Cartan and relativistic spin fluids in a rotating cylinder
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Spin-fluid sources and their metric are obtained for an infinite rotating cylinder. The
calculation is performed in general relativity and the Cartan theory. The spin fluids are

significantly different in the two theories.

I. INTRODUCTION

Rotating fluids are often used in astrophysical and cos-
mological model calculations. Rotation can be included in
relativistic fluid calculations in several ways. The fluid can
be contained within a space-time g,,, (u,v = 0-3) that has
an off-diagonal component g,,; (i = 1-3). This can introduce
fluid rotation, which is described by the vorticity tensor!

@y = Uy + U Usy s (1)

where U, is the fluid velocity and Uy = U,, U" the accel-
eration.

In addition to the rotation given by w,,,, fluids can have
an angular velocity that is related to an intrinsic spin density.
In these spin fluids, the rotation associated with the spin
density can be described by the tensor @,

@
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where a{” is an orthonormal tetrad chosen so that a* o, lies
along the velocity U#. Tetrad indices are in parentheses
(#) = (0-3) and are raised and lowered with the Minkowski
metric 7, = (—1,+ 1,4+ 1, 4+ 1). Tsoubelis,’ using the
spin-fluid stress-energy tensor of Ray and Smalley,*® has
shown that a Cartan spin fluid has the same frame dragging
properties as a fluid with conventional vorticity. His result
indicates that a spin fiuid can serve as a source of angular
momentum for astrophysical and cosmological models.
Spin-fluid interiors can be matched to stationary vacuum
exteriors.

In addition to direct astrophysical applications, spin
fluids can also be used to model superfluid rotation detectors
like those being developed by Cerdonio® for use in experi-
mental relativity. The purpose of this paper is to explore the
use of rotating spin-fluid sources. The calculation is per-
formed in both general relativity and the Einstein Cartan
self-consistent formalism. We impose cylindrical symmetry
since the most immediate application of spin fluids is to ro-
tating detectors. For constant rotational velocity, we find
metric solutions of the van Stockum’ type containing an un-
accelerated spin fluid. There are some interesting differences
between the Cartan and general relativistic fluid sources.
The sources are compared and discussed in the last part of
the paper. In the next sections we briefly review the spin-
fluid stress-energy tensor and write the field equations lead-
ing to our solutions.
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Ii. FORMALISM
A. Metric and tetrad

The space-time we consider is stationary and cylindri-
cally symmetric with metric

ds’ = — fdt> —2Kd¢ dt + 1d¢* + e*(dr +dZ*). (3)
The orthonormal tetrad that diagonalizes this metric is
a* o, = (1/4£,0,0,0),
a* ., = (0,e=#2,0,0), (4)
a*,, = (—K/D\f,00,/f/D),
a* 5, = (0,0,0,e = *?),
where D? = f1 + K 2. In terms of this tetrad, the comoving

velocity is

U*=a",, = (1//f,0,0,0). (5)

B. Stress-energy tensor

A spin fluid is a fluid with an angular momentum den-
sity S,,, defined throughout its extent. The spin density is
constrained by the Frenkel® condition

U*Ss,, =0. (6)

Ray and Smalley* have developed a self-consistent La-
grangian formulation of the Einstein—Cartan theory with
spin density. The stress-energy tensor derived from the La-
grangian variation can be written® as the sum of two parts:

T# = TH¥(spin) + T**(fluid), 7
where 7#"(fluid ) is the perfect fluid stress-energy tensor
T*(fluid) = (e +p)U*U" 4 pg ", (8)

where ¢ is the energy density and p the pressure.
The spin-fluid portion of the stress-energy tensor is

T#(spin) = 2U “SV°U, + V*[U*“SV7] — 5748 ™.
9
The spin density .S“” is related to the proper torsion @w" by
S, =1(87G)S,, U". (10)
The proper torsion is the trace-free part of the torsion S, °,

uv
8,7 =8, +36,8,.% (1

© 1988 American Institute of Physics 1640



The quantity .S,,“ is the torsion vector and describes
that part of the torsion that does not satisfy the Frenkel con-
dition. It is zero in our calculation. The V* derivative is
V* =V, +2S_,°% It will be the covariant derivative in both
calculations. Although the stress-energy tensor was con-
structed for self-consistent Cartan fluids, it is also valid in a
self-consistent general relativity.> The only difference is in
the derivative operator V*. It is the ordinary covariant deriv-
ative in general relativity. It is also the covariant derivative
in the Cartan theory but with an additional spin connection
calculated from the torsion:

re,=8,.,"-8°%+8°.. (12)

Before writing the stress-energy tensor, it is useful to
define the parameters describing the fluid.

C. Fluid parameters

The fluid parameters of interest are the acceleration and
the rotation function w,,,. The acceleration is the same in
general relativity and the Cartan theory,

U, =f./4f. (13)
We are interested in unaccelerated fluids so that f'is a con-
stant. We will choose

f=1L (14)
The fluid angular speed in Cartan theory is
W5 =K, /0 —8,4/2, @,0 =f/2f. (15)

The term S,, in @,, comes from the spin connection. In
general relativity these velocities are

0 =K /N, 0,0 =f/Nf. (16)
Only w,; will be nonzero in the unaccelerated fluid. Because
we have an unaccelerated fluid, the angular velocity asso-
ciated with the spin, @,,,, is identical to the fluid vorticity

W@y

lil. FIELD EQUATIONS AND SOLUTIONS—GENERAL
RELATIVITY

A. Field equations

Using the fluid parameters discussed in the last section,
the stress-energy tensor components are found to be

Too=€— W,

T, =pe*+ (S,4/D)K,,

T,, =pet,

T, =eK>+D’p— KW, + S,4¢ “K,,

Toy =K —X(W, + KWp). (17)

The quantity W, is the spin divergence W, = (S,").,.
The field equations in general relativity are

G,=T,,.

We have taken 87G = 1. It is convenient to use the tetrad
indexed components in writing the field equations:

G, =apyta ,'G,,,

€733 ) (@) nv ( 1 8)

_ 7 v
Ty =awray’T,,,
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Gy =Tp- (19)
The field equations are
(00): 3K3—£’L—ﬁ1=eeﬂ+s K, (20)
4> D 2 " p?’
(ny: K pBDe s Ko 1)
4D? ' 2D "% p2’
2
(22): zﬁz +”2” =pe"+S,¢—II§—;, (22)
(33)_ *K,Z_IU,D, Drr =pey’ (23)
4D? 2D D
(K (S
L

B. Solutions
1. Spin and vorticity

One of the most interesting results of the calculation
follows from integrating Eq. (24),

K,/2D=S,,/2D + ¢, (25)
where ¢’ is an integration constant, or
@,4/D=8,,/2D +¢'. (26)

This is a driving relation between the spin density and the
vorticity or spin angular speed. Associated with the spin and
rotation tensors are vector functions

St = (,,]uvaﬁ/z\/—?g) UvSa y
= (B )2 ) Uyp.

The driving relation is linear when written in terms of these
vectors:

w,=S8,/2+c

where ¢ = ¢’

(27)

(28)

2. Metric functions

Comparing Egs. (21) and (22) the metric potential
u(r) can be related to D:

u.(D./Dy=p,

or (29)
p, = AD,

where A is a constant of integration.

Using this and eliminating the pressure between Egs.
(20) and (21), a differential equation for D is found:

D, /D —AD, + 2(S,%/4 — c?) = 0. (30)
One solution of this differential equation is

This solution corresponds to a constant spin S,, and there-
fore a constant vorticity w,,

S, = const, w, = const. (32)
Equation (30) then gives the constant 4:

A=2(85,%74 —c?). (33)
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The other metric functions are
K=w,P”+c, u=A4r/2+4c, I=r-—K? 34)

where ¢, and ¢, are integration constants. This is a metric of
the van Stockum type. The comparison will be made in detail
in the last part of the paper.

3. Pressure and energy density

Since the choice D = rrequires S, and w, to be constant,
the driving relation, Eq. (28), can be reparametrized by de-
fining

c=w,(2~n) (35)
and

S, =2w,(n—1). (36)

The pressure and energy density follow from the field equa-
tions

(37)
get =2w,%(5 - 3n). (38)

The relation between the pressure and energy density is

(39)

where n = 1 is a spinless dust solution. Positive pressure and
energy require the range of 7 to be

pet= —a,S, =w,>2(1-n),

£—3p=e Hw,?

—w<n<l. (40)

IV. FIELD EQUATIONS AND SOLUTIONS—CARTAN
A. Field equations

The tetrad indexed stress-energy tensor is

T(OO) =€ — Wo/\/f,

Tay =p+e *(S,,/DH) (K, —S,),

Ty =p+ (Sse #/D*)(K, —S,4), (41)
Ty =p,
Ty = (KW, — W) /2D.
The field equations in the Cartan theory are
G,=T, +V3(T,.°+T°, —T,°), (42)
where T, is the modified torsion
T,,°=S,°+26%,8,,° (43)

Since the torsion vector is zero, T}, is just the Cartan spin
connection and V* is the Cartan covariant derivative. The
field equations are

3K D, pn K, S,
00): —= — == L et S, — "2 (44
O35~ 2 T W
Kr2 lurDr Kr 3 Sr¢2
Dot =Pt S =y prr
K?> u K, 35,2
2): —— L =pet+ 8, —— 2, 46
@2 qprt 3 =P S i pa (40)
Kr2 lu'rDr Drr Sr¢2
D =57~ 2p T P T apr “7
K, S
(20) + (02): (2_1)) =(2_Z;). (48)
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B. Solutions
1. Spin and angular speed
Integrating (48), a result similar to Eq. (25) is found:

K,/2D=3S§,,/2D + . (49)
The Cartan vorticity is
0, =K,/2—8,,/2. (50)

Equation (50) is not a driving relation between vorticity and
spin but a statement that the Cartan vorticity is constant.

The equation satisfied by D follows by eliminating the
pressure between (44) and (45):

—D,/D+AD, + 26 =0. (51)

Because of the constraint on the Cartan vorticity, given by
Eq. (50), the solution D = r imposes no restrictions on the
functional form of the spin density and rotation. The con-
stant 4 is

A= -2, (52)
A is the same as the general relativistic function
u, =AD, p=Ar/2+c, (53)

and 4 is, of course, different in general relativity and the
Cartan theory.

The functional dependence of the metric potential X de-
pends on the spin. Equation (49) can be written

K,/2D=S,/2 +c, K=jSzrdr+ cr +c, (54)
and

I=r—k2 (55)
A constant spin, for example, gives

K=S8,r"/2+cr +c, (56)

A constant spin generates a metric of the van Stockum’ type.

2. Pressure and energy density

The pressure and energy density can be obtained from
the field equations

pet = —cS,, ee*=4c*+cS,, (57)
with pressure and energy density satisfying

E+p=4dc’e (58)

For the special case of constant spin density, the van
Stockum example, we can again define ¢ = wy(2 — n), with
w, that part of the Cartan vorticity due to K,/2D. Thisis a
useful step to take in order to compare with the general rela-
tivity. The results are '

Sz = 2(” - 1)(00,
p=2e*wy’(n—2)(n—1), (59)

£=2e"w,>(n —3)(n —2).

The range of n for physical solutions is n<1 and n> 3,
where n = 1 gives a dust solution without spin.
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V. COMPARISON TO THE VAN STOCKUM SOLUTION
The van Stockum interior solution can be written® as
ds* = —dt? +2aP dtd¢ + P (1 — a?r)d¢?

+ e~ (dP + dF). (60)

The fluid contained in this space-time is dust with energy
density

£ = 4a2e”r. (61)

The general relativistic metric is of this form with c,
= ¢, =0in Eq. (34):

ds*= —dt? 2w, dtde + (1 — w,2*)d¢*

+e[$,z/4—c2]rz(dr2 +d22)
= —dt? —2w,Pdtdé + (1 — w,*r*)de*
+ (dP + d2)e Y7, (62)

where o, is the fluid vorticity vector. This is identical to the
van Stockum solution for # =1 and |, | = . The fluid is
the van Stockum spinless dust. For other 7 values there is
both spin and pressure. If |n| is very large, the fluid equation
of state approaches € = 3p.

The Cartan metric for constant spin density can be writ-
ten

ds’ = —dt? —2r(c+ S,/2)dt d¢
+7P[1 = (c+8,/2)*)d¢’
+ (dP +dz*)e " (63)

The constant ¢ is the Cartan vorticity vector, n =1, and
¢ = — «a generates the spinless dust van Stockum solution.
For other » values, there is spin and pressure with an asymp-
totic equation of state p =¢&. These constant spin van
Stockum solutions will not match pressures to an exterior
vacuum. This is always true for the general relativistic solu-
tion with its required constant spin. The Cartan solution
allows nonconstant spins, and a vacaum match is possible in
this case.

VI. THE VACUUM MATCH FOR THE CARTAN
SOLUTIONS

The general solution for the Cartan calculations is
ds’ = —dt?— 2K d¢ dt + 1dd* + e *(dr* + dz*),

= — %P,
K, /2r=S8,/2r+c,
iy (64)
pe“: _— ,¢C/r,
I=r —K?,

get=cS,,/r+4c,

where S, and K, are not yet specified.
This metric can be matched to a van Stockum exterior
solution found by Bonner'®:

eﬁ = e—1/4(R /r)l/l’

1= (rR/4)[3 +log (r/R)],
= —4r[1 +1log (r/R)],
7= (+/R)[1 —log (r/R)].

(65)

Al
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This metric is one of three exterior van Stockum metrics
found by Bonner; it is Petrov II. Here R is the boundary
between interior and exterior.

The matching conditions'' identify the first and second
fundamental forms of the bounding surface, » = R. Match-
ing the metrics, one finds two conditions

cR2=1, (66)

K(R)= —R/2. (67)

Identifying the second fundamental forms, there is one new
relation
K,(R) — S, (R) =K,(R)
or (68)
K, (R) —S,4(R) = — 1.

Using the relation requiring the Cartan vorticity to be con-
stant,

K, —S5,, = 2rc,
the sign of ¢ in Eq. (66) is determined as
c= —1/2R. (69)

The functional form of K(r) and S, (r) is constrained by
these matching conditions:

K= |S8,dr+rc+C,
where C, is an integration constant. At r = R, this becomes

K(R) =f s,dr—% ¢, (70)
{r=R) 2

Therefore at the boundary we have the spin constraint

f S,, dr = const.
(r=R)

In addition, if the pressure is to be zero at the vacuum bound-
ary then the spin density is constrained to be zero at the
boundary:

S, (R) =0 (72)
Any function satisfying (71)and (72) is acceptable. Choos-

ing S,, (r) = rf(r), f(r) regular at r = 0, will produce finite
pressure and energy at the origin.

(71)

VIi. DISCUSSION AND CONCLUSION

General relativity and the Cartan theory both admit
physical spin-fluid solutions for a rotating cylinder. The so-
lutions in general relativity are only for constant spin and
angular speed. The Cartan theory also has a constant spin
solution but it is only one of many possibilities. Both con-
stant spin sources lead to van Stockum-type metrics. The
general relativistic source approaches the equation of state
€ = 3p, and the Cartan source approaches £ = p, in the high
spin limit.

There is another important difference between the Car-
tan and relativistic solutions in the case of constant spin. In
both theories, the spin and w, = K,/2D are related through

S, =2w4,(n —1).

Both theories allow n<1, giving S, the opposite sense to
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w,- The Cartan theory also allows n> 3; S, and w, can be
parallel.

There is a very interesting driving relation between spin
and cylinder speed in general relativity:

S,/2=w, —c

Vortex formation in rotating superfluids is one of the
possible applications of the spin-fluid formalism. This driv-
ing relation, although in the continuum limit, could be inter-
preted in this context. Here ¢ would be the critical speed for
vortex formation to begin.

In conclusion, there are some similarities and also some
fundamental differences between the two spin-fluid sources
used for this calculation. With spin fluids being used as mod-
els in astrophysics and condensed matter physics, it is hope-
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ful that a test of the two theories might occur in the near
future.
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