
the piezovoltage. Berlincourt ef al.? using an elementary

1 H. C. Gatos, Science 137, 311 (1962}, and references therein.

2 0. Brafman, E. Alexander, B. S. Fraenkel, Z. H. Kalman, and
D. T. Steinberger, J. Appl. Phys. 35, 1855 (1964).

3D. Berlincourt, H. Jaffe, and L. R. Shiozawa, Phys. Rev. 129,
1009 (1963).

electroelastic model theory, found that compression
along the polar axis gives rise to a negative charge on
the (111) Zn face of ZnS and a negative charge on the
(00.1) Cd face of CdS.

Reynolds and Greene* have identified two types of
CdS crystals grown from the vapor phase: (a) type I:
crystals with the growth surface parallel to the (00.1)
plane, and (b) type II: crystals with the growth
surface making an angle of approx 14° with the {00.1)
plane. In a later paper, Reynolds and Czyzak® deter-
mined that the growing surface of type I crystals,
when etched in HCl, always exhibited hexagonal etch
pits, indicative of the (00.1) Cd face,® whereas type 11
crystals grew with either polarity.

In the present study, chemical, crystallographic, and

4D. C. Reynolds and L. C. Greene, J. Appl. Phys. 29, 559
(1958).

5 D. C. Reynolds and S. J. Czyzak, J. Appl. Phys. 31, 94 (1960}.

¢ The hexagonal etch pits were initially believed to be on the
(00.1) S face, but this has been shown to be in error: G. A. Wolff,
_{. J. Frawley, and J. R. Heitanen, J. Electrochem. Soc. 111, 22

1964).



