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ABSTRACT

NEUTRON DTFFRACTTON AND. INELASTIC SCATTERERING
BY VITREOUS BERYLLIUM FLUORTDI

by
Charles Arthur Pelizzari

Chairman: John M. Carpenter

The total neutron diffraction pattern and the scattering
law of vitreous Ber have been measured using time-of-fli-ht
techniques.

The diffraction pattern was measured at the University
of Michivan time-of-flisght diffractomcter for wave vector
tfansfers‘in the range 0.93']'$ Q¢ Z7§-1. The data werc
corrected for container scatteringe, multiple scatterin~ in
the vandium reference scatterer and multiple scatterins in
the 5e¢F, sample. Fourier transformation of the diffraction
data vielded a radial density function from thch termination
and normalization errors were partly removed using a novcl
computer sraphic approach.

The refined rdf was analyzed for neighbor distances,
coordination numbers and root-mean-square variation in
neighbor distances‘forABe-F. F-F and Be-Be pairs. Longcr-
ranpge order was found to persist out to distances of °-101.
The structure parameters "and long-range rdf behavior were
judped to be consistent with a tetrahedral random network
structurc proposed by Warren. The rms peak widths were
found to bLe smaller than those determined from X-ray dif-
fraction by Narten, and apgree closely with rms vibration
ampli tudes derived from a dynamical model of Bates.
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The scattering law data were corrected for container
scattering and multiple scattering in the vanadium réference
scatterer. A generalized frequency distribution function
was calculated from the measured scattering law. Systematic
peaks in the generalized frequency distribution were found
to correspond with previously observed Raman and infrared
bands, and with maxima in the frequency distribution cal-
culated by Bell and Dean for their tetrahedral random network
model.

Comparison between the measured scattering law and a
calculation including only contributions from long-wavelength
acoustic modes showed the calculation to be valid only for

small wave vector and energy transfer, exactly as expected.



ACKINOWLEDCMENTS

The author is indebted to the Arconne National Labora-
tory Center for inducational Affairs for its support ot the
Thesis Parts Fellowship durine which the inelastic scatterin
portion of this work was completed. lle is also grateful to
the staff of the Solid State Science Division at Arronne,
and in particular to Dr. J.¥. Rowe, Nr. D.L. Frice, Pr.
J.R.D. Copley, ﬁt. A. Rahman, r. 0.C. >impson, Mr. .1,
Ostrowski and fr. R. Kleb for their support, ruldance and
assistance during his stay at Arponne.

The time-of -flisht difiraction work was supported in
part by the National Scicence [Foundation under prant nuwber
GK-35901.

Finally, it is a pleasure to acknowledpe the continuing
support and guidance of Dr. Jack Carpenter, and the many
valuable conversations with Dr., David Mildner which con-
tributed to this work; and the sterling tochn%cal support

of Ms. Janice Tracht.

1ii



Table

~N O o W

10

LIST OF TARLES

Warren's 1934 Random Metwork Model of Vitreous
BeF
2

Summary of X-ray Diffraction Results for Vit-
reous BeF2

Scattering Cross Sections of Be and F

Bragg Scattering by Aluminum

Bragg Scattering by Vanadium

Summary of Structure Results for Vitreous BeFZ

Coordination Peak Parameters of Bell and Dean
Model V

Peak Parameters in Rahman "Supercooled" Liquid
Model

Infrared and Raman Bands of Vitreous BeF2

Systematic Maxima of G(Q,&w )

iv

page
6

10
18
76
81
150

153

158
162
167



Figure

1

(W)

10

LIST OF FIGURES

Energy-wavenumber Characteristics of Various
Radiations

Loci of Constant Angle for Monochromatic Neut-
rons

Loci of Constant Time of Arrival for Neutron
Scattering at 20 and 90 Degrees

Comparison of Measured Structure Factor of
Vitreous DeF, with Tntegration of Measured
Scattering Law

Flan View of the Time-of-Flight Diffracto-
meter

Integration Paths for the TNTOFS Experiment
Flan View of the TNTOFS
knecapsulation of the Vitreous Bel’, Granules

Target Arrangement {or the Time-of-Flight
Diffractoneter

Tarpet Arrangement for the TNTOFS
Geometry of the TNTOFS Experiment
Vitrooﬁs Ber Diffraction Data

Calibration of the Diffractometer

Diffraction NData with Errors NDue to Vanadium
Coherent Scattering

Vanadium Diffraction Data with Bragg Peaks
Intensity Ratio for 140 dz 20°Run
Intensity Ratio for 480 Hz 20°Run
Intensity Ratio for 140 Hz 90° Run

. . I : 0 § °
Intensity Ratio for 480 Hz 90 Run

page

16

47

49

51



Figure page

20 Smoothing Spline Fit to 140 Hz 20° Data ge
21 Rahman Normalization Integral for Partially

Corrected Data | 93
22 Container Self-Shielding Factor 9¢€
23 BeF, Scattering Cross Section from Partially

Corgected Diffraction Data 98
24 Vanadium Multiple Scattering Correction Factors 101
25 BeF2 fultiple Scattering Correction Factors 108
26 Model BeFs Structure Factor for Multiple Scat-

tering Simulation h 110
27 Fully Corrected BeF2 Structure Factor. 111
28 Experimental BeFZ Radial Density Function 117
29 Refinement of Experimental Radial Density

Function 132
30 Refined Ber Radial Density Function 13¢
31 Be-F Peak in the Refined RDF 142
32 F-F Peak in the Refined RDF 144
33 Be-Be Peak in the Refined RDF 146
34  Geometry for Calculation of Bond Angles 149
35 Radial Density Function for Bell and Dean

Model V

154

36 Pair Correlation functions of Rahman BeFZ

Liquid Model 157

37 Neutron RDF of Rahman Super_cooled BeFZ

Liquid Model 159
38 Pair Correlation Functions of Rahman Super-

cooled BeF, Liquid Model 160
39  Determination of Systematic Maxima in G(Q,® ) 168

40  Determination of Approximate Debye-ialler
Exponent 171



Fipure

41
42

43

L

Comparison ol Acoustic
Measured C(3,w )

Comparison ol Acoustic
Measured G(Q, w)

Comparison of Acoustic
Measured G(Q, w)

Comparison of Acoustic
leasured G(Q, w)

G(Q, w)
G(Q, W)
G(Qy w)

H(Q,w)

with

with

with

with

page

172

173

174

175






CHAPTER ONL

INTRODUCTION

1.1 Preliminary Remarks

In a time when condensed matter physicists and chemists
have treated with remarkable success a larpe number of diffi-
cult and cbmplex problems, even the most basic properties
of the structure and dynamics of glassy solids seemingly
remain beyond our theoretical grasp. Theorectical considera-
ations of plass structure consist largely of arpguments as to
which of two conceptual models postulated in the early to
mid 1930's less offends physical and chemical sense. Attempts
to adapt conventional solid-state (i.e. crystalline) dynami-
cal analysis to glasses typically fall flat except under
severly restrictive conditions (see Chaptef Six below), and
little else has been tried. This rather primitive theoreti-
cal state is quite natural, for glasses lie somewhere be-
tween the two extremes which have almost exclusively been
calculated: on onc hand, the highly ordered periodic world
of crystals where translational invariance seemingly makes
all things calculable; and on the other hand the stochastic
world of liquids where kinetic theories can be used to
advantage. A glass is not a liquid nor is it a crystal;
it may display behavior characteristic of either or both
(or neither). In short, the glassy state constitutes a
singularly difficult theoretical pground, one on which few

are inclined to tread. We suspect that as understanding of



the liquid state catches up with that of the crystalline,
the special problems of the intermediate, glassy state will
begin to yield.

We begin this report of an experimental investigation of
some aspects of a single glass with a brief introduction to
the history of diffraction studies of glass structure and
the aforementioned structural models, which have their roots

in the early diffraction results.

1.2 Early History of Glass Diffraction

1.2.1. Crystallite Model. Soon after the discovery by
von Laue1 that x-rays are diffracted by crystalline solids,
both Debye2 and Ehrenfeét3 speculated that other forms of
condensed matter should also exhibit characteristic diffrac-
tion patterns. It was not until 1930, however, that the
first quantitative analysis of silica (8102) glass diffrac-
tion was published by Randall, Rooksby and Cooper.4 Since
the dominant broad band of their diffraction pattern was

centered at 1.5 A%

, near the position of the (111) reflec-
tion of the crystalline silica ® -cristobalite, Randall et
al. suspected a simple explanation of glass structure in
terms of an assemblage of microcrystallites might be appro-
priate. Application of the Scherrer line-width formula to
their data indicated an average crystallite dimension of

o
15-20A. An explanation of certain anomalous refractive

and thermal properties of glass in terms of what might be



called a microcrystallite model based on quartz, another
-

crystalline silica, had ecarlier been offered by A.A. Lebedey”

(about whom more later).

1.2.2. Continuous Random Network Hypothesis. trior to
1930 diffraction studies of several crystalline polymorbhs
of silica had led to the conclusion that the basic unit of
composition in these crystals was not the planar SiOZ mole -
cule, but rather a silicon atom surrounded tetrahedrally
by four OXygens. These tetrahedra were apparently linked
at corners so that each oxvgen was bonded to silicon atoms
in each of two adjoining tectrahedra. The various polymorphs
of silica were found to differ only in the particular rela-
tive orientation of neiphboring tetrahedra. (We quote many
silica results here, because %GFZ and SiQZ have proven to
be structurally analogous; thus isomorphs of BeFZ are found
to contain corner-linked BeFZ tetrahedra, and one may speak
of quartz-like, cristobalite-like, tridymite-like, etc.,
forms of BeFZ analogous to the various SiOZ polymorphs.
This structural analogy reflects the fact that the ratios
of BeZT:F™ and Si**:0%” ionic radii are nearly the same,
while BeFZ having ionic charges only half those of SiO2
might be expected to be a somewhat "weaker" structure, which
turns out to be the case.)

Zachariasen, noting these as well as similar regulari-
6

ties for other glass-forming oxides, postulated in 1932

that oxide plasses are formed by corner-linking of oxygen
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polyhedra in a random manner, rather than in the regular
manner of crystals. In a set of rules governing the forma-
tion of what has come to be known as a continuous random
network, Zachariasen postulated that there be no sharing
of edges or faces by neighboring polyhedra, and that at
least three corners of each polyhedron be shared with
neighbors.

Of course a continuous random network can no more easily
exist in a real glass than an assemblage of tiny crystallites
with sharp boundaries, separated by voids. The relative
orientation of SiO4 tetrahedra in silica glass cannot be
truly random, since most of the oxygens must join two
tetrahedra; the requirements of bonding impose restraints
on the degree of randomness possible. If we are to avoid
severly distorting a large fraction of the tetfahedra, in
fact, the short-range structure of a realizable "random"
network must probably look more or less like that in a
crystal, with progressively less rigid ordering as one
moves away from the starting point. A viable "random
network" model of a glass will thus be characterized by
random variation of relative polyhedron orientations only
within a fairly small range about some mean.

Warren made convincing use of a realizable continuous
network in the analysis of his X-ray diffraction data for
81027 and BeF28 in 1934. Choosing a mean linking angle

between neighboring tetrahedra (i.e. the Si-0-Si or Be-F-Be



bond angle) of 130° and using distances and coordination
numbers consistent with those in crystalline modifications,
Warren calculated the scattering from a random network, which
he found to be in substantial agreement with experiment.

Particulars of Warren's Bel, model are listed in table 1.

<

1.2.3. Modern Crystallite Model. Not everyone was
as convinced as Warren that his results had proven conclu-
sively the veracity of the random network hypothesis. 1In
1936 N,N. Valenkov and E.A. Porai-Koshits9 postulated a
crystallite theory of glass structure which was far more
sophisticated than that of Randall et al. (Tt is worth
noting that Randall himself had gone over to the random
network hypothesis in 1934.,) Dlotinp several inadequacies
of the Zachariasen-warren random network hypothesis, Valen-
kov and Porai-Koshits suggested a model of glass structure
based on cristobalite crystallites of 10-124 or more on a
side, which are joined through severely distorted regions
to neighboring crystallites. This avoids the obvious over-
simplification of the Randall model where crystallites are
sharply delineated and separated by voids, but still couches
the description of glass in the comfortably familiar term-
inology of the crystalline state (it should be apparent
that the random network model is in fact a description
appropriate to a liquid). Tt is the opinion of this worker
that the modern crystallite and random network hypotheses

are not in essential conflict, that in fact a realizable



TABLE 1. Warren's 1934 Random Network Model of Vitreous Ber,

N
5|

1 Be surrounded by each surrounded by

1 Be at r=0 1 Fat r=0

4 F r=1.604 2 %e  r=1.60A

4 Be r=3,204 & F r=2.624

12 F r=4.00A 6 Be  r=4.00A

12 Be  r=5.20% 9 F  r=4.65+0.454

18 F r=5,458+0.,454
Continuous distribution Continuous distribution

beyond R1=5.453 beyond R2=4.65§



random ncetwork will as previously stated wind up looking
pretty much like the modern crystallite structure. The
difference of course is only a matter of degree - whether
one chooses to believe that it is the more or the less
strongly ordered regions in plass which are more important.
Clearly each type of region will be more or less influential
in determining a particular property of glass - neither can
alone provide a complete discription of all properties.
(That the random network and modern crystallite hypotheses
are not neccssarily at odds has long ago been pointed out

by A.A. Lebodevlo.)

1.2.4, Recent Developments Concerning, the Crystallite
Models. DBoth the original and the modern crystallite hypo-
theses were first advanced by Russians (Lebedev, Valenkov
and Porai-Koshits). Accordingly we must impute quite some
significance to a recently published 1etter11 of Evstropyev
and Porai-Koshits, in which crystallite hypotheses were in
essence declared not to have been supported by the sum of
experimental cvidence (both diffraction and spectroscopic).
The letter described discussions and a resolution made by
a group of 250 Soviet scientists in December 1971 on the
fiftieth anniversary of Lebedev's first crystallite hypo-
thesis. We quote selected passages, hopefully not misre-

resenting thereby the authors' intent.



"In reports devoted to X-ray structural
analysis (E.A. Porai-Koshits, V.N. Filipovich
and others) and electron microscopy (F.K.
Aleinikov) the speakers emphasized that...
all the attempts to reveal the existence of
crystallites...have failed so far. The
analogous conclusion was made by V.A.
Kolesova on the basis of...infrared spec-
troscopic investigations."

From the Resolution approved by the participants,

"The method of infrared spectroscopy...
cannot be used at present for a quantitative
evaluation of the dimensions, quantity and
degree of geometrical ordering of the cryst-
allites existing in glass...Other methods...
(electron microscopy, X-ray structural ana-
lysis et al.) despite their extensive develop-
ment in recent years, do not permit, for some
reason or other, to reveal the regions of
increased ordering (crystallites) in glass...
the seminar on the crystallite hypothesis
considers it expedient to recommend...to
pay attention to the improvement of the
structural methods which can produce quanti-
tative or even semi-quantitative information
about the regions of increased ordering in
glass."

One may well conclude on the basis of this letter and
the Resolution it describes, that although the Soviets
believe the crystallite hypothesis will ultimately be
verified, they recognize that as yet there is precious

little evidence to support this position.

1.3 Modern Diffraction Results on Ber Glass

Several X-ray and neutron diffraction studies have
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been made since the orisinal work of Warren and Hillq, whose
results have already been discussed. We will not dwell on
the details of the measurements themselves except to note
when cxperimental conditions lcad us to disbelieve certain
conclusions. The neighbor distances, coordination numbers
(when given) and bond angles (calculated from the distances,
angles are rarely reported) are summarized in Table 2 for
the X-ray measurements of Batsanova, Yur'ev and Doroninalz’
Zarzycki13 and Nartenlé. Tn each case the diffraction data
were Fourier analyzed to eive a radial density function
(rdf) as first suggested by Zernike and Prins15 and first
applied to liquids by Debye and Menke!' in the late 1920's,
and first applied to plass data by Warren17 in 1936, (A
rcasonably complete discussion of the rdf will be given in
Chapter Two. For now we note only that from it one can
calculate coordination numbers and interatomic distances.)
We assign the preatest weight to the results of Narten, who
took proper account of the termination effects in his
Fourier transform. The Russian workers on the other hand,
failed to use strictly monochromatic radiation in conjunc-
tion with a photographic recording technique; to their
result we can assign but little weight. The 1.50& Be-¥
distance reported by Zarzycki seems a bit too low, and
indeed indicates a mean F-Be-I bond angle significantly

different from the expected tetrahedral angle of 109° 22,

©
The 1.43A Be-F distance found by Batsanova et al. is low
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Warrgn & Batsanova

. Hill¢ et al.12 Zarzvcki13 Narten14
- 1.60  1.43+.015  1.50 1.554+.004
rF-F 2.55 2.54 2.55 2.537+.004
S 3.20 3.00 3.037+.005
X (F-Be-F) | 105° 125 116° 109.5°

% (Be-F-Be) | 180° 180° 155.6°
Nyoop 4 4 4.4 3.8+.3
Np_p 6 6.3 5.7+.3
Nao-5e 4 3.8+.3

Table 2. Summary of X-ray diffraction results for BeFZ glass.

beyond all belief, and in fact is the same as the Be-F
distance for isolated Ber molecules as determined by elec-
tron diffraction from Ber gas. Narten is the only author
who has calculated bond angles from his interatomic distaﬁces;
we again comment that his results are of the highest quality.
The scheme for taking into account termination effects used
by Narten is identical in principle with that of Konnert

and Karle, about which we will have much to say in Chapter
Five, and which we feel is the "“state of the art" technique
for extracting distances, coordination numbers etc. from
rdf's and incidentally for removing the unavoidable termin-
ation errors. Narten's work must certainly be considered

the benchmark at this time for BeFZ glass diffraction.
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1.4 Conmparison of Niffraction Methods

1.4.1. Overview. We have in the previous sections
referred to both X-ray and electron diffraction measure-
ments.  In this section we will touch on some features of
cach method.

Wwe will have little to say about electron diffraction
as a tool for investigation of glasses. [Electrons interact
so strongly with condensed matter that only a very thin
layer of material can be "seen" by electron diffraction;
this same property makes electrons an ideal probe for invest-
ipations of gaseous substances. Since many interesting
amorphous semiconductor materials are most readily prepared
by vapor deposition in thin filins, electron diffraction is
heavily used in work on such glasscs. For macroscopic
chunks of stuff such as a window pane of silica glass or a
lethal dosc of vitreous BeFZ, however, clectron diffraction
can provide information only about the immediate surface
regions. Since we are interested in the bulk behavior
of a glass which can bc had 1n bulk, electron diffraction
is not the most appropriate experimental technique.

X-ray diffraction has been an indispensible tool in
the study of condensed matter ever since von Laue discovered
the phenomenon in 1912. X-ray crystallosraphy was begun
soon after lLaue's discovery by W.H. Brags and has since
been refined to an incredible depree. It is fortunate that

for many years X-ray diffractionists have also applied their



efforts to the study of pglasses, although the analysis of
glass diffraction is necessarily quite crude in comparison
with what can be (and is) done with crystals. X-rays

unlike electrons can probe the entire volume of an irradiat-
ed sample, and so give information characteristic of the
bulk material. Their scattering by matter is comparable

to that of neutrons; it is considerably simpler to increase
the total amount of scattering by utilizing a more intense
source of X-rays however, than to buy a similar increase in
neutron intensity. X-ray sources are quite small in general,
require only modest shielding and do not need licensing by
the AEC. Neutron sources by contrast, are generally either
nuclear reactors which have some rather obvious problems of
large initial expense and frequently requireAan entire lab-
oratory staff just to cope with the radiation problems they
generate; or accelerator-based pulsed sources in which the
accelerator and not the neutron source per se is a budget-
wrecking expense. In short, an ordinary mortal, a company
short of an industrial gilant or even a minor university Jjust
cannot afford a neutron source useful for diffraction work,
but can for a fairly modest capital expense have a respect-
able X-ray diffractometer. Why use neutrons at all then?
The answer is that in a very real sense, neutron diffraction
serves as a complement to X-ray diffraction, providing new
and different information when applied to the same substances.

Futhermore, there are several problems associated with X-ray
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diffraction which do not arise with neutrons ( and vice versa,

as we shall see):

a) Since X-rays scatter from the elcctrons in
a material, and since useful X-ray wave-
lengths are of the order of ionilc radii,
there is a diffraction effect due to scat-
tering from different electrons in the same
atom. This causes destructive interference
which decreases the scattered intensity as
Q increases. Neutrons on the other hand
scatter from nuclei in the sample which look
like point scatterers, and so there is no
destructive interference to diminish scat-
tering at large Q.

b) In addition to the elastically scattered or
"unmodified" X-rays, there is also a Compton
scattered or "modified" component of scatter-
ed intensity which increases with Q. The
removal of this modified component to get
at the unmodified (diffraction) component
is difficult, especially at large Q.

c) There may be strong absorption of X-rays
if the incident wavelength is near absorp-
tion edges of the sample constituents.
Neutrons are also stronpgly absorbed by some
nuclei, but on the whole X-ray absorption
is a much more scrious problem.
1.4.2. Complementarity of X-ray and Neutron Scattering.
We have previously stated that X-ray and neutron diffraction
are properly viewed as complementary techniques. One tech-
nique may be demonstrably superior in some applications,
inferior in others; but on the whole both methods may be
profitably applied to the same problems. The complemen-
tarity arises from the fact that X-ray and neutron scatter-
inpg, amplitudes differ for different atomic species. X-ray

scattering factors increase with increasing atomic charge

number, while neutron scattering lengths do no vary simply
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with increasing Z and are in fact different for various
isotopes of the same atom. Since the various species in
a heteroatomic system thus have different weights for
scattering of X-rays and neutrons, the same measurement
done by both techniques provides two different "views"
of the system. This is most important in systems compeosed
of both light and heavy atoms (the obvious example being
biological systems containing H), since the high -Z atoms
would completely dominate X-ray scattering, while most
nuclei have neutron scattering lengths of the same order
of magnitude so no one type in general can dominate. Also
possible is isotopic substitution to change the neutron
scattering properties of a substance, thereby increasing
even more the amount of information available from dif-
fraction. 1In principle one could (using SiO2 as an example)
combine the results of one x-ray and two neutron diffraction
measurements with isotopic substitution of , say, O18 for
016, and thereby be able to experimentally separate the
scattering due to Si-Si pairs, 0-0 pairs and Si-0 pairs.
This has never been successfully done, however.

Finally we look at the possibility of investigating
the dynamics of condensed matter. Suppose we wish to
obtain information on the energy and momentum of collective
excitations in a solid or liquid, typical energies of which
may be .001 - .1 ev (1-100 mev) and typical momenta (express-

Q o -
ed in wavenumber, k= p/h) several times 10°/cm (several A 1).



In order to directly observe the momentum and energy of

such excitations, we mipght wish to observe radiation

are exchanged with the excitations; there must be a detect-
able change in the momentum and/or energy of the radiation
quanta, in order that we may interpret the results. Thus

we would ideally like both the momentum and energy of the
radiation used to be comparable to those of the excitations
investigated. 1In figure 1 we plot energy vs. wavenumbers

for neutrons, electrons and photons in free space. Obviously
the neutron has the desirable momentum and energy combination
while both e-m radiation (X-rays) and electrons do not.

We will refrain from shouting too loudly about the
ability of neutrons to scatter inelastically from collective
excitations, because it is also the source of a problem when
we try to do diffraction. As will be shown in Chapter Two,
we would like to measure the scattering at constant Q in a
diffraction measurement; our ability to do this easily is
adversely affected by the occurrence of significant energy
transfer in scattering. Thus X-rays are in this respect

better suited for diffraction applications than are neutrons.



Region of Collective
Excitations in Solids
—  and Liquids
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Fipure 1. Energy-wavenumber Characteristics ol Various
Radiations



CHAI'TER TWO

THEORETICAL BACKGROUND FOR NEUTRON SCATTERING
FROM DISORDERED SYSTEMS

2.1 Scattering from Static Systems

2.1.1. The Structure Factor. For a system of N rizidly

. . . . 1R
bound nuclei, the neutron scattering amplitude lSl

N Q- r,
ﬁ/)):ZaJ.e -
47

where Ej is the position of the j-th nucleus, aj its bound-

(2.1)

. . !/ . .
atom scattering lenpgth and Q = k - kK is the change in the
neutron wave vector. The differential cross section per

nucleus associated with this scattering process is

@) = /]
'Cz-/r.-_'p

. -
N ZZ&I.&SL" S
t=/ J:/

The quantity I(Q)(a%> is known as the "static structure

(2.2)

factor", or simply the "structure factor"; it contains all
the structural information available from a diffraction
experiment. We will denote it by SS(Q). Thus

2 i

T (Q) (a)NsSm)
-1 X %
{a%y= N Z“t
L3

We can simplify somewhat the present analysis by noting that

il

Be and F are almost completely coherent scatterers, as shown

in table 31?
17
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i sotope 0—th Gzoh+0{nc Géoh[qaoh+qznc abundance, %
Be’  7.53 7.54 .999 100
9 3.9 4.0 .975 100

Table 3. Scattering cross sections of Be and F

Accordingly we hereafter neglect incoherent scattering
entirely, and aj will refer to the coherent bound-atom
scattering length of the i th nucleus,

We can separate (2.2) into "self" and "distinct" terms,

S a2 S’ ~ 1 | {A’I 'N/ «(k(Q’[F,r)

a)S(R) = a™y + /Azﬁ.@e’ B
=/ A:’

where the primed sum is restricted to terms with i#j.

(2.3)

2.1.2. Static Pair Density g(r). By noting

YA 3 S0 xev
Vfw.);/_-mr S

we can express (2.3) in the form

(2.4)

(2.5)
We call g(r) the static pair density. The determination

of this function is the ultimate aim of most diffraction



measurements on glasses and liquids. Tts physical meanine

becomes clear on intecrating (2.5) over some small regionzﬁ :

“(I)d.jv*
Ji
Ly
)4 ] or-rsr)
(= (3‘ A
(2.6)

The integral on the right in (2.6) equals unity for each
pair of indices (i, j) for which (gi-gj)ézﬁ, Integrating
g(r) over any region:ﬁ gives the number of pairs of nuclei
in the sample whose internuclear separation lies in A,
weighted by their scattering lenpths.

It is convenient to rewrite (2.5) explicitly in terms

of contributions involving nuclei of a given type in a poly-

isotopic system:

glry=n <@y La) M bl - Hg)

$

I\}l
-t 7\ N \j

2,4, 3[1‘-5‘*4.[,\%,)//’2;“,5%,)(

2.7)

’*N(?ZZ_ i $uy ()

where t denotes a nuclear type, n

(2.8)
¢ Tuns over all nuclei of
type t, N is the total number of type t nuclei, the factor

(1- XFHV ’ /) limits the double sum to distinct pairs as



before, and

N, A
/ = \.\7 \\" | . 4
Qulo)= 0 ) 208, 8x, v, N078,.8,.)
H{-’l ’1,/:'/ (2.9)

o~

describes the distribution of nuclei of type t' about nuclei

of type t. Since <S(£)= <g(;£) it is clear that
/ (f) = A{[/ [_
44 T gt f)

The functions gt,t(g) are in fact what one might calcu-

(2.10)

late from a model of the system under consideration; the
function accessible to experiment, g(r), is simply a super-
position of the gt.t(g). In the case of a monoisotopic
substance, one can experimentally determine a function even

more closely connected to the structure:

NN

g’(:): N Caty > z azg(g-;,,r_g)
oA,
= NA%Z}21:5{f'Q+%)
vse g

\(

gff} (2.11)
This function can be interpreted directly in terms of the
structure, while the structural information in g(r) is
obscured by the scattering-length weighting of the different
isotopes' contributions. One would ideally like to extract
the functions gt.t(g) from measurements of 2(r), remove the

scattering-length weighting and superimpose the resulting
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functions to reproduce g(r). TIn order to do this, however,
one would need n different measurements of p(r), varying
in each the scattering lensth of at least one nuclear type,
where n is the number of distinct combinations (t't) (ec.-.,
3 for BeFZ: Be-t, F-¥ and De-Be; one x-ray and two neutron
measurements with isotopic substitution would suffice).

In an isotropic medium such as a liquid, gas, powder,
polycrystal or glass, g(r) cannot depend on the direction of

r, and we have for equation (2.4)

S;.(Q» = | + fév—“g'fg(r) JiSY‘
\4

\f

I+ f"’b' (37& ~§e +3.) A7

(2.12)

where the integral has been extended over all space, and

g : Liwe G.01)]

frj-»w

]

@
S(R)= I+f4ﬂr/5/r>—ja) ST i 4 (-271)3(70 S)
L) (2.13)

Ignoring the last term which represents a forward scattering

contribution (Q=0) which is not measured, we can write

(2.14)

a0
G LR) = ! ngm-ﬁg Gon Gor clvm
where

WINE: O, ()~

(2.15)
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and SS(Q) is assumed not to contain the forward scattering
contribution mentioned above.

By way of evaluating B,» One can argue that as r be-
comes large, the distribution of internuclear distances will
tend to look more and more uniform. Then (2.5) can be

evaluated with é (g-gi+gj) replaced by its average value 1/V,

—() T _;5’——/;/'-!2* —/}I)
$r 8T VT 24 = )lar

o NJF
- \/ <aZ\
("
= () <az\
N (2.1r)

t=i

and p=‘§'is the macroscopic number density of nuclei in the
sample. Note that the structure factor for an isotropic
system depends only on the magnitude of Q. Equation (2.14)
is of course just a Fourier sine transform; the inverse trans

form is

)
YTe (-4 = £ [ei@ sieard @
oo (2.17)

This is the basic‘relationship by which g(r) is calculated

from experimental SS(Q) data.



2.2 Scattering from Dynamic Systems

2.2.1. Partial differential cross section; the scatter-
ing law. Here we abandon the restriction of the previous
section to systems of rigidly bound nuclei, and proceed
. . .. . 12,19
again from first principles. As shown in standard texts,
the differential cross section per unit solid angle per unit
interval of scattered neutron energy for coherent scatters

is (within the framework of the first Born approximation,

and using the Fermi pseudopotential)

(2.18)

z .
where ¢ :u,ﬁ W = :&_ [}z"_ 121> is the enerpy transfer to the
oL m

neutron, and

I -t - - 7 i /J N &
° %) = ¢ \ r Tt D
5(9)03 N {a%y /32‘\ Pas ‘ I(u(z\,é & J |n°>[
o n A"
() (S L - n, L:;i‘*

(2.19)
is the scattering law. The sum on n, is a statistical
average over initial states of weight pno; the sum on n
runs over all possible final states; the quantity in‘square
brackets is a matrix element of the enclosed operator. The
5 function restricts the sums to transitions with Fw
(enerpy transfer to the neutron) equal En -En (energy trans-

0
fer from the scattering system). By introducing suitable
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time-dependent (Heisenberg) operators?O gj(t)=e

idt/h_ -iHt/h
r.c
J
and the Fourier respresentation of the 5 function, one can

rewrite (2.19) as

S(@,0) = (0 [ wplawt) Fl2,0) d-

(2.20)
where

-1

F(3,4)= N <ay

D e

I%@ <*¥PU‘~*"—E[O>Y£%PE@*{,'((*)DT)
= 2.21

S

&
and

<A>T = }Z?Ono <”°} A] n°>

o
In (2.21) we ignore the a; as dynamical variables, thus

restricting the treatment to systems of noninteracting spins.

2.2.2. Space and Time Dependent Correlation Function
G(g't). F(Q,t) is called the intermediate scattering func-
tion; it is intermediate in the sense of being the spatial
part of a 4 dimensional space and time Fourier transform
relation between the scattering law and the space and time

dependent correlation function of Van HoveZI:

Fla,®) :\/\J’%P[“‘QT) Glr) d’r
(2.22)

§(Q)LD) :(,2‘»‘)" Lyp /%Q'L' +t~"f) é{!‘,%) 6;3”' 4'%'/‘ (2.23)

N
g(fl‘t)5(7271.)“3<dz>"/\/-'%\ld&dﬂf.£///9{l\@“f (2.24)
y =
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Applying the convolution rule for the Fourier transform
of a product and respecting the general noncommutativity of

the operators HJ(O) and gj(t),

G [opliar) g (1) d*r

‘"fF(Q~Q’> &) d°&’

G(r,t) can alternatively be written

N
- ~1, a -t 7 ) ‘!‘+r K ’P"._.r 3~/
Glrd)= wia'y <dz{gd Jalzes@-r) S (r ) A3

(2.25)

)

2.2.3. Properties of the Correlation Function é(g't).
Although Van Hove has named i(g't) the space and time depen-
dent correlation function, it does not in general have the
simple physical meaning that name seems to imply. For
classical systems, the positions ;i(t) are simply dynamical
variables (c-numbers) and (2.25) may be simplified by per-
forming the integratijr on r':

%= W Qg drr )

gt r (2.26)
Gq (g't) has a simple physical interpretation: it directly
measures the probability of finding a particle at position
r at time t, given that some particle was located at the
orgin at time o (again, there is a weighting by neutron
scattering power of pairs of nuclei just as for g(r) ). Such
a function is called a two-time conditional pair density.

For quantum mechanical systems, the simplification



(2.26) (tantamount to replacing exp [ig'rl(o)] exp [—iQ~gj(t)]
in (2.24) by exp i iQ~(r1(o)-§j(t) )] ) cannot be made since

r (o) and gj(t) are operators, in general noncommuting. Any
pair of L, taken at the same instant of time however do
commute, So one can write even in the quantum mechanical

case for the equal-time conditional pair density

. 'd -

@-.[f‘ o) ="y 2 Qg.a;, é[r+.g(a’)~rd'(o))>7_

g (2.27a)

N
o | =/
- NG <N<a‘> + ) 43.%5(f+&(o)-~3(0))>7_ (2.27b)

i

5(£3+§(f> (2.27¢)

If the identificatafn
/

§6) - N0 Gy Blr e =50,

" (2.29)
is made. Clearly the form of (2.28) is the same as that of
(2.5) where g(r) was defined for the static system. More
than this, its physical content is the same. Aside from
the statistical average in (2.28), which could as well be
applied to (2.5) given that several configurations of the
N-particle static system are possible, (2.28) is the exact
analog of (2.5) for a static system whose N particles are
at the positions ;*;g(o), §2=§2(o), etc. Equation (2.28)
may be thought of as the evaluation of (2.5) for a system

frozen in position at t=0. ﬁ(g'o) thus has the character
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of a "snapshot" of the dynamic N-particle system taken at
the instant t=0.

By examining the inverse transform of (2.23),

(:(r,%) =(25)~3 L;P[{(@-_rwf)] S{'@) WA dw
(2.29)

one finds a means of experimentally determining G(r o):

Gle, o = ) [agpliar]sta,w) 432 duo

- em” [epliac] s( 8

(2.30)
with the identification
@
S(Q) = f SR, W) dew
e (2.31)
Thus combining (2.28) and (2.30),
5()+ §r) = G’ [apfia-r] Se) d*Q
(2.32)
or by analogy with (2.4),
S(RY= |+ f yp [-c@-r ] g(ﬂaﬁr
(2.33)

We will call S(Q), the integral at constant Q of S(Q}aﬁ, the
"structure factor". It is the analog of the static structure
factor introduced previously, containing the same type of
information but arrived at via a more realistic analysis.

We have already discussed the information content of
g(r) and its Fourier transform SS(Q) in terms of the static

system model. We have now found that by arranging to measure
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S(Q) as defined in (2.31) we can collect the same sort of
information for the more realistic dynamic model. If in-
stead of S(Q) we measure only the “"elastic diffraction"zz

S(&,0), we obtain different information as can be seen

from equation (2.23):

S(2,0) = @' [2p 18 ) GLry ) APt

i

by

(zﬁ)"fiw [-i@.r] [(c) a’3r~) (2.34)

[le)= [étr0) de

Thus by Fourier transformation of S(Q o), one obtains [1(2)
which is somewhat difficult to interpret, and not g(r) as
when S(Q) is transformed. Tt is clear then that to gain access
to g(r) using neutron scattering, one must measure the
total coherent scattering at each value of @, 1e, measure
the structure factor S(Q). We postpone until later con-
sideration of the feasability of arranging a neutron scat-
tering experiment which will actually measure S(Q), a
difficult question indeed.

Finally, we note that for isotropic systems, g(r) =g(r)

only and (2.33) can be orientation averaged to yield
20 . ,
S(R) = )+‘4UP%0>Tﬁ)~75—- Adr 4 AM)305'$>
r=c
(2.35)

or

47117“(3-(')'50.) = #‘ R{(R) SW&YV dQ

o

(2.36)
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with 1(Q)=S(Q)-1 and the forward scattering term proportional
to 5(9) has again been ignored. The analysis of glass

diffraction data is based on equation (2.36).

2,2,4. Scattering from Systems of Harmonically Bound
Nuclei. Here we derive expressions for the elastic and one-
quantum inelastic scattering cross sections for a large
system of harmonically vibrating particles. We utilize
the very general and elegant formalism of Zemach and
Glauberz3 for scattering from molecules; we treat the
entire glass sample as a single "molecule" in the sense of
their work. The starting point here is equation (3.20) of

the paper by Zemach and Glauber for the partial differential

cross section of the harmonically vibrating system:
7 3 N
A X Z e / |
S (2rk) e @,d,, l)/,?{*w’ﬂ tg-di)v~—l>v,)] \ Xw’ dt
A% ‘ A= T

where bv is the position of the vth nucleus,

(2.37)

AERTA

<5(V:\, >T = t;sz—;f;} [Q-C5 (2 ) 1da) et (peok) 52
o 5 oplis) i Cononi

/\: -0

- [dt/j@vg:)(@ac‘:,)
(x) o, [AM, i, Sonh [‘5’aoA/;z) (2.38)
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with

Q: = the polarization vector of the vth particle
in the AtH normal mode, defined by
yv&5=hg CAg(f) where U (t) is the
diSplacement of particle v from equili-
brium and qA(t) is the A™ normal co-

ordinate.
W, = the frequency of the Ath normal mode

In(x) = the modified Bessel function of the
first kind of order n
ﬁ =-ﬁ/Boltzmann's constant / absolute temper-
ature

The continued product Ilican be factored as
A

3N 3N )
W<YV'V’>r "“WL}‘PE‘;&V R-¢MNila-¢ \Z](%A) Lot /pw /pz)j
AT A=

3N @
() T2\ L;z/: /L ML, f) L//o[ Pw 1 /.;z)
PETIRL S
— T ARLD(QCN)

bo VL"A LMW'“)A SL“‘”[P“)A/Q)] (2.39)
The first continued product of exponentials can be re-
written as the exponential of a sum,

=W
e T iy Z;f @ P20y etk ) oo, {
(2.40)

which is the Debye-Waller factor expressing the diminution
of scattered intensity arising from delocalization of part-
icles in thermal vibration.

Focusing attention now only on the continued product

of infinite sums,
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Z 7T \ %)//o/in,\kﬂ) »ﬁ‘/a/*'@/l/\«i/;)

»\r:\,‘

A3 (I)(CQ ('A> ;{
(X) —n, L Lt Siuh (‘3@ J3)

(2.41)
which can also be written
3N )
57~ 31 welinend) gpCanest
f'\,\z A=l
o T 'm. Ma.c)
N A;sw[ﬁ k) (2.42)

where z’nAg represents a (3N)-tuple of numbers (nl, n, n3M)
and the sum on {n)g extends over all possible (3N)-tuples as

NNy gy all vary from -e¢ to o« . Combining (2.37),

(2.3%), (2.40) and (2.42),

5 RS NG T 5 =AWy,
L—%:(—?Mt) F%,QVQ’//&% o [~ ot +Qe (b,- J &

3 |
(X) Z\ ‘]-T C}Z/D/l'ﬂ/‘é(‘ki) .{;(f{'ﬁAAC(k/Q)

il k=

— RN &)
<X> —L"'A MVV;(«()A S(:KL(FL(:)‘\/J)] (2~43>
R A _ «-1“/ ‘
= JT/ZEZ a4, bplicl, s )] &7
Vv’
(x) \ 5([0 Z'H\" ) -L;(f/ {3@* A/JZ)
{4
e [KiacoYa.cl)
T‘ - _Q‘*..:«,) ’»;3"’_‘:_]',/
(X) _IT *"‘7\ L"ZM‘V;)' Lc)/\ S.culx[r"?k_&/&)} (2.44)

AT



The sum on ﬁuz has been integrated term by term over all
t to produce the enerpgy-conserving $ functions; this step is
of course only justified if the sum is uniformly convergent
throuphout the ranpge of intesration. We ignore this
question entirely (being a dilettante in theory saves
considerable work at times such as this).

There is one set 2%&2 with all elements zero; this
corresponds to an event wherein no quanta are exchanged
with any normal modes, i.e., elastic scattering. The con-

tribution from this single elastic event is

3N ;
7—,— A(QLY@.C A) \
T‘ VAT e

In order to approximate the IO contributions, we simply

(2.45)

assume that their arguments are small,

A My, 100y Such(Bin/2) )

so that the modified Bessel functions can be approximated

to lowest order:

. (n]
Tt = C&)" /()]
or specifically
T () = |

T () ~ %, (2.46)
Then (2.45) becomes
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(2.47)
For "one-quantum" events, i.e. those for which the

set EﬂAZ contains (3N-1) zeroes and a sinpgle one (2.44) is

~E () / N,-—. . ~ - 2W gyt
2 — b s A ) . o
vl %4 4y Sy iQub b )] €@
11',’
3N
() D eo-e)) Lxp (- puy Ja)
AT

Hl@-cfYa.c? RR-CHY R
(X) _ Lj _“LAS(.UL}\,{?M.A/J)] WIO . 'v ~ 1 }

M o W), é&vuk )
MFA - Sk i)

}’ q,u/ol (b ..év’)] é_aww.

3N
Jc/u (oY R-C )
Y Sleo-eo,) 240 (B JR ) ~
x/\}/ C ,\) // A ,@AScfsJL(/SLL)\/ﬂ) (2.48)

2.3 Scattering from Acoustic Modes in Disordered Systems of

Harmonic Oscillators

Here we attempt to calculate approximately the scat-
tering law for an oversimple model of a glass, one which
requires no more knowledge than we have of the real pro-
perties of a glass. To completely specify even the one-
quantum scattering as expressed in equation (2.48), we

must diagonalize a 3Nx3N matrix to obtain the normal modes
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of the system —where N is of order 1023. In a crystal,
symmetry considerations make it possible to consider a
much smaller matrix as a function of the phonon wave vector
g However the size of this matrix is only 3n x 3n, where n
1s the number of atoms in a unit cell of the crystal.

In a glass we have no corresponding symmetry, and
must either investigate what other means can be used to
reduce the size of the problem, or else set out to consider
only a small part of the problem in the first place.

What do we know about glasses that may be useful in
calculating the scattering law? For one thing, glasses
like all solids transmit sound waves. The wavelength of
these waves however, must be sufficiently long that the
glass appears to be a continuous medium. If the wavelength
is too short, we will no longer have wavevector as a good
characterization for the modes. We certainly know something
about the glass structure; we have measured the neutron
diffraction pattern and from it computed the neutron rdf.
Although it is an integral property of the structure, still
this information may prove useful.

Suppose all we know about glass is its structure factor
and that it transmits sound waves. Let us try to calculate
the one-phonon scattering from sound waves. It is convenient

to rearrange equation (2.48) somewhat

BZT(‘)_ /{/ /2 — - "l/t L
sose = R N p(piofe) 513,00 (2.49)



o
(WA

where

S’[(,\ (,3 ['ZL bcul L/&)' A/ <c22\ G (,( / J.W-uv:
(x) ’;’%:u K- C/\YQ (,\) Lyp tco( ( - IJ,.)I ééa7'-~zci\>
0
(0210&6'4/\,(/35{//‘\/,2)] Z /C\) (g([ e lC/\>
A= (2.50)

Note that &, has been replaced by w and brought out of the
A sum wherever it appeared in (2.4%2). The fi(uuuh ) factor
allows us to do this. We call FA(Q) the "inelastic structure
factor" and §(Q'w) the "symmetrized scattering law" since it
has the property §(-Q'-w)=§(g1w) while the unsymmetrized
scattering law apparently satisfies S(-Q -w) = Jgpéﬁqﬁ)s(‘Q"“)z
l%P/ﬁ&g S(Q,w) which is called the detailed balance condi-
tion. The factoring of S as a function of & times the in-
elastic structure factor sum is made for convenience since
F,(Q) contains all the effect of the A mode, while the
factor depending onw is the same for all modes with fre-
quency w.

Now to incorporate the assumption of acoustic wave
modes- we will treat modes for which nuclear displacements

have the form

o :Z__ (g) L;zp((zg LIRS
A (2.51)

and will assume that &, = 4| q as is true for sound waves

in a continuous medium. Furthermore, we will assume there
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are only two values of «;, one for the longitudinal and
one for the transverse modes; a mode is longitudinal or
transverse if the polarization vector g)\(g) is parallel

or perpendicular to the propagation vector g We expect
one longitudinally and two (orthogonal) transversely polar-
ized modes. Now let us explicitly write down the acoustic-

) A/
mode portion of the scattering law, which we call SA:

$Ha W = [2wsid ] s 51 (8) §liomei(9))
ZQ fJ § ¢

-2,

[&wsmk[ﬁto/&)] N\dZ? ) “‘L L & (f) ;\,4,,,‘71,,6’
g_)a é vy’

(o aepli8+9) -y by ] (‘,(wnug () (2.52)
We recognize the sum over atoms in (2.52) as the elastic

structure factor,

N

K (2.53)

We transform the sum over g in (2.52) to an integral in

the usual manner,

%f‘) EXT/“‘%

where V is the sample volume.
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$4a,) = sk Sk [ £ dliocy) 12

Q.

(2.55)
stmk[sn/x j Z@er‘ﬂ/%; [Q@J /Zf)]z
J
|1+ S8 ] bl g) 4?
(2.56)

Now to evaluate the g integral, we need expressions for the

gj(q). Since we have only longitudinal and transverse modes

this is simple: for the L modes,
4P - 4.5 - &g
for the T modes,
A
Q. (§) a;,@

= b, x%
Qa(zqt): blxg (2.52)

and Q'.QZ=O to insure orthogonality of the T‘ and TZ modes.

i

(2.57)

t

We can evaluate the numerical value of aLand the a, using
the normalization condition for the gﬁ , expressed in terms

of the a's:

C;\/\/’Z\-L < Z}m é?(g) u(gq)

(2.59)
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for L modes and

n N
= Netrer 2 Sm, a8y a3)
6,\,\’ v:‘,“’" %V ’g)“,
A

= : 7’11,' .QT' (g) ‘ QT /é)

b

¥

(2.60)
for T modes. Using (2.57) and (2.59) we find

N
2 6P
Z QLZ 7)41/ - QLZ M
VI :

M is apparently the total mass of the system. Using (2.58)
and (2.60),
N

and analogously for gTz(q). In toto then, the normalizations
are
a° = 62._
(2.61)
Now to evaluate the integral in (2.56). we first note that
for systems of interest here, Se is a function only of the
magnitude of its argument. Also noting S(ax) = a—lg(x),

we write for the %— integral

3‘;(@) "’/[Q'QL(gHZ[H S?(,Q’r?’)] é(zxmqg) dgz

= AT /‘&14’7/ [HS(\/Q‘*Z +L g0y ] é/g o ) d ’)

(2 ¢2)
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with 4 = (Q'é) Q-l. To evaluate (2.62) we use a spherical

polar coordinate system with polar axis along Q,
/

3"[[)) Y/ f L|+ S"e(/c\ +Z +2c\ ] &(ZHL/Q)XZ‘/QV’,/‘Y

=

|
- f;sz'cQ"ch“w [u Li t S, //”ﬂw Qg Wit ) ] 4‘(

=i

. / .
- 6277"@1/\’1410711 32:—5 + ]iltli,.(\/ +h)ifl+ ’ZCQ,L:—LILE/L‘(’> a'},( /

J

-

(2.63)
Similarly we find

J,(8)= 3;(2)+ T, (Q)

/5(& q /fnl +Q-a, ((j] 143, (quyl ) | §lioeer zf> [/{ﬁ

_ ol/ ’U‘.‘"d f/, L(L>[|" 310{‘/2‘\ fLL‘ \T 1,/40{ ~l\)[‘ >J Jl{

noting that (Q- ar ) +(Q-QT2)2 is just the squared pro jection
'

of Q on a plane normal to q, and using the fact that a2T|=

2

a . Thus
I,

— R TN e - f‘/ k
JT(E"?): ;ﬂ&tt) U ‘ ()—_,t( Sg (\/Q Lt)ft’ —{ ,([_\L(,’,(_V‘ [() L?IlL{

(2.64)

Substituting J; and J.. into equation (2.5€¢) for the acoustic-

mode scattering law we have finally
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(2.65)
We have separated the total system mass M into the product
of a "unit of composition" mass Mu, and the number NU of
such units. A unit of composition can be whatever is con-
venient; in our case one Be and 2 F's is an obvious choice.
The ratio V/Nu is Jjust the reciprocal density of such units,

P-$° The quantity h QZ/ZMu may be thought of as a recoil

energy ( it is actually an angular frequency) associated
with the transfer of momentum ﬁQ to a single unit of compo-

sition. For convenience we have also introduced the moments

I
CHY8,.0) = [3) S0 (I T3 aa)
=

2.4 Generalized Frequency Distribution Function, G(& ,w)

As an aid in interpretation of the inelastic scattering
data, we will reduce them to a functional form in which the
underlying information about the system's normal mode fre-

quencies will be made more clearly visible. We define



(R,w) = S’(Q L) oza)w(ﬁ,d/@ X ]-‘

(2.07)
with §1Q.b) as in equation (2.50). This function is easily
calculable from §1Q,k», which we pet out of the inelastic
scattering data reduction procedure (note that equation (2.50)
represents only one-quantum scattering; we must assume multi -
quantum contributions are small for the present analysis

to be valid.) Yow consider the frequency dependence of

G(Q®), which we first write explicitly:
3N ~

Gl0,0)- 22 <a,z> 14 g jjfv M (g

L*“v‘*' g YQ Ch) 2epli0-Ce )]
vV’ w0 Slw-2)y  (2:07)

We will not attempt to evaluate the interference terms, but
will focus attention on the self terms which we separate

and call GS. In the simplest case of a monatomic system

ﬂ};/m,v = (4'1>/M and

1 7 0‘2“} 3 7 A 2
1, _ € = p 2 ANE -
(’s“‘)“» TN ’\Z\ %ﬁ- §v> 5(50-“))\)
=
(2.729)
—-‘ZW_; A A
- 'fg_ 42:J.é?'::wﬂﬁo>'7é?
v (2.70)

where we have defined the "polarization weighted directional
p 2



frequency distribution" according to

Gwp /u)) /—\//‘ A é(u)-—al\)

117\/12_

(2.71)
A th A . .
and C), is the « component of Qv . The determination
of the functions Qv(w) is as close as we can come using
neutron scattering to a measurement of the actual normal

mode frequency distribution of the system,
3N
l 7
4= 4 3, 8ao-io)
A=l

Note that the normalization of the g;‘, implies

Z Trase @ () = 2:; ; &, (1)

3N

S

= Z ;ET ’CV .s(’v)\) 5(“’"%) = g/k))

v A=
Unfortunately, in the preseht case we have a polyisotopic

(2.72)

system, and in reality one cannot ignore the interference
terms in (2.68). We can however, still evaluate G(Q'w)
using (2.67) and we expect that (treated as a function of
w) it will at the very least exhibit the same singularities
as g(w). Just for the record, we write down a polyatomic
analogue of (2.70) including interference terms:

. DL ) 10 = ﬁﬁ (.2/ -.‘le' - v’
ClR,00) = [ 35 <ay] ) 2897 g g )&

P ar? vy
‘P,‘p

where

o f8)= /\Z Loy Glo-w)) axpLiBeth, b )]
=



by analogy with gv(w).

There is little neced to point out that the dynamical
information contained in G(Q,w) for a polyatomic system
is considerably obscured by the various weighting factors
(scattering length, scatterer mass, Debye-Waller factor,
polarization and interference factors) appearing in (2.6R),
as well as by the additional spherical averéging over Q
which occurs in a glass. As we shall see later, however,
the G(Q w) function computed from glass scattering law data
can still provide some insight on the nature of g(w) for

the glass.



CHAFTER THREE

EXPERIMENTS

3.1 Time of Flight Diffraction

3.1.1., Method. We begin by writing down a very general
expression for thé result of a neutron scattering measurement
in which the scattered beam is not explicitly energy analyzed.
For the counting rate per unit solid angle per unit time at

angle 3 and time t, we may write
&

((Z!/‘S\3 = /4//51)/70[515/,‘9) I/zhz;/{‘) F/E/ E/’})

£%0  fF:o =0

(0 5(22%-4%:1) drde de’

(3.1)
with
s
E' = /ﬁ, = the energy of a scattered neutron

-3
=/ML/4 = the energy of an incident neutron

ey}

‘7(E') = the detector efficiency at neutron energy E'

p(E,E'4) = the probability of single scattering
, .
through angle 4 with energy change
from £ to E' for an infinitesimally
thin target

I(t-r'E) = the intensity of the neutron source
at time t-T and energy E.

F(E,5',4) = a correction for nonideal scatter-
ing in the sample (this includes
both "attenuation" and "multiple
scattering" effects, based on the
assumption that the neutron inter-
acts instantaneously with the
sample)

44



L L' = flight path lengths between source and
sample, and between sample and detector

In general, if ™~ scattering units are illuminated by the

L (ete )

We will consider cases of the above gencral relation, which

beam, z
u

‘fﬁfiéjfg =

we classify according to the nature of the source term in
equation (3.1):

a) conventional diffraction

T(t-7, )*®(,) & (i-1,) independent of t-7

where i is the fixed incident energy and ¢(EO) is the
monochromatic flux at [

b) time-of-flight diffraction

1(t-7,i) = $(8) d(t-T)

where S(E) is the energy-dependent intensity, in neutrons/
unit area, of a source pulse. In the conventional diffrac-

tion case, (3.1) becomes

G = Wﬂf//t) W (e, 9) Pl e dE’
(3.2)

In the time-of-flight diffraction case,

oy =f yE) N/Z%oié( Le 8) Fle,e!8) SCE)
£%o E=0

(%) 5[%~ “‘*;:;) de de’

(3.3)



Each type of diffractometer may be thought of as measuring
the integral of the partial differential cross section
along some path in (Q,€) space. In order to understand
exactly what function one measures in a given experiment,
it is necessary to examine the integration paths of the
various types of diffractometers.

For the conventional diffractometer at a scattering
angle ¥, thé instrumental integration path is determined

by conditions

~1 -
é: £ *t.‘a

&= |kk) = (s the,~ 2V e 9)
(3.4)
and is shdwn in figure 2 for a variety of EO and - . For
the time-of-flight diffractometer, the integration path is

determined by

R
(3.5)
or
L' A
L
k= g (‘f‘ L/Mﬁ/m)
(2.6)

which depends on the flight path lengths L and L'. Examin-
ation of (2.5) shows that for L>) L', t is determined
mainly by the incident energy moh, while for L<< L',

. - . lz -
t is determined mainly by the scattered energy’M4Cﬁ. Loci

of constant time of arrival in the (Q'é) plane are shown in
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[~]
figure 3 for 90 scattering and for various choices of L
and L', all with the total path length L+L'=5 meters.
. N . Y
When one measures an experimental point at Qp=£k5uwzﬁ us-
ing either diffraction method, what one gets is thus not
2

S(Qe) but the integral of 5%§é (Q,€) (weighted by de-
tector efficiency, and in the time of flight case by the
incident intensity) along a path such as those shown in

figures 2 and 3.

Recalling that one wishes to measure

S(RY = [S(6, ) dw

= <a) fb?—;”—g;é de

it appears that the most favorable arrangement is that whose
integration path is most nearly vertical, and figures 2 and

3 show that this condition is best fulfilled by the time of
flight diffractometer with L=L'. Furthermore, for the case
L=L' the integration path is more nearly vertical for smaller
times of arrival, i.e., for higher energy at a given scatter-
ing angle.

24 have examined the effects of the

Carpenter and Sutton
detector efficiency and incident spectrum in "weighting" the
integration performed by diffractometers: their conclusion
is that the equal flight path (L=L') time of flight config-
uration provides a good approximation to the structure fac-

26

‘ 25 o . e
tor. FPowles,” Sinclair and Wright and others however

prefer to apply what are called Placzek27 corrections to
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extract S(Q) from the diffraction data. A series of correc-
tions was calculated by Placzek and by Wick28 in terms of
the energy moments of the scattering law; these corrections
of course can only be calculated insofar as the energy
moments are known.

We consider the subject of whether or not Placzek
corrections are preferable to an equal flight path arrange-
ment as unsatisfactorily resolved at the present time; we
show here some experimental results supporting the equal
flight path method. Figure 4 compares measured structure
factor data for glassy BeFZ from the Michigan equal-flight-
path diffractometer, with integrated scattering law data
from the Argonne time-of-flight spectrometer. We have made
the comparison at an equivalent level of data reduction in
both cases; multiple scattering and resolution effects are
not corrected for. It is emphasized that these are totally
independent measurements and that no normalization of
one to the other has been made. With the exception of the
immediate vicinity of the first two peaks in S(Q), where
differences in multiple scattering and resolution effects
are expected to be greatest ( as will be explained later,
the configuration of the target was different for the two
experiments; multiple scattering and resolution effects
are expected to be more severe for the time-of flight
diffractometer, consistent with the trend of figure 4) the

agreement is within several percent throughout the region
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1.0<Q<'6§'1 where the scattering law integration is reliable.
This is well within the combined statistical error of the

two measurements; we thus assert that the equal-flight-

path arrangement provides a reasonably good measurement of
S(Q) even for a sample such as BeFZ composed of light nuclei
where Placzek corrections might be expected to be severe.

This may be due at least in part to a fortuitous cancella-
tion of errors due to omitted Placzek corrections in the

sample and reference; but this seems improbable at best.

3.1.2. Time of Flight Diffractometer. The equal-
path time-of-flight diffractometer at the University of
Michigan has been described in detail elsewherezg. We
repeat only pertinent details here,

The diffractometer operates at beam port J of the
Ford Nuclear Reactor, viewing the DZO source tankBO. (The
general layout is shown in figure 5.) The beam is coarsely
defined and shielded by a 103" long plug in the beam port,
with an exit beam size of 1.97" x .54 (height x width).
Between the rotor and sample is a 95" long, 1" x 3/8" collim-
ator which together with the chopping rotor collimates the
beam to .0092 x .0079 radian (vertical x horizontal). Beam
size at the target is 1.5" x .5". A rotating collimator
(10" diameter fiberglass resin rotor, denoted "rotor 1" in

figure 5) in the beam upstream from the chopping rotor cuts

down the unwanted fast component of the beam, thereby reducing



53

I559UOR0RLII T JUUTTI-JO-SWTL] J030d OMI 843 JO JuTmody oT3BusycS

TC Danu1y
§012313Q

W
e Al ) Dl | 7O >
ONIQI3IHS

40103134
313HONOD

;-] 80103130
\
1 ‘ Q131HS ¥0O1J313Q
| ¥31VM 031vy08
1
Q3HS %
40193130 \ HOLYWITI0D , 8/€ X, »
XvHO08 v .
V]! e
“ ! 7. HOLYWITT0D 180d W38 3402
_ “ Q. HO1ov3y
1 .
r: 2.4\
S I — T \.-.n
SHOLINOW S 1T R Cioior .mmx/
M2GAVHD NOISSI4 s e » =9
Y3HILYD 38nL wv3g e Sl T p T ‘ A "
Wv38 1o ‘ a3ins L. 343dONOD
Q13IHS Q13IHS " . y3avm L
EREN AN ERSIE! 3134ONOD Q31vyog
. Xvy08
wepe
Y3IGWVHD
aiviog NOISSId ONIQT3IHS
CEINTE HOLOV 3

ONIGTI3IHS
31340NOD



background counting rates. Distance from rotor 2 to the
sample position is nominally 2.37 meters.

Banks of 5" x 5" scintillator type neutron detectors
are placed at nominally 2.47 meters from the sample, at
scattering angles of 20° and 90 . The detector faces are
situated tangent to time-focusing 1oc'131 at the respective
angles. DBorax, borated water, Bac, concrete and cadmium
in various amounts shield the detectors from room returned
neutrons.

The TMC 1024 -channel time-of-flight analyzer is normally
used to analyze four scattered intensities in 256-channel
segments: sample scattering at 90° and Zd’. and reference
scattering (see below) at 90° and 20° . A homemade instru-
ment, the "Quadapter"3% routes detector signals into the
appropriate memory segment after pulse shape discrimination
against gamma-ray induced pulses.33 A variable delay of
from 1 to 2047 microseconds precedes the start of analysis

after each rotor opening.

3.1.3. Vanadium Reference Method. Writing for the

partial differential cross section

IC fae) = <a%y5(a,) 5(E)

Os1DE
(3.7)
which we will call the “"static approximation", Iquation (3.3)

becomes



Cr(3.5) = 9(8) Ny S(R,) FI£S) SCE) S(#- 2ty

Cr)
For a similar nmeasurcnont on an incoherent clastic roference
scatterer, for which
R
dxede 41T

we have

M) -1 N Fs) 5E) -5

qir
(3.9)
Dividing (3.%) by (3.9),
065 N<a¥> SR) F(ES)
Cf(t(ﬁ\ Ne R F R(E, >) (3.10)

Now if the properties of the reference scatterer are Known and
FR can be calculated, S(QG)P(K,Sﬁ can he extracted from (3.10),
without knowledpe of either the detector efficiency or the
source intensity. Furthermore, if the measurements are made
more or less simultanecusly by alternating the sample and
reference scatterers in the target position, any fluctuations
in Y(E) or S(I)) on a time scale long compared to the target
cycling time will averape out in formine the ratio (3.10)

A useful reference scatterer is vanadium, whose coherent

. . . - 34
and incoherent cross sections are .03 and 5.13 barns re -
spectively, constant in enerrsy to excellent appr()ximat'1()11’3

and predominantly elastic.
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The reference scatterer used in the present measurec-
ment was a V plate of dimensions 2"x4"x.125", with density
NR=.O720 atoms/b-cm. The sample and reference scattecrers
were alternated in the target position each 5 minutes;
the total counting time at each of two rotor speeds was

about two weeks.

3.2 Time of Flight Inelastic Scattering Spectroscopy

Returning to equation (3.1) we treat the case of a

pulsed monochromatic neutron source: I(f"f, E) = P(&,) 8(£-£)) 5(-1)

ClES) = [t pli, €] D) de) FLE, £.9)

Eio
(x) é(t—ﬁo"ﬁi:) dE’ (3.11)

If we displace the time origin by ‘%b; so that time is
measured from the instant at which the burst reaches the

target,

(L 5)=10e) ple, £, ) 8(5) Fe, £, ) n L™
(3.12)

. R R Y
with E,= Z G

. Thus each time of arrival t is uniquely
associated with a particular final energy. Furthermore,
since

- aw /L =
€= E,'l:c = f"L/’d’b> ——Z:b

and

&% % (5,4, -2lEF, VY



each different combination of & and t corresponds to a
unique point in the (Q,W) plane. The optimum way to per-
form such a mea surement then, is to time analyze simultane-
ously the output of several detectors at different scatter-
inpg anples; thereby measuring S(Q)w) at a set of points
(one for each time channel) along a locus such as that
shown in figure 2. Loci for the present measurement are
shown in fipure 6. It is then a simple matter of inter-
polation between angles to arrive at S(Q’w) at constant (),
probably the most senerally useful presentation of scatter-
ing law data.

We pause to remark that the TOF spectrometer is most
useful for cases in which S(Q'w) information is desired at
all Q and w, since all this information is simultancously
gathered by the TOF instrument. This is in contrast to the
constant -{) scans possible with triple-axis spectrometers,
where the scan is limited to a small range of § and w of
interest. For this reason the triple axis systems are more
useful for phonon measurements in crystals where the positions
of peaks are more important than the overall shape of S(Q,w);
conversely the TOF spectrometer is most useful in measure-

ments on isotropic systems such as liquids and classes.

3.2.1. Thermal Neutron Time of Flight Spectrometer
(INTOFS). The time-of-flight spectrometer (TNTOFS) at the

Argonne National Laboratory CF-5 reactor has been fully
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described elsewhere.”  We present only the briefest des-
cription here. A plan view of the TNTOFS is shown in
figure 7.

A monochromatic component of the reactor neutron beam
is selected by the double-crystal monochromator. ['se of
the double monochromator effectively eliminates gamma-ray and
fast neutron contamination in the monochromated beam with
their associated shielding and background problems, as well
as allowing a more compact layout of the spectrometer with
constant monochromator take-off angle. TIn the present
experiment, copper crystals cut for (220) reflection were
used to produce a monochromatic beam of nominal 1.58 wave-
length. The 1.54 beam was filtered throush 6" of MpO single
crystals held at 77 K, to remove any short wavelength con-
tamination. A 3" diameter Fermi chopper was used to pulse
the beam at 12,320 pulses/minute.

Ninety-five 1" diameter H93 proportional counters situ-
ated with axes vertical on an arc 2.5 meters from the target
position were used to monitor the scattered intensity.

These were divided into 31 subgroups each consisting of two,
three or four adjacent detectors; the sipgnal responses of
all detectors in a given subgroup were analvzed as a unit.
The srouping of detectors entails a relaxing of ( resolution
due to increased angular spread vis a vis a single detector,
with a concomitant increase in counting rate. Most of the

detectors used had an active length of 18", with a few 9"
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or 4%" lonp detectors at the smaller scattering ancles to
preserve Q resolution. The ranpge of scatteriny angles non-
itored in the present experiment was 13.2°¢%<  120°.

The entire 4096 channel memory of the Nuclear Nata
50/50 time of flipght analyzer was utilized in a confipura-
tion of 32 subgroups of 12% channels each (the 32nd sub-
group was used to analyze the signal of the two beam moni -
tors.)

Vanadium was used as a reference scatterer in the
TINTOFS measurement, but the details of the method used are
quite different from that described above for the time of
flight diffractometer. At TINTOFS a separate run was made
with a thin V sample as target, and the calculated detector
efficiency was adjusted for each subgroup to reproduce the
theoretical value of the V elastic scattering in the data
analysis. The adjusted detector efficiencies were then used
in the analysis of the sample data. Such a procedure de-
pends quite heavily on the detector efficiencies remaining
constant throughout the V, sample and empty container runs;
this may not be a particularly bad assumption in the case
of the H83 detectors, but the fission chamber beam monitors
used to measure the integrated incident intensity for each
run tended to vary quite a bit during these measurements.
This is overcome to some extent by use of a supplementary

. 3 . .
monitor, a He” detector which measures scattering of the

incident beam by the chopper. It is this peripheral monitor



and not the beam monitors per se which was taken in the pre-
sent experiment to provide a measure of integrated beam

intensity at the target position.

3. 3. BeFZ Sample

The vitreous Ber was prepared by C. Bamberger of ORNL.
It is in granular form, granule dimensions being typically
1-2 mm. Immediately on preparation the BeF2 was placed
into .25" 0.D. aluminum tubes which were sealed at both
ends with O-ringed plugs, crimped and filled with epoxy
cement (see figure 3). Each of the 14 tubes contains 1
gram of Ber, filled with approximately 62% void fraction.
The effective BeFZ mass density averaged over the sample
volume is 0.75 g/cm3.

For use at the time of flight diffractometer, six
tubes were arranged with axes vertical as shown in figure
9. The choice of 45 inclination between the beam and the
target face is made on the basis of time focusing consider-
ations for the 90° detector bank. The effective thickness
of BeF, along the beam (averaged across the target) for
this arrangement is 1.085 cm yielding an effective area
density in the beam of .0104 Ber/b. It is worth pointing
out that the choice of 45° rotation of the target with res-
pect to the incident beam, which optimizes time focusing for
90° scattering in reflection geometry, results in subopti-

mal focusing at 20° and in fact causes the 20° scattering



—

QA o O
¢

v
° N>

N

> YO v 4
ccC

)10 Ly ({¢

""‘l Scale 1"=1/72"

"0" RING

Fisure “. fncapsulation of the 3ef, ‘ranules.

-



/
! 20° Scattered
Direction
|
|

Inci_c_ienf Beam Direction

45°

90° Scattered Direction

Figure 9. Tarcet Arranceuncnt for the Tine-of -F1ight
Diffractometer



to be in transmission geometry. This introduces some compli -
cations into the calculation of the various geometric cor-
rection factors, but is deemed worthwhile solely on the

basis of improvement in resolution at 90° . Makine separate
measurements at 90° and 200, each with the tarpet in the
respective optimum focused geometry, was not considered a
viable alternative; since the 20° bank measures at low 0
where the resolution is adequate even in nonfocused pgeome-
try, the superior efficiency of making both measurements
simultaneously was opted for.

For the TNTOFS measurement, all 14 sample tubes were
assembled into a single layer with axes horizontal (figure
10).

Cadmium leaves .020" thick were placced between ad jacent
tubes to prevent intertube multiple scattering. This de-
coupliny, of the tubes not only reduccs the scverity of
multiple scatteriny contributions, but also amkes the cal-
culation of a multiple scattering correction somewhat simpl-
er (see next chapter).

The single layer of tubes was placed in the TNTOFS beam
with the sample face rotated 45° clockwise from the beam
direction. As shown in figure 11, this resulted in trans-
mission peometry at all scattering anples examined in this
experiment. A cadmium mask with a 3.76" x .89 rectangular
aperture placed normal to the bheam direction, upstream

from the tarszet, was used to accurately define the beamn
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area. The same mask was used in the V reference scatterer
normalization run. Effective thickness of the filled region
of the target for this confipguration is Wr/diwp ; r the
inside radius of a tube and ﬁ the rotation angle away from
the beam direction. For the present case, this is .£34 cm.
The sample areca density in the beam for this configuration

is .6077 BeFZ/b.



CHAT T+R FO'R

CALCULATTON OF THE STRUCTURE FACTOR FROM
DIFFRACTION DATA

4,1 Introduction

In the discussion of the V reference method in Chapter
Three, we asserted that by forming the ratio of sample to
reference scattering we could get at the sample structure
factor:

CUE N U8 FES)
CHLE) Ny T FRES)

(4-1)
I[n this chapter we will deal with two problems: first, to
move from raw data to the sample and reference scattering

. C . ‘ R _
intensities Cb and Cl; and second, to calculate the factors

F(R’f‘) and FR(E,ﬁ'), and thereby become able to extract

S(Qe) from (4.1).
Before beginning a detailed description of the data
reduction manipulations, we briefly outlire the entire pro-

cedure. Tt is summarized in the following steps:

(1) Remove the backpground contribution from both
sample and vanadium raw data.

(2) Form the ratio of sample to vanadium count-
ine rates.

(3) Make a preliminary removal of the container
contribution from the sample scatterine.

(4) istimate the sample scattering cross section,
and utilize it in effecting a final removal
of container scattering,.

12
(5) Compute the factor F' to correct the inten-
sity ratio.
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(6) Compute an improved scattering cross section
estimate and differential cross section.

(7) Compute the factor F and correct the differ-
ential cross section estimate for multiple
scattering.

(R) Iterate if necessary, steps (6) and (7).

The factors F(E’J}) and FR(E,B') will be called "mul-
tiple scattering corrections." We take this term to mean
the following - suppose we have an infinitesimally thin slab
sample, such that the incident beam has no chance of being
attenuated before scattering, and the scattered neutrons
have no chance of interacting after scattering. Then we
will see scattering proportional to Pt <a2> S(Q), which we
call PI’ the probability of scattering for an "ideally be-
haved" sample (P is the number density and t the thickness
of the sample). Tn this ideal case we detect only once-
scattered neutrons. If the target is somewhat thicker,
the sample is not uniformly illuminated due to the attenu-
ation of the incident beam by scattering; the front of the
target "shadows" the back. Furthermore, once-scattered
neutrons heading for a detector may interact (i.e. be
scattered or absorbed) with the sample and be removed
from the scattered beam. These two effects taken together
reduce the once-scattered intensity seen at the detector,

and are simply termed “attenuation." We may define an
" 3 3 "R ™ T - .
attenuation correction LA(L’j})_yl(h,ﬁ-)/ Pl(n)f;)

where Pl(E,90 is the probability of observing once-scat-



tered neutrons for the thick tarpet. 1t is obvious, however,
that we cannot have attenuation effects poing on without
also having some probability of a twice-scattered, thrice-
scattered, etc., neutron happening alony into the detector
(except possibly for strongly absorbing sémple materials).

We can define a hierarchy of probabilities of single scat-
tering, double scattering, etc. resulting in our detection

of a scattered neutron:

2 _ P - D )
I = li+ri+.~ = ;LMM
o g ,)-l',:'
= DR 3TE)

- PF
One may choose to call FA=P[ 1Pl an "attenuation correction”

and 1,+P1_1PN a "multiple scattering correction", which is

1

applied to make up for the inadequacy of the "attenuation

correction." This is no more than an exercise in algebra

and reflects the fact that one must really know F=PI-1FT

to get at the interpretable quantity P1 from the observed

quantity PT' In point of fact FA is generally quite simple

to calculate while 1#P, 'P, is penerally quite difficult.

wWwe will utilize a Monte Carlo approach to compute b r r

TV M
and hence F; and we will refer to F as a multiple scattering

correction.

4.2 Calibration of the Diff{ractometer

Before proceeding with the data analysis, it is useful



to establish a calibration of the instrument in terms of Q
vs. observed time of arrival. This must be done for each
different rotor speed used to accumulate data. We define

an overall timing error, t by the following relation

err’
between observed time of arrival and actual time of flight

from rotor to detector for channel n:

t=lo- It + ILM + t,,, +T

err c enr

(4.3)
with t the true time of flight, n the observed channel
number, At the channel width, Cel the preset delay be-
tween rotor opening and analyzer start signal and te the

rr
overall timing error. The fixed contribution of -1.5 At
is due to the fact that the time analyzer requires some time
to store a count presented at its signal input; thus a count
stored in channel n actually arrived in the interval (n-1.5)
At + 53 At. We allow t. . to absorb all the possible sources
of timing errors, principally misalignment of the "“rotor
open" signal device and delays introduced by the detector
electronics.

In order to establish a calibration, we take advantage
of the fact that the diffraction pattern of a powder or
polycrystal consists of sharp Bragg peaks at well-defined
values of Q. Using the Bragg law nA=2d sin'3/2 for lattice
planes with spacing d, and the flight time for neutrons of

wavelength ) over a path of length L+L',



H(A) = (L+r) fe ) = T lar) A

bae = B0 Ay S L= (D A
(4.4)
for Brapp scattering from planes (hkl). If a polyecrystalline
sample produces 3rags peaks in channels 0y which can be
identified as due to Bragg planes (hkl), one has then com-
bining (4‘4) with (4.3),
"%{L+L’) >‘J\kf = (vﬁz —/.5>A‘(L ~H,LM +{'€»N~ - ?}Lé’f/ + Z_

ry
(4.5)

The adjustable parameters in this relation are (L4+L")sin &/2
and torr' Tf the indexings of Bragg peaks has been done
correctly, all the points (thkl’kaﬂ) should lie on a
straight lire whose slope and intercept at A =0 fix the

ad justable parameters (L+L')sin49/2 and Corr’ respectively.
Tn practice we assume a value for<£;, which fixes the A\
associated with each plane. Only the path length L+L' 1is
treated as unknown. For example, the Bragg peaks from the
aluminum container seen superimposed on the 900 BeF2 data
of fipgure 12 can be indexed as shown¥*, and the resulting Ap
vs, t plot (figure 13) yields Corr =-t()\=0)=44flsec and

hat , _
L+L* = 5. &% = 4.90 meters. The accuracy of our estimate

for & is irrelevant in determinine Q(t) since Q=<N/d and

the calibration of d vs.t is independent of our chosen 2}.

*Information on aluminum Bragg scattering is presented in
table 4.
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Plane Multiplicity

111
200
220
311
222
400
331
420
422
333
511
440
531
442
600
620
533
622
444
551
711
640
642
553
731
800
733

TABLE 4.,

7€

Brapy Scattering by Aluminum

4
3
6
12
4
3
12
12
12

g
12

6
24
123
3)
12
12

12
4

+

123
12

12
24

12)
24 )

12

o O O O

a(d)

2.33803
02479
43174
.22099
.10901
.01240
.92904
90551
82662
. 77934

O O O D o = N

()

. 71587
0.68450
67493

O

o

.64029
61756
61050
.O8471
.5A705

O

56158
0.54115
0.52721

0.50620
0.49473

Q(a™h

2.68738
3.10313
4, 38R49
5.14597
5.37479
6.20622
6.76299
£.93383
7.60105
8.06218

3.77698
9.17923
9.30938

9.81302
10.17420
10.291%6
10,74581
11.02047

11.1R8340
11.61079
11.91779

12.41245
12.70022



mach scattering anpgle of course gives its own value
for (L4L') sin‘912, but Copp should be the same for both angles
since only minor elcctronic delays differ between the two.,

4.3 Backpround Removal and Reduction to Intensity Relerred
to Vanadium

4,3.1. FProcedure. One has two options regardine the
determination backeround: measure it separately (i.e. with
no sample in the beam) or obtain it from the data. +ve have
chosen the latter alternative. 1In a typical set of raw data
such as that shown in fipure 12, one sees a bhroad central
peak due to sample scattéring, superimposed on a background
intensity which can be approximately represented by a
straicht line in the regpion where sample scattering is ap-
preciable. [f one arranges the analyzer channel width
and scattering delay to ensure that a region of no sam-
ple scattering i1s observed both earlier and later than the
central peak, a line can be fitted to those regions and
subtracted as background. This is shown in fipure 12. The
same method of background subtraction may be applied to the
V data.

A program, DATRED, written to perform the first data

reduction steps, does the following:
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a. Read in various parameters including analysis
timing information, calibration parameters,
duration of runs, etc.

b. Read in sample, V and (optionally) background
data

c. If specified, fit and subtract a linear back-
ground contribution from sample and V data

d. Perform a 5-point weighted smoothing of the
V data

e. Compute point-by-point the ratio of sample
to V scattering, and the associated statisti-
cal error.

4.3.2. Coherent Scattering from Vanadium. At this
point in the analysis a totally unexpected problem was
detected. Several distinctly unphysical features in the
intensity ratios (see e.g. figure 14) prompted a reexam-
ination of the raw data and were traced to the apparently
unphysical features shown in figure 15. These sharp peaks
in the V scattering were, however, identified as Bragg
reflections from that almost totally incoherent scatterer.
Recall that V has a coherent cross section of .03 barns
compared to 5.13 barns incoherent; the small coherent
contribution is manifested in figure 15. Peaks were ob-
served to values of Q corresponding to the (110),(200), (222)
and (211) reflections in V% Since they are rather small and
narrow, it was a simple matter to interpolate the incoherent

scattering under them.

4.4, Matching and Interpolation of Individual Data Sets

*Information on vanadium Bragg scattering is summarized
in table 5.
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TASLE 5. Srace Scatteringe by Vanadium

2

Plane Multiplicity d(R) Q(ﬁ_])
110 12 2.138 2,939
200 6 1.512 A 1506
211 24 1.235 5.0°9
220 12 1.069 5.377
310 24 956 1,570
222 ] 273 7.19°
321 43 .839 7.492
400 6 . 756 2,311
330 12 .713 3.815
420 24 G676 9.292
332 24 .G45 09.74¢
422 24 617 10.179
431 /ﬁ%? .593 10.595
501 24§

521 4 .552 11.380
440 12 .535 11.753
530 24 .519 12.115
433 24

422 24 .504 12.467

00 O
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There are several purposes for which the entire experi-
mental structure factor is needed. The actual data are in
the form of four sets, each measured with a different
combination of rotor speed and scattering angle, and each
extending only over a limited Q range. Furthermore the data
are tabulated on an equally spaced time-of-arrival mesh,
which transforms to an unequally spaced Q mesh. It is then
necessary to patch the several data sets together and some-
times to interpolate onto an equally spaced {§ mesh; calcu-
lated corrections are applied to the individual data sets
since most corrections are scattering angle dependent.

The range over which each data set proves useful is
determined by statistical accuracy. We have chosen the
criterion in establishing ranges for use of each data set,
that fractional statistical error (as calculated by DATRED,
and which is unchanged by VANCOR but affected by container
scattering removal and also by the multiple scattering cor-
rection) be everywhere minimized. As seen from plots of
raw data or intensity ratios (figures 16-19) the statistical
error is smallest in the middle portion of a data set and
smoothly worsens toward either end. This makes application
of the above criterion quite simple. The ranges of Q cover-
ed by the present four runs are established by the minimum
error criterion to be: 140 Hz at 200, 0.9471¢ Q.52.42§'1;

0,1

480 Hz at 20°, 2.45871€0<2.9587Y; 140 Hz at 907, 2.988" L
Q €9.087Y; 480 Hz at 907, 9.0587%¢ @€ 27.471.  The overall
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o
upper and lower limits of 0.9A 1

and 27871 are chosen so
that no data are used with fractional statistical ervor of
more than 10% in the count from an individual time channel.
tlaving chosen the ranpe for each data set there may or
may not be a mismatch between any two data sets at a joining
point. For intermediate steps in the data reduction process,
we eliminate mismatches by scaling the individual data sets
with respect to each other; the fully corrected data will
be expected to match acceptably well without scaling. To
interpolate onto an equally spaced Q mesh, we use a cubic
spline smoothing polynomial computed by a program obtained
from Arponne's Applied Mathematics Division.37 This poly-
nomial can optionally smooth the data, taking into account
their statistical uncertainty; we smooth to a limited extent
in some instances, not at all in others. A typical smooth-
ing spline through part of the 140 Hz 20° data is shown in
fipure 20; note particularly its inability to adequately fit
the peak region. This failure is most bothersome in the
small  replon where peaks are relatively sharp; we over-

come it by hand interpolation in the peak regions.

4.5 Normalization of Diffraction Data

The problem of normalizing the diffraction data may be
treated in several ways. TIn doing the measurement by a V
reference method we expect that the data will be correctlv

normalized with respect to the V incoherent scattering cross



2l

140 Hz 20°

i I\l

1.9 l |
1.8}

1.7k l
1(Q)

LS l ‘

L2

L] | | | | | |
1.30 140 .50 1.60 1,70 1.80 190 20

Q

-]
Fipure 20. Smoothing spline fit to 140 Hz 20 data.




section. llowever, various sources of error may causc the
data to be improperly normalized. We can check on the
shape of the measured structure factor (but not its magni-
tude) by applying one of several integral normalization
conditions derived from the relation between structure fac-

tor and radial density function:
o
r( -3y = 5 RUD) son R IR
¢ (4.6)
First, note that for small r the function g(r) must
be zero since no two nuclei can approach each other closer
than a fixed distance of order scveral Angstroms due to

interatomic repulsion. For very small r, we also approximate

sin Qr by Qr and so

@K
— 2 ) -~
"‘///r‘jv < “7"/% NR) Qr dé\’
C . (4.7)
2
or
o«
~271‘50 . /mm 4Q
o (4.8)

This relation was noted by Kro;-.?,h-Moe.38 Since i(Q)=S(Q)-1
which is calculated from the observed intensity T(Q) by
Q) = [T(@) - I(0) | [zl
(4.9)
this normalization procedure can only help us to choose an
appropriate'I(a?), and not to scale the entire structure

factor. Hence the statement above, that such normalizations



are sensitive only to the shape of the structure factor.
We have made use of the Krogh-Moe normalization by adjusting
the upper Q limit of data used so that equation (4.8) repro-

duces the known value of g o’ which is
M ~> L
ﬁf:‘\o[}r 1/&

with & the unit cell number density. For BeFZ at 1.96 g/cm3

(4.10)

mass density, go=.0736/&3. An upper limit of 26.247Y for
the data of figure 26 reproduces this value via equation
(4.8) and yields a value of I(®@ )= I(26.8°_1)=1.085 b/ster/
BeFZ. This does not compare well with the expected value
of <a2> =1,238 b/ster/BeFZ. about which more later.
Another normalization condition due to Rahman3gis

obtained from (4.6) by a further sine transform over a small

roglon.

f‘/?’r(é(r) aﬁsw/ufa{r E fh/cug@ S Or d O o Ul d

o (4.11)

if R is less than the first neighbor distance,

R 2 \
‘f‘“—'—’}?o wlwdr- = /g%f@;{c} Sew Qwa/@s) Suw yr Ar
2 0 > (4.12)
@ R
_ 471’(70/“—2[&‘,%/1,(1?-/4[\)4&/,/ gj -;75 N AR )/va Qv ~'><M o r- afr a’(_\
? > (4.13)

AT l\g 4//4/?) /At(@{é lQ-w R é [Qt@ Rwﬂptx

(4.14)
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where j‘(}IR)z(/(R)-Z(}lR cos dR-sin uR) is the first-order
spherical Bessel function.

For any value of R less than the first neipghbor dis-
tance, we must have the ripght side of equation (4.14) which
depends on the diffraction pattern of the substance under
consideration, equal (as a function of//) to the left side
which is simply a multiple of the fixed function j,(}lR).
The transform of Qi(Q) defined by equation (4.14) must have
the same j, shape for every isotropic substance provided
only that R is smaller than any internuclear distance. It
is interesting to note that one can derive any number of
normalization conditions similar to (4.14) by multiplying
both sides of (4.6) by some function of r and inteprating
over a range 0L r<R. The simplest of all is obhtained by

inteprating (4.6) as it stands:

R R
‘2 Yy : -~ A
-f47lf5c ulr = f/ /‘(_\) . ((;’) S«CLL (\ > ‘j'(::/ dr
o 53

(4.15)
e
érg)tjo :-J[[(&)Ii“éa3CQE} AR
o

(4.1¢)
Furthermore, all these integral normalizations reduce to
the Krogh-Moe condition for very small R: witness the

Rahman condition:

-

R

K a
bom { - f g, Sus yr dr }2 = Lom { f z j BLR) Sow Qr S i AQd f
v

+
Rv0 o K=o

oc

-:1
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R->0 ) R>o

1}

R , R _
/éww §—4ﬂ'30 f.!ﬂf”zwfr*; Lowm {%[sz'lél’)d@fur N
D o

R>0 R>0

@

~ary, = [RUDAQ

)
or the simple condition (4.16),

Dion (TR 8, = 72/:'; fi(@{l‘@aoﬁf] AQ

2‘95 Y

o z
L Line [1¢) [ R 4
E~>o TR = ”’O[ [ ar 14e

~2W3‘, = f&li(&)d)Q
)

Obviously, there is much information in the various
normalization conditions. The interpretation of a plot of
both sides of (4.14), for instance, for some value of R as
a function of 4 (see figure 21) is not clear, which dimini-
shes somewhat the practical utility of such conditions. They
are quite useful in comparing data from different measure-
ments on the same substance (as in the original paper of
Rahman), but one is hard pressed to decide what data changes

would improve the none-too-satisfying agreement of figure 21.
Indeed, since the left side of (4.14) has the same shape for
every substance, one can obviously modify i(Q) to a form
which bears no relation to the structure factor of the sub-
stance under study, but which satisfies (4.14) as well- as,

or better than, one's experimental i(Q). We have thus not
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Firure 21. Rahman Normalization Tnterral for Partially
Corrected Data. Solid curve, theoretical value;
open circles, data with multiple scatterine cor-
rection; dots data without multiple scattering
correction,
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attempted to make corrections to the data based on the
Rahman normalization, but we note with pleasure that the
multiple scattering corrected data satisfy (4.14) better

than the uncorrected data ( see figure 21).

4.6 Removal of Container Scattering

At this point the intensity ratio contributions from

both the BeFZ and the aluminum container and can be expressed
[C7t,S) FlEd) + CHeDF(EST Jee )

from which we wish to obtain Cs(t,f>)/CR(t,5;) before pro-
ceeding to multiple scattering corrections. The factor Fo
expresses the effect of the container on the observed sample
scattering intensity, and FAlthe effect of the sample on the
observed container scattering intensity.

We dispose of F® as follows: the fraction of the beam
'-‘AL.'
~Zrtw

unattenuated by the tube walls is of order ¢ where

_ Al -
tw is the wall thickness, .0254 cm, and 27 = 098 cm 1.

Thus accounting for attenuation of both incident and scat-

tered beams, one expects to see an attenuation effect of

- At 7t ,
about 1l-e ZT( “3'3

.005, Multiple scattering contributions
will be even less; we thus set FS=1 and proceed.

FAL expresses the effect of the contents of the con-
tainer tubes on the observed tube scattering. It is simply
the ratio of the observed scattering of full to empty tubes.

AL

We illustrate (Appendix) by calculating F°~ for a simple



tube - the cxtension to multiple-tube pcometry is obvious.
The intepration involved is by necessity done numericallv,
and the results for the six-tube array used in the diffrac-
tion measurement is shown in fipure 22 as a function of the

s S :
sample cross section ZT' In order to apply these corrections

S <
to extract C (t)é ) from the data, we must have an approxi -
. . Al s S
mate sample cross section, since F varies with ZT' we
. e S

are at least nearly in a position to compute X from the

T
data; for in the static approximation,

‘”‘ 5 (9) = (4% S(Q)

and by definition the microscopic total scattering cross
section is the integral of the differential cross section,

: Sy = -l s : ‘b
i.e. for G‘S(L,> P X S(u) we can write

q;(EJ = /ég(é) Si) st (4.17)
41

-3 <az>/§'((:)) KIS/'\Z. (4.12)

2 i
in the static approximation. Recalline Q=2K sin 2

or

&’L = 4 K’éz Scku- L%
= 4#51 /le;{/g ) /‘ "4/ Shie ‘SL

so at fixed Kk INEFNE "2’5‘,?’-{%(

or du= - XRdR/kS
| o 2k,

S0 ()‘5.'('&3 i~ < l\/ /3(&) ciéfq'u <A>P‘/Q S[Q)AQ
k fa,u--:

(4.19)
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Fligure 22. Container Self-3hiclding Factor
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By effecting a rough removal of the container scatterin-, we
can arrive at a crude oétimato for <ﬂ2> S(2): which vields
an approximate cross section via (4.19) for usc in a nore
carcful removal of the container scatteringe. Since the
cross section at this point can only hce considered approxi-
mate, a technique allowing some variation in the cross sec-
tion used for removal of container scattering was adopted.
By using a constant value for Z:%l(E), the factor FAL(Egﬁ;)
becomes a function only of Z:%(E) and the scattering angle
3‘, as in figure 22; since FAl is nearly linear as a func-
tion of'Ejiq it can be interpolated rather than calculated
for each value of"Z:i. For the sample cross section X ?
we use (1+€ ) times the approximate cross section shown in
figure 23 which was obtained by interpolating a smooth curve
under the container iraps peaks in the intensity ratio data.
We allow the normalization parameter & to vary within the
range -.1< o < ,1 and choose & so that the function

R4S ~ R0 Fi,2)

S i

is made most smooth (R, R™ are the intensity ratios for
the sample and empty runs). It happens that this particular
bit of parameter fiddlinp was done using a graphic computer
terminal to display the data with peaks substracted, and to

oS _pALLE

ad just ® (and hence FAL) R is acceptably smooth.

4.7 Correction for Multiple Scattering in the Vanadium
Reference Scatterer




98

‘elR(Q
uo1310eIJ I 1/ PIIADTIA0) ATlE1IIAR ] NOI] UOTIDNG SHOIY HUTIDNIRIS Nmmn *¢7 2and 14

-7

1 I Ol 6 8 L 9 S 14 € [ ) 0]
I | | | | | ] | 1

U0I1}23S $504) —191
101ua13)1Q 2498 jo uoDabaju|




aQ

Calculation of the multiple scattering correction factor
FR(E)él) for the reference scatterer is considerablv simpli-
fied by the fact that scattering from V is nearly isotropic,
and predominantly elastic. Apain invoking the static approxi-

. . . . ¢
mation, we write the total scattered intensity from V asLO

V(Q) = Vv (Q)FV,(Q)+V5(Q)+.

where Vl(Q) contains contributions only from once-scattered
neutrons, VZ(Q) from twice-scattered, etc. As shown by Vine-
yardal for an 1sotropic scatterer Vn+1(Q)/Vn(Q) changes
little with n if n 2, and so

Vi) + V, (Q) §’ + if il -/
I o "= 3 \,L((_&) j

s V@4 ) 3T

i\

VIR)

-

t

i@+ (@ |- S

For an infinitely large but thin plate the first and second
orders of scattering can readily be calculated (Appendix)

and so also FR E,fl) = Véi)(%%?jﬁ We have written a program,
VANCOR, which reads as input the intensity ratios computed

by DATRED (or in the present case, intensity ratios with
container scattering removed) and computes an appropriate
FR(E,J;) for each data point. Microscopic scattering and
absorption cross sections of V are taken to be 5.13 barns

and 5.06(.()253/1«'1)1/2 barns, respectively (& in eV). The

angular integrations (Appendix) are performed numerically
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on a mesh of f%g (azimuthal) by 2/10 (polar, expressed in
,H =cos‘9'). The computed correction factor is shown in

figure 24,

4,8 Multiple Scattering Correction

4.8.1. Preliminaries. The multiple scattering correc-
tion F(E)f;) was computed using a Monte Carlo simulation

technique. This approach to the problem of multiple scat-

42,43 for use

in the time-of-flight inelastic scattering program at RPIaa.

tering corrections was developed by Bischoff

Adaptation to slow-neutron measurements, and in particular
to the Argonne time of flight spectrometer, was made by
Copley45 who introduced many innovations into the method.
We use a condensed version46 of the Copley code, treating
the scattering as though entirely elastic; i.e., no inelastic
data are used in the correction of the diffraction data.
The Argonne inelastic scattering code is called MSCAT; our
version is titled MSCATD.

Ideally, one might like to include the effects of the
sample container in a Monte Carlo simulation such as this,
and thereby eliminate the need for a separate step of
container scattering removal. Unfortunately this is quite

complicated, and we have not yet built it into MSCATD.

4.8.2. Method. We present briefly here the details of

the Monte Carlo simulation, beginning with the general
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approach. For a uniform monoenergetic neutron beam inci -
dent on a sample of known geometry, we can compute an aver-
age contribution to the response of a bank of detectors at
scattering angle J by simulating histories Qf many neutrons
in the beam, which enter the sample at various points. This
response can be separated into first order, second order,
third order, etc. so we can compute PI/(P1+P2+P3+...),
Pl/PI, Pl/(PZ+P3+"‘) and whatever other ratios we may wish
to examine.

The sample material must be characterized in terms of
macroscopic scattering and total cross section Efs and ZZT;
and differential cross section used in the simulation should
be a reasonable model of that of the actual sample, in order
that the corrections calculated be a good approximation to
those for the real‘sample.

In practice, we have no better differential cross secc-
tion model for use in the simulation than the experimental
data themselves. We may wish to initially estimate multiple
scattering corrections on some other basis and use a pro-
visionally corrected experimental differential cross section
as the model. There is but one way to test the acceptability
of a model differential cross section: to calculate multiple
scattering corrections, apply them to the uncorrected ex-
perimental data, and see if the model is reproduced accepta-
bly well. If the match is good, we can say with confidence
that the model differential cross section is a good approxi-

mation to <a?> S(Q ) in equation (4.1). In principle



one could adopt an iterative approach, whereby if the model
is not acceptably reproduced by the corrected cexperimental
data one recalculates corrections using the corrected data
as model. 1t is not entirely clear if such an approach
would eventually converge (and if so, to what). We have not
followed this iterative approach and have computed correc-
tions only once, based on an initial model. Refore display-
ing the model differential cross section and the resulting

correction factors, we briefly describe the simulation process.

4.%.3, Simulation. The calculation bepins with a single
neutron with enerey EO traveling along the incident beam
direction jib. wWwe choose at random a point on the entrance
face of the sample, £O=(x0,y0,zo) (constrained to lie within
the beam area, of course) and say that the neutron enters
the sample there. Associated with any point on the entrance
surface (or any point in the sample for that matter) and
with any direction is a unique distance along that particular
direction to the point where the neutron would leave the
sample if it continued unmolested on its way. We call this
distance t(gﬂrﬁf) the "effective thickness." The probabil-
ity of an interaction occuring along the incident neutron's

path is then

plst(r, 8)) = |- - ZAED t

wWe choose a random number € from a uniform distribution be-

tween 0 and 1, and then solve for 1O such that p(lo)/p(to)= £.
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This fixes the next interaction point via the relation
£f£o+1oji° . We require the interaction to occur at r,.
Notice that there is no chance for lozfto, i.e. no chance
for the neutron to escape the target. This is efficient
since we keep the neutron in use, but unphysical; we take
the effect of this device into account by lowering the
"statistical weight" of the neutron from its initial value
of 1 down to p(to). This correctly accounts for the fact
that we have forced an interaction to occur which in reality
would only occur with probability p(to). At the point r

we require a scattering event to occur; the probability of
this is ZS/ ZT’ given that some event occurs. We therefore
multiply the statistical weight by ‘Zé /ZLI. To establish

a new direction of travel, we choose a value of Q for the

scattering event at r, as follows: again pick a random £

7/

1

number 0 € $<1, and choosp Q, such that
C\‘

j (cQ)dq // ?—»(f’)af& = ¢

This fixes the scattering angle -S’Dy Q =2kosin€;/2. To-
gether with a random azimuthal angle (eg, 2% £ ) this estab-
lishes a new direction of travel jii.

Before proceeding to the next interaction however, we
stop to do some scoring. To each detector in the bank at
scattering anghaf}, can be assigned a probability of de-

tection for a neutron scattered at r, simply on the basis

of the effective sample thickness tD between r, and the
i
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detector i. The "score" for this event for the ith detector

t
% times the current statistical weight of the

is just €
neutron times the relative cross section for scattering
into the detector:

1ty 5, 09, d
= é T Y% ntd o G 2 A
5 P )

G de (BT,

We have included the subscript 1 to indicate that this score
is for a once scattered neutron; later collisions will con-
tribute to higher orders of scattering.

Having seen the neutron through its first scatter, the

rest is repetition. At each collision point £n=(xn, Yoo Zn)

A
with the neutron moving in direction X2 _; we score each

th .
detector for n order scattering. We then choose a new

A
direction L n® compute tn(gn,IZn), change the neutron's

statistical weight to
by
Wa = W, ’i f[t.J

and choose the next interaction point just as the first was

chosen, The score for nth order scattering into the ith

detector is > A y

n - Lo, ALy AT /A A
S. =& Zr D‘ Wa v5 E(‘Qﬂﬂﬂ'ﬂ-n)
th

{

and the score for n order scattering into the i} detector

bank is

U= w Tue o an, deg Lo
T

The sum runs over all the dotcctors in the i} bank, each with

weilght u; . We allow this neutron to collide along its merry

way until its statistical weight drops below a cutoff value
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w_; at which point we either (a) double its weight, or (b)
terminate its history, with equal probability. This "Russian
Roulette" tends to concentrate the calculation of low-weight
events in fewer neutrons without biasing the simulation.
Since the simulated neutrons cannot "leak out" or be "ab-
sorbed" under the rules we have set forth, it is necessary

to provide such a means for ending their histories.

After simulating the histories of a reasonably large
number of neutrons, we compute the quantities of interest,
the correction factors, by comparing the total scores
(normalized to a "per incident neutron" basis) for various
orders of scattering with each other and with the normalized
score which would result from single scattering in an "ideal-

ly behaved" sample,

ST = Suy L 4003 -4 Yaa,
()

with N the total number of nuclei illuminated by the beam,

and A the beam area. The normalized scores are in fact

probabilities, and the quantities P1/ PI, PM/P1 etc. can

be computed by using appropriate scores for the probabilities.
We repeat the simulation for each scattering angle,

and for incident energies such that Qe=2 %%g‘sinJSJZ covers

the desired range. In practice, every collision can be

scored for all the different scattering angles of interest,

so the consideration of numerous scattering angles does not

require much additional work over that for one angle.

The results of simulations for various values of Qe
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are shown in figure 25. Thesce werc interpolated and smoothed
to some extent using a cubic spline smoothing polynomial,
The error flays indicatce a standard deviation in the calecul-
ated correction factors, due to the statistical naturc of the
simulation process. The number of histories traced in any
simulation is of course determined by the required level of
statistical accuracy in the correction factors. Wwe have
compiled 200 histories at each incident neutron energy re-
presented in figure 25. The model differential cross section
used in these simulations was simply the four sets of exper-
imental data, patched together by scaling each set and re-
normalized to make the Krogh-Moe integral normalization re-
produce the bulk density of BeFZ glass, 1.9¢€ g/cmB.

(Note that this is for us a microscopic density only, since
in our sample there are voids on a macroscopic scale.)
These model data are shown in figure 2 along with the
scalinpy, factor by which each set was multiplied. The exper-

imental data with smoothed correction factors applied arc

shown in firure 27.

4.9 Inelastic Scatterines Data Reduction

Data from the time of flight spectrometer were reduced
. . : 40 , .
to scatterins law form as described by Copley ~. e will
not elaboratc here on the data reduction procedures.
As previously mentioned, a vanadium reference scatterer
2

was used to calibrate the He” neutron detectors. Correction

was made for the following effects:
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a) background counting rates in sample and empty
runs

b) container contribution to the sample scattering
c) multiple scattering in the reference scatterer,
calculated as described for the diffraction
measurement.
We made no attempt at a multiple scattering correction; the
main problem was a lack of a suitable model to extend the
data to large Q. Since we are not particularly interested
in the shape of the elastic peak and require knowledge only
of the location of other features in S(Q,w), we have also
omitted a resolution correction.
Using the reduced S(Q,W) data we have also computed the

generalized frequency distribution function G(Q,w) intro-

duced in section 2.4, namely
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COMPUTATION AND RLFINEMENT OF THID RARIAL DENSTTY FUNCTION

5.1 TIntroduction

In this chapter we touch briefly on some of the com-
putational and analytic problems which must he dealt with
in doiny Fourier transforms in real life. We say "in real
life" because in principle there need be no hitches whatever
in the evaluation of eq.(2.3%), which we repeat here for

conveniences: oo

470 (30 -9,) = %—f&ﬁ(&) Scw & AQ (5.1)
with o
Q) = SQ) -4 (5.1a)
In practice there are several problems we must face which bear
on the evaluation of (5.1). These we will discuss here arc:

a) the representation of thc intesral in (5.1)
by a sum

b) the effect of our lack of i(Q) data in the

repions Qmax<,Q and OSYQ((%dn

c) the effect of our imprecise knowledre of i(7)

in the region of Qmid‘ Q€ Qgy Aue to stat-
£

istical imprecision and to possible normal-
ization errors.

5.2 Discretization of the Fourier Transform

5.2.1. Available dMethods. tHere we may make any of sev-
eral choices, opting for more or less computationally efficient
and sophisticated techniques. The most efficient techniques
are the so-called "fast Fourier Transforms" (FFT) of which
the algorithm of Cooley and Tukey47 is the prototype. These

techniques take advantapge of a priori knowledge of phase

113
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relationships between various components in a Fourier series
to reduce the amount of computation required. They represent
the known function and its transform as vectors of length n,
and constitute optimized algorithms for evaluating the nxn
matrix equation
L= M

with T the vector of transform values, F the vector of known
function values, and (ﬁ)kj'z eiZKj/n. Such techniques work
best for highly composite n, and in particular for n = 2P they
are spectacularly efficient, resulting in reduction of comput-
ing labor by a factor roughly p/n.

We have chosen a less efficient but simpler alternative,

that of approximating the integral in (5.1) by a sum. In

this approximation: »

WTr(GE)-g0) * & 2R UR) siu Qir 28 5
g |

with

QS:(J_QAQ ; AR = Ruuy /1
This is computationally a terribly crude and inefficient pro-
cess, but has the advantage for our purposes of eliminating
the relationship implicit in FFT between the Q mesh and the
r mesh} Aw—:,z'rr/(naa) . We can also save at least some
computation by tabulating the sine function and interpolating,
rather than computing every sine needed. Most important for
our purposes, we can calculate as few or as many transform
values as needed at whatever values of r we wish; the ITT
techniques requiring the computation of exactly n transform

values on a mesh of 27T/Qmax, given n values of Qi(Q) on a
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mesh of Qmax/n' One can artificially extend the data to

a larger value of Q, say Q‘miiQmax , by setting

S(Q) = S(Quay?’ Upax Q" 1ax

and thus become able to calculate the rdf on a denser mesh

of spacing 2 M/Q* The extension to Q'max’ however,

max’
obviously entails increasing the number of data points, and
in the square matrix FFT techniques, the number of transform
points which must be calculated. There is still no possibility
of computing only a small number of points in the region of
peaks in the rdf on a very fine mesh, and the rest on a rel-
atively coarse mesh,
5.2.2. Computation. A program DATINV has been written
which does the following:
a) reads in I[(Q) values on an equally spaced mesh
b) forms the function Qi(Q) usinp as T(®) either
the last value of I(Q), or another value spec-
ified by the user
ES
. . . -« & .
¢) optionally weipghts Qi(Q) by e with o con-
trolled by the user (the use of such modification

functions will be discussed later)

d) evaluates the transform (5.2) on an equally
spaced r mesh specified by the user

e) evaluates the Krogh-Moe normalization integral
f) optionally computes the first, second and third
r moments of &(r)-g, for use in finding coordin-

ation numbers, neighbor distances, etc.

») optionally prints and/or stores all the computed
functions.

Typically, one evaluates 4 Ur(g(r)-pd on a relatively coarse

mesh over a wide range of r (eg. 0.0A <r <10.0A by .OSA) and
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then on a relatively fine mesh (eg. .013) in the region of
peaks. The transforms of the fully corrected S(Q) of figure
27 is shown in figure 28.

a

5.3 Errors in the Transforma”

5.3.1. Termination Errors. The limits of integration
in Q space in equation (5.1) are 0 to w. We of course cannot
hope to measure 5(Q) for all Q,0£ Q<% ; we must live with
Qmin$(2$(%muf We will not be concerned with the region
OS(Q<Qmin, since in the transform (5.1) there is a weighting
of 1(Q) by Q; the small Q region is thus relatively unim-
portant in its contribution to (5.1). We extrapolate S(Q)

smoothly to zero below Q =.93'1 in the present case).

min(Qmin
There is a small error due to the extrapolation to S(0)=0;
the correct value of S(0) is related to the isothermal com-
pressibility of the sample, but does not differ significantly
enough from zero to give trouble (especially when weighted by
Q near Q=0).

The lack of data in the region beyond Qmax is a far more
serious problem with which we must come to grips, since we
will have no way around 1it.

It will be useful first to derive the mathematical form

- 3 i 3 i 4 o -0y . .
of the spurious oscillations in 4 TWr(g(r) 86), which we will

call "termination errors." We begin by substituting the in-

verse transform of (5.1),

2
Qi@ = [4Tr(F)=g.) Sow @ dr BT
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into (5.1) which then becomes
4%@&)-@,} = %//1‘%’(;’&')-(?0) S Qr'sow B 4»2/62 (5.4)
° o

which is just a statement of the Fourier integral theorem,
appropriate to this problem. Now we define an "experimentai"

g (r) by the truncated transform

4 (30 -4,) = j QLR) 2w QA& 55

This is the function we arrive at by transforming the exper-
imental Qi(Q). Substituting (5.3) into (5.5), we obtain an

expression which is analogous to (5.4):
Ruay ©

- Ge V)= 2 [ 4T ()-4) 5on Q' s Bedr'd@ (5.0
o o

This relates the experimentally observed ée(r) to the true

o(r) of the sample. wWe may perform the ¢ integral in (5.6),
max “ /
f 5o 4G - éﬂw@-w)- w0 8lrur)] 44
o

= Q“‘"‘ [},\@mtkmr» (} (H-r'))]

so (5. ‘) is flnally

4 (3e0)-.) = e [ 504l ) (R L) e
(5.7)

The experimental rdf of figure 2% is thus a convolution of the

true rdf with an oscillatory function. We have only (!) to

solve the singular integral equation (5.7) to unfold the de-

sired true rdf from the experimental rdf. Being practical,

we will seek only an approximate solution; but first we will

mention another possible source of error in ge(r).
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5.3.2. Normalization irror. I{ we have incorrectly normal -
ized the structurce factor data, the {unction transformed in

(5.5) will be not )
RiQ) = Q [T@ /rw) - 1]
but

KN = BLIQ) /(1+#) Tto) - i]

where f is the fractional error in our determination of (o).

Then

RiQY= QUQ) - QT(R))Te) + & TUR)/(i+t) L)
QA + QLAY /T @) [ Miet) - 1]

H

R{A) - [&f(;@) + Q] k‘p

- Q&) ~

l

i+{ :+4: K (5.9)
_t
Dernioting, by go(r) the erroncous experimental rdf obtained by
o

]
transforming Qi (Q), which we ret by substituting (5.9) into

(5.5), o R
4Tv-(3eu~5 i>‘ , wr(éi,crj-g,) % %—/Qw&de

~ - +- aZQ S
4%(34() g) wax 1 Brayr) (5.9)
what we have plotted in flwuro 282 is in fact 4 Wr(s (r)-w )
and not QTTr(ﬁp(r)-go) since we have not yet made sure that
no normalization error is present. 1f we know f, it is a
simple matter to et 47Tr(§e(r)-go) by
ry / Il i ~/ ., J‘ N J
47Tr-(§e6~)~§.) ={+f) ‘tﬂ'r[é cr-)—g,) + g.g“*x} (Buag™
e ] ~
Iy (5.10)
and then proceed to treat equation (5.7). In practice we do
not know f; il we did, we would have done the normalization
correctly in the first place rather than leave it until this

point. We therefore have to get at #(r) through an equation
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incorporating the effects expressed in both (5.7) and (5.9):

4//»"(%("‘) jb) 0 4’-#)/\4”-”/(3(")”5 ) [g (&“ﬂx(r-r))

‘J'o(&)wdx[r+r;)) ] AWI - ;:'f'f O‘Z_r(g“"x é; /(QM‘X r>
(5.11)

Equation (5.11) relates the rdf derived from an improperly
normalized experimental structure factor to the true rdf, and
reduces to (5.7) in the case of proper normalization (f=0).
5.3.3. Resolution in the Ixperimental rdf. The broadening

of peaks in the experimental rdf, implicit in equation (5.7),
bears on our ability to resolve contributions arising from
closely spaced peaks in the true rdf. An infinitely sharp peak

at r=r_ in the true rdf would appear in the experimental rdf as
Qﬁ":_“" [&, (Buex (=) ) ~ o (@ Crtn )]

which (ignoring the second term, which is neglipgible compared

to the first for r~ro) has height Q ___ /7T and FWwHM 3.7%/Q

max max’

We may thus expect to be unable to resolve contributions firom

peaks in the true rdf separated by less that about 4/Q A

which is rmin=.16§ for the present case with Umax =253 1. we
do not expect (or see) any peak separations in the vitreous
BeF2 rdf as small as this, so the broadening effect does not
present a resolution problem for us. In any case, the broad-
ening can be removed to some extent by applying a competent

termination error correction (section 5.4 below).
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5.4 Suppression or Removal of Transform Lirrors

5.4.1. Modification Functions. Having at least some
guantitative rrasp of the termination effects, we nmust pro-
ceed to deal with thewm. The crudest and lecast effective
method available, but the one which has been most used for
many vears, 1s to try to minimize the prohlem throurh weirht-
ing of the diffraction data. If we multiply the Qi(Q) func-
tion hy a modification function--let us use a Gaussian, for
example--before transforming, the termination satellites
will be altered somewhat, and hopefully made less serious.
The analysis of waser and Schomaker48 however shows that
every common choice of modification function not only fails
to significantly reduce the termination errors, but also
tends to broaden the peaks in the rdf. fn the context of the
analytic methods presented later, the use of any modifica-
tion function is entirely redundant and in fact quite equi-
valent to the use of no modification function at all. As a
device for suppressing termination errors, we must conclude
that data modification is none too effective. (In fairness
we must point out that the use of a Gaussian modification
function--or "artificial temperature factor" or "conver-
pence factor" --does have the salutory effect of decreas-
ing the weight given to the large { repion where statistics
tend to be worst in X-ray and neutron diffraction measurements.)
We will require that a useful procedure remove nearly all the
termination effects (and ideally also remove the effects of

the unknown normalization error.)
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5.4.2. Method of Kaplow, Strong and Averbachag. The
method used by Kaplow, Strong, and Averbach to suppress ter-
mination errors in their study of liquid lead and mercury
has been applied by several workers49 with considerable
success., This method does not require knowledge of the analy-
tical form of the termination errors as expressed by equations
(5.7) and (5.11). We will use the notation of Kaplow et al.
in which

F(Q) = Qi(Q)
and
G(r)z 4Tr(a(r)-p,) .

The first step is to transorm the experimental data F®
using several different termination points. Those features
in the resulting ¢ which change position with termination
roint are deemed to bhe spurious. The spurious features thus

identified are removed from o as are all the features below

the first coordination peak (where g(r) must be zero). The
rdf thus corrected, GC, is then transformed to yield a

function FC which is calculated for()&(}SQmaX and also be-

yond Q. At this point one begins to iterate the following

steps:

™

a) truncate FC at Quax 2nd transform
b) compare the resulting rdf with G¢ from which
F¢ was calculated, to identify spurious features

e . . . .
c) correct G using the identified spurious fea-

tures, and alter G® based on a comparison with
ne
R}

c
d) compute a new FC from the corrected ¢°, and
compare with F€.
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. NG O .

Steps (a)-(d) are repeated until F7 omatches B in the repgion
C . . .

O'gQ'SQmax' and G~ chanpees little from one iteration to the

next. At this point FC is used to extend F¢ beyond qux'

hY

and the transform of the resulting extended F¢ is the final
G(r) with termination errors removed.

We have chosen not to use this procedure, not because
it fails to adequately remove the termination effects--1t can
in fact do quite well--but because the steps taken in the
correction procedure are largzely arbitrary. &ven the initial
identification of spurious features is not {oolproofl--real
features may change shape and thus appecar to move, and the
movement of spurious featurcs is not so rreat as to preclude
the possibility of a small thoupgh real {eaturc lying under-
neath a spurious one being wiped out in the very first step.
Furthermore, it does not admwit inclusion of the effects of a
normalization error. 1In spite of our reservations concernin”
this procedure we do not denigrate its effectiveness when

50 -
properly used; Yarnell et al.” effected an almost total re-
moval of termination effects from their liquid arrfon rdf in
a single iteration using a method very similar to this one,
which they attribute to Verlet.

5.4.3. tethod of Narten and of Konnert and Karle.
Konnert and Karle of the Naval Research Laboratory have devel-
C
oped a very powerful methodJ1 for removal of termination ef-
fects and normalization error (and, indeed, several other
sources of error we have not worricd about, such as errors

in measured background or imprecise knowledge of X-rav scat-
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tering factors). The technique can be extended to include
nearly any source of error one can postulate; it operates via
a least-squares refinement procedure.

The basic assumption made by Konnert et al. is that the

unmeasured diffraction pattern beyond Q would, if it could

max
be measured, affect only the shape of the first few peaks in
the rdf. 1In addition, it is assumed that the dominant con-
tribution in i(Q) to an rdf peak at T 5 (one of the first few

peaks) is
= /\/ d“% - .Qz dQl ‘ ar

(5.12)

The shape thus forced on the (ij) coordination peak in the

rdf is »
?%(r) - %f&%(a\ Sow Qr AR

/N 2 ~ AT
2 B84 | oplete ks ] - aep [0l |
L] (5.13)
The second exponential term is negligible compared to the first
except near r=0, so the overall shape of the coordination peak
is approximately Gaussian; this is certainly not a particularly
bad assumption on its face.

Characterizing a small number of short-range peaks (three
in the case of vitreous SiOZ, the subject of their work: S$i-0,
0-0, and S$i-Si) by expressions such as (5.12) and (5.13), a
"short-range diffraction pattern" and a "short-range rdf" are
parametrized. When the short-range diffraction pattern and

the unmeasured portion beyond Qmax are subtracted from the
C
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infinite-rance diffraction pattern, the remainder is a sub-

set of the experimental data in the ranae()S(}S(%vnv Thi s

- - - . 3 , . — —
"residual diffraction pattern" 1 (Q) is the transform of a
. A . . - .
"residual rdf" N (r) (in the notation of Konnert and harle,
D(r) = 47rr(5(r)-ﬁo)) completely determined by dilfraction

. . N
data below Qmix; and furthermore D (r) should be completely

free of termination errors, since Qmax is as pood as @ for

an upper limit on the transform of i'(Q), which hopefully dies

away below Qmax'

The way is clear now to proceed with refinecuent of the

rdf. All one need do is adjust the parameters Nij’ rij and

1.lj to make the transform of

Q) = R:Q) Q)}AN%@#WL ‘QQ/J,)(’,& H)

| &)

(5.14)
free of any feature in the short-distance region (note the
sum over "sd" in equation (5.14) runs over the short distances
beiny, removed from the rdf). This should be possible if we

have correctly assumed that only the region beyond and

(%nax
the postulated contributions (5.12) pive rise to short-range
structure in the rdf.

The adjustment of parameters is accomplished using a
standard nonlinear least-squares refinement technique such as
the Gauss-Mewton iteration or the method of steepest descent.

We feel there is much to recommend the procedure of

Konnert and Karle. Cne attractive feature is the ease with

which one can account for the other sources of error--in our
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case, it would be desirable to include the effects of a
narmalization error, as previously stated. This would simply
add another parameter (the fractional normalization error f)
to the least-squares fitting problem. Yterhaps more sienifi-
cant on physical grounds is the fact that one does not try to
artificially extend the diffraction data, as in the procedure
of Kaplow et al. In this method, one makes up one's mind to
do without the data beyond Qmax' and see what refinement can
be done on the basis of what one actually knows. The funda-
mental approximation of a damped jO shape for peaks in the
short-range diffraction pattern with resulting Caussian peaks
in the short-range rdf, is really the only thing one must buy;
after that the method proceeds free of approximation. As
to the acceptability of the Caussian shape for short-range
rdf peaks, it is probably safe to say that any deviation from
the Gaussian peak shape at short distances in the true rdf is
reflected in the diffraction pattern only in the region beyond
Qmax’ and thus cannot be calculated from our diffraction data
in any case. It seems a reasonable statement then, that the
Konnert and Karle procedure when properly executed yields a
refined rdf which is as close to the true rdf of the sample
substance as we can possibly come on the basis of a limited
range diffraction measurement.

We would be remiss not to give credit in this discussion
to A.H. Narten, whose X-ray diffraction study of glassy BeFZ
was mentioned in Chapter One. As early as 1969 (three years

before published application of the Konnert and Karle refine-
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ment procedure) Narten and Levy utilized a procedure iden-
tical in principle in their X-ray diffraction study of water.
This procedure was alluded to in Chapter One, having also

been applied by Narten to his BeF2 glass data13. Narten
utilizes a least-squares variation of a model iM(Q) which

is a sum of short-distance terms such as (5.12), plus a term
accounting for continuous pair density at large r, against

the experimental i(Q). Refinement at the level of i(Q) rather
than the level of g(r) offers the advantage of reducing the
amount of computation required, but introduces the additional
assumption that there be no contributions to the diffraction
pattern other than those from short-distance and continuous
terms. The Konnert and Karle procedure admits the possibility
of structure in é(r) not confined to short distances but not
in the continuum region either., On this basis we would be
hard pressed to declare the slightly more general but con-
siderably more costly procedure of Konnert and Karle superior
to that of Narten.

Having, so highly praised this method for suppression of
termination and normalization errors, it becomes imperative
to explain why we have not utilized it in the present work,
The answer, simply stated, is time and money. Time: as we
became adequately informed of this method in late 1973 when
there was not sufficient time to seriously develop a program
applying it. Money: as even though we began work on the

aforementioned program, charges for computation became pro-

hibitive. To illustrate the large amount of computation



implicit in the method, consider that any competent nonlinear
least-squares fitting algorithm requires knowledge at each
iteration of not only the total squared deviation, but also

its partial derivative with respect to each parameter in the
fitting function. The fitting function in the present case

is the Fourier transform of cquation (5.14); each of its par-
tial derivatives requires as much work in the evaluation as

the function itself; and there are 3n of these (n the number

of short-range peaks modeled). This adds up to a considerable
amount of computing labor per iteration, and numerous iterations
are in general necessary to converge on a satisfactory solution.
All of this boils down to the fact that in order to apply this
method at a reasonable cost, one must have access to a com-
puter of the number-crunching variety--and we do not.

5.4.4., Graphic Removal of Termination Errors. The method
described in this section was developed with the intent to take
advantage of the particular computing environment of The Uni-
versity of Michigan; that environment being one of a medium
power computer, certainly not a number-cruncher but with fea-
tures (e.g. a large virtual memory) which make it ideally
suited to a time-sharing system. In addition a large variety
of terminal devices are available, and the Computing Center
Staff provide the user with much software support for his use
of these devices. We have found invaluable in our treatment

of the termination error problem the Tektronix 4010 storage
tube (graphic) terminals available at no charge to the user

in the Computing Center, and the Integrated Craphics software



packare (developed by Mr. James 3linn of the Computing Center)
which has proven the sine qua non for our proflitable use of
the ;raphic terminal in an interactive mode.

ve will proceed to describe oﬁr craphic trial-and-error
solution of equation (5.11). we will include the normaliz-
ation error f in the equations, since it has proven useful
to have the effects of { included in the ~raphic procedure.
First we note that if the experimental rdf 47Tr(p (r) - )
and a model rdf ATTr(Sy(r)—no) are both tabulated on the same
mesh, and if the mesh is sufficiently fine that we can approx-

imate the tabulated function

A
47“"(3,4““) ga) Z &, 5( -r) r o= (-8 ar

(5.15)
then cquation (5.11) has a very simple form when (5.15) is

substi tuted:

©
N ..
-, b | s, : ‘ /.' Vs o)
W Lfgu"l) -ga> T-(“_ /2&4"5‘/ '?)Lj»kQutx“'i"'))
o (3
1 ‘:‘}__ %Q‘“‘.X ,‘ ‘/‘ '\
“é.kQuuL””*”)l‘dr ")+% Iy d.LQLu R)

N
Q T oo : "
"*’“‘) 24@ &*’ (waﬁ" '.‘» —Ja (aw(ﬁf-l}))] 14,4 O;LT WJ /Qw“ r\>
(= 16)
Lquation (5.16) predicts the experimental rdf we would obtaln

by inverting diffraction datra, out to { from a substance

max’
whose true rdf is 47Tr(7v(r)-go). This prediction is of
course based on the assuniption that the only errors possible

in the transform are the termination and normalization effects
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as expressed in equation (5.11). The simple principle of
our graphic method is to adjust the Gi (and f) so that (5.15)
reproduces as closely as possible the experimentally deter-
mined rdf. There is of course no guarantee that the model
arrived at by this procedure is the only solution to eguation
(5.11); but it is certainly a solution, and we assert that any
significantly different solution would have some physically
unacceptable features by which we could rule it out.

In practice, the zraphic error removal program (titled
GRAFIK) proceeds as follows:

a) reads the experimental rdf

b) prompts the user for g and Q

0 max

c) displays the experimental rdf on the screen

as a solid curve

d) allows the user to set ,(r)=C in any repsion
he chooses a

- .
e) 1initializes the model by making QN(r)=ge(r) in
repions not required to be zero

f) displays the model as a histopram superimposed
on the experimental rdf

z) folds the model into equation (5.16) with =0
initially

h) displays the folding as a series of crosses
i) prompts the user to make adjustments to the model
or to exercise one of several other options, then

returns to step (f) if iteration is to continue

jiterate steps (f-i) until the crosses lie upon
the solid curve acceptably well.

The "other options" at step (i) include giving a nonzero value
to the normalization error f, integrating peaks in the model,

changing the scale of the display or blowing up a specified
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region of the picture, and terminating the fitting pro-
cedure with optional disk ani/or prirt and/or plotter
output.

A typical refinement ol an experimental rdl piven at
200 mesh points takes 15 to 20 minutes at the terminal;
most of this time is spent pondering one's next move, SO
the computing time is far less than the elapsed time. This
is ideal since one is charped relatively little in the Mich-
igsan Terminal System for "idling" as opposed to actual com-
puting. Results of a refinement of the rdf in figurce 28
are shown in figure 29. Our failure to accurately reproduce
the oscillations near r=0 can be traced in part to the re-
solution correction we failed to applv. The results of
Sutton'ss3 work on vitreous SiOZ show that the effect of the
resolution correction is to bring the low-r oscillations in
the cxperimental rdf closer to their prodicted form; i.o.,
to improve the match at low r in fipurce 29. Sutton's results
show that the real features in the rdf are essentially unat-
fected by the resolution correction. Since we are interested
in the rdf and not the structure factor per se, we can thus
et away without the resolution correction., In the case of
diffraction from liquids, the structure factor is itself of
considerable interest, and in particular, the details of its
shape at low . A resolution correction must clearly be ap-

-

.- 50
plied in such cases.
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5.5 Implications of the Termination Errors for Large-0Q
Diffraction

we close this chapter on a note of reflection concernine
the termination errors. Since the problem arises from our
inability to measure the structure factor bhevond a fairly

small value of Q one might expect at first that by poing

max’

to a larper and larger Q we could eventually overcome the

max’
termination errors. This unfortunately turns out not to be
the case. That the problem of termination (and, incidentally,
normalization) errors is in fact exacerbated by increasing

Q

is the fact that the amplitude of the termination ripples is

nax ©an be seen from equation (5.11). Immediately obvious
(@ A

proportional to Q and of the normalization ripples to the

max’

square of Q Furthermore the frequency of the ripples is

max’

proportional to Y so they become more numerous as well as

max’

larprer with increasing (

Qmax' In fact, reflection on the form

of equation (5.11) indicates that only for Quax SO large that
21(Qé£x is small compared to the width of the narrowest fea-

ture in g(r) will we begin to set away from the termination

error problem. This may correspond to in the range of

“max
50 to 100:‘,\'1 or more, depending on the exact nature of the
material under investigation.

The implications of the forepoing considerations for work
of the sort described here are clear. If we expect to gain
anything by extending the Q ranpge of our measurcments, we had

better be prepared to deal effectively with the increasingly

severe termination effects. Only if we can push Qmax far
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beyond presently attainable limits will we be able to avoid

entirely the termination error problem.



CHAPTER SIX

ANALYSIS OF EXPERTMENTAL RESULTS

6.1 Analysis of the RDF

6.1.1. Information in the rdf. We have previously
noted that the rdf contains information on the relative
arrangement of nuclei in the sample. In particular, the
function 47Tr2é(r)zﬁr represents the normalized number of
nuclear pairs with spacing in Ar at r, weighted by their
scattering lengths. From such a function, which may cor-
rectly be called a pair distribution (#(r) itself is not
a pair distribution in the literal sense), we may deduce
certain average properties of the sample structure, such
as coordination numbers, neighbor distances and near-square
thermal displacements for the various pairs of nuclear spe-

cies.

6.1.2. Preliminary comments on the fully corrected
experimental rdf. The rdf with graphic termination effect
removal applied (figure 30) is our best estimate of the true
rdf of vitreous BeFZ. That we have not been completely suc-
cessful in removing the nonphysical features has already
been mentioned. In particular, the featufe centered about
Z.SA is almost certainly spurious, as is the small feature
at about 3.3A. We may note further that the first coordin-
ation peak at 1.565 rises and falls too sharply; we would

expect a more gradual variation in pair density both above

135
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and below the peak. Without trying to explain away these
and other shortcomings of this final rdf model, we feel it

)
necessary to point out the very simple nature of the model-
ing procedure used, and to stress that there may well be
sources of spurious structure in the rdf which we did not take

into account (for example, the possibility of spurious struc-

ture in I(Q) contributing to the rdf was not considered).

6.1.3. Identification of features in the rdf. With
reference to previous work on vitreous BeFZ, we can immed-
iately determine which atom pairs contrubute to the first
few rdf peaks. Warren's 1934 model (table 1), for example,
predicts peaks due to Be-F pairs (with coordination number
5=4) at 1.60&, due to F-F pairs (n=6) at 2.62A, due to Be-Be
pairs (n=4) at 3.20A, due to second-neighbor Be-F pairs
(n=12) at 4.003, due to second neighbor F-F pairs (n=9) at
4.65+O.45§, and due to second-neighbor Be-Be pairs (n=12) at
5.20&. We can thus with some confidence (subject to further
verification) label the peak at 1.56A in figure 30 as due to
first-neighbor Be-F coordination; at 2.52&, first-neighbor
F-F; at 3.06@, first-neighbor Be-Be; at roughly 4,0A, second-
neighbor Be-F (which we abbreviate Be-(2)F); at 4.80&, second -
neighbor F-F (F-(2)F); and at 5006A, second-neighbor Be-Be
(Be-(2)Be). It is ridiculous to expect that any features
beyond the first can be explained completely in terms 6f
only one pair type; it is apparent from figure 30 that the

features beyond the F-F peak are not resolved, and we must
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expect significant overlap of the peaks at larger r. The
assipnment of atom pair types fo the peaks beyond Be-Be,
although qualitatively reasonable on the basis of the var-
ious structural models, cannot be pushed too hard in a quan-
titative sense; we will not even attempt to analyze the peaks

beyond Be-Be.,

6.1.4., Analysis of the Be-F peak. We expect the Be-F
peak to reflect a coofdination number of 4, i.e. to show four
fluorines bonded to each beryllium. We must take into account
the scattering length weighting; we can see from equation (2.8),

§= N @” 5, 3 Ny Gs ()
‘ t ¢

that in the vicinity of the Be-F peak
| g(ﬂ = N <‘Lz>—'§ Ng, g’FBe(h) + A[Pga‘er(”)z

(6.1)

where (repeating equation (2.9))

Ne Ny
gtae‘l‘) - "’;Z \4&,5&-3’(; fn;,)[“ &,3@)

n'é_’i n‘é,zl

describes the distribution of type t' nuclei about an aver-
age type t nucleus. Furthermore we know from equation (2.10)
that in the isotropic case,

3,&%(@ = N%é gfﬁv('*)
Since we also know that NF=2NBe and that N=N

F+hBe’ we can

write for the first peak in g(r)
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= @Y { S8 + # gae

(6.2)
and using equation (2.10),
-(V") = L [r»)
‘-
3& 2 34-‘& (6.3)
so that |
- _ - € 2
ﬂ(r)- {a*y {.3.3%(»))7
(6.4)
If we redefine a2 on the basis of a unit of composition,
2 _ L2 2
(a,)“ = ag +da;

N

= 3ﬁJq :Z;aé = 3 <QF>
c3

which is just three times the value used in Chapter Two, then
- 2 -1
é(”"\ = 02<4—>“ gpge("')
(6.5)
We know that gFBe(r) describes the coordination of fluorines
around berylliums, so we expect its integral over the first

peak (properly weighted) to yield the coordination numbers:

f 4Wrzgpacfr)dr = qpa_ge Z"-'B‘e

-F
Tk

= Cféb—x 774) /;;'Be

- 7, e
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and
25/ = —
&Lqﬂ'r J( )z{r- 5704 /“'Fﬁ’e
peak

If EFBe is 4.0 as we expect, then the intepral of p(r) over

the first peak should be 2.84. 1If we sum up the arca of the

first peak in 47Tr2éM(r), figure 31, we find
&
L‘”ﬁ» 3:\4(”) Ar = 2.929
=143

which implies ﬁFBe=4.14. We are thus comfortably close to
the expected coordination number of 4.0 (3.5% high). On the
basis of our finding ﬁFBe=4.14, we have no reason to con jec-
ture that any coordination other than fourfold is present.
Since QTYrZé(r) represents a distribution of pairs, we

can also extract the mean pair separation,

Fsgz %\/Eflfvﬁg'(r)dr/\/i/;rw‘gér?)dvﬁ

Qe -+ Be-F
peak
Again from the model rdf, we find
[.ed
A )
>A4Hr'§m046r'= 4 573
v (42
so that

Ros = BT/ 2,027 = LoglA

Knowing the centroid of the peak we can compute its variance,

@&}M = &/;: Y g6r) (r-F) df/ f 431‘&3&’»')4"

&r
We find from the model rdf that /
(64

Z 4Tt’r7'g”(w) (P—F)LA‘I' = , 00558
r={.48
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Figure 31. Be-F Peak in the Refined RDF
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so the variance is

(Ar")ﬁé‘__ = .oos‘fé’/z.?,zy = ,omqo,i"'
and the rms width is

bz .

(Arzé; = o434
We may interpret this rms width of 47(rZéM(r) directly as
an estimate of the rms deviation of the Be-F pair spacing
from its mean value in vitreous Ber.

For comparison, we have superimposed on the peak in fig-
ure 31 a Gaussian with centroid, variance and area equal to
those of the model peak, This Gaussian is a reasonable fit
to the model‘histogram; we mentioned in connection with the
Konnert and Karle termination error procedure that an assump-
tion of the correctness of such Géussian peaks is bésic to
that procedure.

6.1.5. Analysis of the F-F peak. If the F-F peak were

isolated, we could evaluate the indicated coordination number:

/“iﬂ'rlééw)dr = f‘ﬁfrl (422;‘ z ’zg;:;("')?d"
FrF FF
Ped-k pe&é

= 02<az>“-! 4’?-': -A:FF = 316 ’;“F;

The F-F peak in 47(rzéM(r), figure 32, is not isolated, how-
ever; contributions fron the Be-Be peak and from the appar-
ently spurious peak between the F-F and Be-Be peaks overlap
with the F-F peak on the high-r side. We have chosen to

2

integrate only as far as the minimum of 4 Kr éM(r), and to

accept whatever inaccuracies that may introduce. On this
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basis, we find
.43

Y Aweg () ar = 2304

v.=2u40 .
268

Z‘/T‘-“}é‘m&“‘)m‘ = 2077

'-32040

so ﬁFF=5.43, fFF=2'524K' Using this value for r, we also find
.68

> -
2_‘411 v-’"gWCW) [P-F)LAV' = .oli24
v=2d.40

so the variance 1is
o
2y o I A°
{a V.. = .ookol A
and the rms width is
Y% o
{Ar)® = (0633 A
FF
Again we have shown a Gaussian with the experimental area,
centroid and variance superimposed on the model histogram;
the fit is not as good as for the Be-F peak, as the F-F model

peak is markedly asymmetric.

6.1.6. Analysis of the Be-Be peak. The Be-Be peak in
2- . .
4K r gM(r), figure 33, is even less well defined than the
F-F peak. Again we have chosen to integrate between the

minima of 4WTrZéM(r) on each side of the peak. Were the peak

isolated, we would obtain

f‘m'r-z‘gCﬂ dr = /‘{TTW" <¢2Z.' 58;134,6") ar
Gele %de
pa—é M

~f ~
J¢371 M

]

i

2
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Evaluating the area of the model rdf and moments between the

29 (r), we find

}_J‘{Tv- A0 (M) A = 2.148
r=2.28
J.20

ZLI’T'}&‘[P)A’- = 4.5-5.&

r=2.38
from which we have n

mlnlga of 4 Mr

=4 44, fBeBe=3.OSO. Recognizing that

BeBe
the estimate for ﬁBeBe-iS not very good, we may still have
confidence in the centroid value. If we leave off one histo-
gram bar on each end of the sum, we have a smaller estimate

of the coordlnatlon number:

24‘{/1 rig  (r)avr= 1763

r=2.92
e
L47ry.3sfn(w)4r= 5403
r=2.92 _ -
from which nBeBe=3.65 and rBeBe=3‘056' This coordination

number estimate is just as far from what we expect as the
original one; the true value undoubtedly lies somewhere be-
tween. From examining 41Tr2éM(r), we see that there is con-
siderable overlap from nearby features, so we cannot really
expect to get a clean estimate of the Be-Be coordination
number. Likewise we will have some difficulty establishing
the Be-Be peak variance. Adgpting the first set of values
above for the centroid and coordination number (i.e.,

- _ - -

2.;0
D AT Gl (r-A" ars . o186

r=2.88

BeBe=4.44) we find
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S0 0z
<Av~"> = .o186/2. 148 = 00865 A
- “eRe

<A‘”l>8:l& = .0‘73/40
Again we have plotted a Gaussian with the experimental Be-Be
centroid, area and variance on figure 33. The fit to the
model histogram is not particularly striking; but this comes
as no surprise since the model peak itself is not very well

defined.

6.1.7. Evaluation of mean bdnd angles. The mean F-Be-F
and Be-F-Be bond angles can be evaluated in a straight forward
manner from the peak centroid positions. To do this we simply
consider a triangle (figure 34) with (taking the F-Be-F angle"
first) fluorines at two vertices and a beryllium at the third.
Two sides then have length equal to the Be-F distance we have
determined, and the third side is equal to the F-F distance.

The F-Be-F bond angle is then
S

%((F—&—ﬁ) = 23 5.%&;:} = lo7.9°

Similarly we find

¥ (Be-F-Be) = 2™ :2*3_;«-1%_} - 55

Rer
We summarize our analysis of the first three coordination
peaks in our model rdf in table 6, and also repeat the re-

sults presented in table 2.
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X (X-Y-X)=26=2Sin!(b/a)
= 2Sin™ (e’ 27y )
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6.2 Comparison of RDF Results with Previous Work

6.2.1. Comparison with diffraction results. The com-
parison of individual peak positions, etc., among the var-
ious works does not require much comment; we are pleased to
note that our results agree best with those we indicated in
Chapter One as beinp the most reliable.

We will take time here to compare our results with those
of Narten, which we feel are the highest quality of all the
published diffraction results on vitrcous BeFZ. Our peak
positions agree reasonably well with Narten's with the pos-
sible exception of the F-F distance. Our experimental coor-
dination numbers for F-F and Be-Be are somewhat far off, but
still respectably close. (On reflection, it seems that all
the problems just noted could have been overcome had wé used
a somewhat finer r-mesh in the computation of éM(r)).

Most encouraging is the fact that our experimental values
for the rms peak widths in 47Tr2é(r), while considerably
lower than those reported by Narten, are in quite good agree-
ment with the rms vibration amplitudes calculated by Bates54
for his dynamical model of vitreous BeFZ based on the f?-
quartz structure. Except for the Be-F peak, where Bates'
amplitude value lies midway between our rms peak width and
that of Narten, our values are considerably closer to those
of Bates than are Narten's. The discrepancy between his val-
ues for the rms amplitudes and those of Narten was noted by

Bates, who conjectured that low-frequency acoustic modes
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not included in his dynamical model might be responsible for
broadening the X-ray rdf peaks. ‘This seems unlikely, since
the wavelengths of low-frequency acoustic modes in vitreous
Ber are quite large compared to the first few neighbor dis-
tances (we will have more to say about this in our discussion
of the inelastic scattering results below) so there should not
be appreciable broadening of the coordination peaks from this
source. In any case, our results certainly support Narten's
assertion that the breadths of the vitreous BeF2 rdf peaks

are suffiéiently small to be due entirely to thermal vib-

ration.,

6.2.2. Comparison with structural models. There are
several structural modelé with which we may compare our
refined experimental rdf. The previously mentioned work
of Narten consisted in part of comparison of his X-ray rdf
with a model based on the p -quartz structure with a number
of random vacancies introduced. We have already noted our
agreement or}disagreement with several features of Narten's
model (since the model fits his X-ray rdf quite acceptably,
our comparison with the diffraction results constitutes a
comparison with the model). We will make comparisons with
two other models of a disordered BeF2 structure--one a trad-
itional random-network model (a "ball and stick" model), and
one, the by-product of a molecular dynamics calculation

(computer simulation) of BeF, liquid.
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6.2.3. Bell and Dean vitreous SiOz/BeF2 "Model V."
R.J. Bell of the National Physical Laboratory (U.K.) has
generously provided us with a full set of coordinates of the
atom sites in the larpest of a series of models constructed
by Dr. Bell and P. Dean. The model represents 183 Be and
426 F atoms, and was constructed according to a set of rules
consiStent with the Zachariasen random network hypothesis
(there have been a number of such models built, by Bell and
Dean and other556). From the model coordinates we have com-
puted p(r) according to equation (2.7), utilizing scattering
lenpths appropriate to BeFZ (the model can élso be considered
to represent SiO2 or GeOZ). The function 47Tr2é(r) for the
Bell and Dean model is shown in figure 35. We have computed
peak arcas, centroids and variances from the model rdf; these
arc displayed in table 7.

TABLE 7. TPeak Analysis of Neutron RDF from
3ell and Dean Model V

Peak n r <arty K
be-F 4 .00 1.5614 0544
F-F 6.18 2,544 1124
Be-Be 4,45 3.0514 L0864
(F-Be-F) = 109.%
(Be-F-Be) = 155.5°

Unfortunately the statistics in the model rdf are rather bad
at larger values of r. It is apparent that one cannot hope

to build such a model which represents more than a small
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repion in an actual material; even the (physically) very

large Model V represents only a‘region of radius roughly

13A (we arrived at this "equivalent radius" by computing the
averape distance betwecen atom sites on the sﬁrfacu of the
model, noting that for a sphbere the averarc chord length is
4/3 times the radius,. We note that the variations in be-F
and Be-Be first neipghbor distances for the #3ell and Dean

model are quite close to our observed values; the F-F width

on the other hand, is even larger than that observed by Narten,
which we feel to be an overestimate of the true value. e
also note that the Be-Be coordination number is overestimated
from the neutron rdf even thourh the coordiantion number cal-
culated from the individual pair distribution 47Tr2ghege(r)

is 3.93, %% bLelow the expected value of 4. This explains to
some extent'our own overestimate of ﬁBeBe; the effect is
simplv due to overlap of the Be-Be and F-F pair distributions
above and below the Be-3e peak, and additionally, to overlap
of the Be-F and 3e-Be cistributions above the Be-Be peak.

This is of course no different than what we expected when we
first noted that the F-F and Be-Be peaks were not sufficiently

isolated to provide clean estimates of nFFand The

N, . .

BeBe
Bell and Dean model neutron rdf overestimates ﬁFF' however,
and our experimental value was a considerable underestimate

(again, the coordination number calculated from (r) is

brF
less than 1% different from the expected value of ¢).
In the larger-r region, experimental rdf in general

agrees reasonable well with the model rdf. The presence of
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some residual spurious detail in the experimental rdf, and
the statistical variations in the model rdf together make

a detailed comparison in the region beyond the Be-Be peak

of dubious value. We can certainly conclude, however, that
the Bell and Dean Model V is not in substantial disagreement

with our experimental rdf.

6.2.4. Rahman "frozen liquid" BeFZ model. Molecular
dynamics calculations have had widespread application in the
study of liquid structure and dynamics. Aneesur Rahman of
Argonne has kindly provided usS7 with a set of pair correl-
ation functions derived from his molecular dynamics work on
BeFZ. Simply stated, a molecular dynamics calculation is a
computer simulation of the motion of a reasonably large
number of particles interacting via some postulated force
law. Knowing the positions of all the particles, the force
on each can be calcuiated. One can then allow the particles
to move under the influence of the calculated forces for a
short time; after which new forces can be calculated and the
simulation continued. The suitability of this technique for
the simulation of liquid motion is readily apparent; to our
knowledge, there has been no previous attempt to identify a
"frozen" (or perhaps more properly, a “"supercooled") mole-
cular dynamics liquid structure with a glass.

In the present case, 8e+ and F 1ions were simulated; the
resulting liquid (figure 36) shows that the ions arranged

themselves into the familiar tetrahedral BeFZ structure.
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The Ber liquid was "cooled" by reducing the total system
energy, until the mean particlevenergy was brought to a level
corresponding to a temperature of 480°K, at which point the
structure became static. Pair correlation functions for the
480K deF, system are shown in figure 37. Comparison with
the 1iquid pair functions of figure 36 shows that the coordin-
ation peaks are considerably sharper and higher, with the areas
of course unchanged. The fact that the peaks are only margin-
ally narrower in the 480K case indicates that crystallization
has been avoided; the structure at 480K is remarkably similar
to that of the liquid.

We have also computed the neutron rdf, g(r), for the
supercooled liquid model. This is shown in fipure 38, Ex-
tracting the usual parameters from the coordination peaks

in 47fr2é(r), we find the values given in table 8.

TABLE 8. Peak Parameters 13 Rahman "Supercooled"

Liquid Model 4% rg(r)
Peak n r <Ar”>ﬁ
Be-F 4 .01 1.5754 .0814
F-F 5.94 2.577A .1934
Re -Be 5.61 3.0614 .118%

X (F-Be-F) = 109.8..

£(Be-F-Be) = 152.7

The overlap of the coordination-peaks is so severe in this

from the

2
gBeBe(r)

case that we cannot get a good estimate of ﬁBeBe

neutron rdf (but note that the integration of 4T r
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yields the expected value of 4 as indicated on figure 37).
With the exception of the Be -Be peak, all the coordination
peaks for this model are sipgnificantly broader than in our
observed rdf. In addition, the peak centroid positions
differ appreciably from those we (and other workers) have
determined. Wwe conclude that the supercooled molecular

dynamics liquid does not represent a model of the BeFZ glass

structure.

6.3 Interpretation of Inelastic Scattering Results

6.3.1. Overview. There is a wealth of information
concerning the dynamics of vitreous Ber'contained in the
scattering law we have measured. As we indicated in Chap-
ter Two, however, this information is obscured to.é large
extent due in part to the polyatomic nature of Ber, and
in part due to interference effects which can complicate
the frequency dependence of the scattering law. We must
rely heavily on various assumptions, which may or may not
be valid in various regions of momentum and energy transfer
space in order to extract from the measured scattering law
any information directly interpretable in terms of the
dynamics of vitreous BeFZ.

We will attempt only the simplest analysis of the
measured scattering law; first comparing features in the
"generalized frequency distribution function" G(Q, %),
(section 2.4) derived from the experiment with bands ob-

served in infrared absorption and Raman scattering measure-
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ments on vitreous BeFZ, and then comparing our calculation of
the "acoustic mode scattering law" (section 2.3) with the

measured scattering law.

6.3.2. Spectroscopic results on vitreous BeFZ. we will
analyze the experimental G(Q,® ) in terms of three spectro-
scopic studies of vitreous Berz the infrared absorption

58

work of Zarzycki and Naudin™’, the Raman spectroscopy of

Batsanova et al.ll, and the infrared and Raman studies of
54

Bates™ . We summarize the findings of these authors in table
9.
TABLE 9. Infrared and Raman Bands of Vitreous BeF2
Zarzycki Batsangya
Author & Naudin et al.?Y Batessa’59
observed 200 900-910 805
frequen- 345 760 410
cies in
cm-1* 435 392 280

246

%1 em ! optical wave number is equivalent to an
energy transfer of .124 meV, or an angular fre-
quency of .189 ps-1.

6.3.3 Other information on the vitreous BeFZ frequency
distribution. Unfortunately most of the spectroscopic data
is at higher frequencies than we can reach using thermal
neutron inelastic scattering. We are fortunate to have
some other frequency distribution information.

60

Bell, Bird and Dean have calculated the vibrational

spectrum of several of the Bell and Dean random network
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models. We quote the results fdr-their Model IT (503 atoms)
considered as BeFZ: Bell et al. have also calculated spectra
for the model taken as SiO2 and GeOZ. The calculated spec-
trum for the BeFZ model contains four main peaks, at 195,
335, 630 and 715 cm Y. The lower two of these four frequen-
cies are accessible to us via thermal neutron scattering.
Bell et al. suggest that the 195 cm~1 peak is probably due

to bond-bending and bond-rocking vibrations of F atoms, and
the 335 cm-1 peak to bond-stretching F vibrations.

The only published inelastic neutron scattering results
on vitreous BeF2 are those of Leadbetter and Wright.61 By
utilizing very coarse time-of-flight resolution in their
cold neutron experiment (4.24 meV incident energy), Lead-
better and_Wright were able to collect,statistically'meaning-
ful data over a very wide range of energy transfer, out to |
500 cm'1 and beyond. They were of course unable to resolve
much fine detail in the scattering law, but the glass scat-
tering law is not expected to show particularly sharp struc-
ture so this inability may be of small importance. Utilizing
a function analogous to our G(Q,& ), Leadbetter and Wright
concluded that there are peaks in the glass frequency spec-

1 60+ 5cmnt, 80+

trum g(® ) at frequencies of 38 + 4 cni
5 cm-l, and 105 + 5 cm'l. They also reached the important
conclusion that at least for low Q and & , the positions of
peaks in the scattering law can be plotted as "average dis-

62

persion curves" as for polycrystals. This is not particu-

larly surprising if we truly believe in the importance of
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long-wavelength acoustic modes in determining one-quantum
scattering at low Q and &, but it is certainly interesting
that wave-vector conservation conditions appear to operate
much as for polycrystals, near the first peak of the glass
structure factor (the region in Q space near the first peak
in the structure factor is analogous to the second Brillouin
zone in a crystal). This is a clear manifestation of the
importance at low Q and & of the interference terms we were

so anxious to ignore in equation (2.68).

6.3.4. Interpretation of the generalized frequency
distribution G(Q,® ). As stated in section 4.9, we have
transformed the measured scattering law to the function G(Q)aﬂ
defined by equation (2.67). we have included plots of G(Q,w)
for each detector subgroup in the TNTOFS experiment as an
appendix. fach subgroup, it will be recalled, represents the
scattering at fixed scattering angle with approximately 1.8°
angular resolution. We have only displayed the upscattering
(neutron energy pain) portion of the data in the Appendix.
The downscattering (energy loss) data are much more densely
spaced due to the time-of-flight mesh, but typically extend
only over a limited range of energy transfer (W<30 ps'l).

The upscattering data seem quite adequate for the present
purposes.

The curve drawn through the data points are cubic spline

smoothing functions (see section 4.4) with the smoothing
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parameter chosen for each subgroup to make the fit pleasing
to the author (we would assert that the spline function fits
shown are if anything conservatively drawn). The splines
used here are considerably less stiff than those used for
the structure factor data.

In light of the discussion of Chapter Two and of the
results of Leadbetter and Wright, we have chosen to divide
the data further into what we will call "low-Q" and "high-Q"
regions. The low-Q region encompasses data subgroups 2
through 8, the high-Q region subgroups 9 through 32 (this
corresponds to 2.90&Q, « 6.90 in the high-Q region, where
Qe is the value of Q at ©W=0 for each subgroup). Recall
that we expect the self terms in equation (2.68) to become
relatively more important as Q increases; thus we may
expect the one-quantum scattering in the high-Q region to
be influenced to a lesser extent by interference terms than
that in the low-Q region. On the other hand, if we wish to
map out "average dispersion curves" by plotting the positions
of maxima in G(Qw), the data in the low-Q region will
probably be more useful.*

There is a caveat concerning the interpretation of
G(Q, ) in the high-Q region, however. The G function has
a simple interpretation only for one-quantum scattering; it
was derived on the assumption that one-quantum scattering

is dominant. This assumption unfortunately becomes worse

*The high-Q region as we have defined it corresponds roughly
to the third and higher Brillouin zones in a crystal; the
low-Q region to the second zone.
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as Q lncreases, so that as interference effects die out,
multiquantum scattering, processes come increasingly into
the picture and do their own job of obscuring the desired
information in G(Q,&)). Since we have no easy handle on
the magnitude of the multiquantum terms in the scattering
law, we will continue to ignore their presence and

turn to the problem of extracting the information on g(w)

contained in G(Q,®w ).

(D)

DeWette and Rahmanﬁ have shown that for a polycrystal
G(GQ,w ) may have much more structure than g(®). It seems
a failr statement on the basis of their detailed calculations
for noble gzas polycrystals, that (({,« ) show peaks for all
values of @ at which the derivative of g(«) is discontinuous.
This includes Van Hove singularities ("corners") as well as
pecaks in g(w ), so it is misleading to say simply that peaks
in G(Q,w) correspond to peaks in glew ). G(Q,wW) may also
have peaks at values of w not corresponding to pronounced
features in (@ ). This is because of the influence of the

N\

A  in equation (2.62), which may

polarization factors Q'cy

cause G(Q,w ) to vary sharply in regions where the character
of the atomic motions changes.

We have utilized the following simple procedure to
identify the valucs of @ for which G({, @) has systematic
maxima (ie, those appearing in a number of detector sub-
groups) in the high-{ region: first, associate with each

peak in G(Q,w ) at a given angle, the value of W correspond-
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ing to the local maximum in G(Q,« ). Next, plot as a function
of W the total number of peaks (in all subgroups of the
high-Q region) appearing in &8« about®. We illustrate

such a plot for 4W =2.5 ps'1 (=13.3 cm'l) in figure 39.

The positions of peaks in figure 39 are listed in table 10.

TABLE 10, Systematic Maxima of G(Q,® )

57 + 8 om™ L 194 + 5 em™ L
88 + 10 et 263 + 15 et
126 + 10 et 354 + 15 em !
164 + 10 cm™ L

Our peaks at 57 + 8 and 88 + 10 cm'1 undoubtedly correspond
to those observed by Leadbetter at 60 + 5 and 80 + 5 cm-l.
We do not see a peak corresponding to that observed at

105 + 5 (':m-1 by Leadbetter, though our peak at 126 + 10 cm—1
may be the same. Our peak at 194 + 5 em 1 probably corres-
ponds to the 195 em™ L peak calculated by Bell et al., and

the peak at 354 £ 15 cm'1 to that calculated at 335 cmcl.

Our peak at 263 + 15 cm-1 lies between the IR band of Batsanova
et al. at 246 cm'l, and the strong Raman band of Bates et al.
at 280 cm‘lg there is considerable structure in the plot of
figure 39 in this region, and we are hard pressed to make

an unequivocal statement concerning this peak. There re-
mains our observed peak at 164 + 10 cm_l; it corresponds to
no other reported band, yet there is no question of its

presence in our G(Q,# ).

We recognize the very simple nature of our algorithm
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for identifying systematic peaks in (i(Q,«@ ). Certainly
there is a great deal of subjective judegment involved, at
every step of the process beginning with the selection of
smoothing spline parameters, and finally with picking peaks
off a plot such as figure 39. We do not intend to apologize
for using such a simple procedure; we feel that despite its

simplicity it has worked admirably well.

6.3.5. Comparision with the calculated acoustic-mode
scattering law. We have calculated the acoustic-mode scat-
tering 1éw derived in section 2.3 for comparison with the
experimental results. We have used the bulk dénsity‘of
vitreous BeF,, 1.96 g/cm3, and the sound velocities quoted

64

14
by Leadbetter and Wycherley which were measured by

Kurk jian, v, = 4.231 km/sec and vy = 2.814 km/sec.

The structure factor which appears in the expressions
for the acoustic-mode scattering law is not the total, but
the elastic structure factor. In principle our measured
scattering law for vitreous BeF2 can be integrated to give
the elastic structure factor. We have chosen instead to
use an approximate elastic structure factor which is just
out measured total structure factor weighted by an approxi-
mate Debye-Waller factor. We have proceeded thus because it
is the total structure factor we have in detail; to get the

elastic structure factor on a sufficiently fine Q-mesh would

require considerable interpolation rendering the result
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approximate'anyway. To get the approximate Debye-waller
exponent, we have plotted the ratio of elastic to total
scattering as determined by integration of the measured
scattering law, vs. Q2 as shown in figure 40. This plot
shows that the ratio can be roughly approximated by e"OZQZ,
which is the approximate Debye-Waller factor we have ﬁsed
in evaluation of the acoustic-mode scattering law.

The results of evaluation of the acoustic-mode scatter-
ing law for several angles is shown in figures 41-44. We
have chosen to plot C(Q,& ) instead of S(Q,w). We see from
the figures that the acoustic G(Q,&)) underestimates the
measured G at the smallest angle, fits pretty well in sub-
group 4, and overestimates the measured G at the larger
angles, if we confine attention to the region -8ps-1<¢0 <,8psfl.
The failure to fit at larger w is no surprise, since the
picture of purely longitudinal and purely transverse modes
with linear dispersion curves cannot be trusted at large

It is very interesting that the

agreement is best for the angles (e.g. subgroup 4 at 21.6°)
Hwhich correspond to an elastic Q near the first diffraction
peak at 1.6087%, A possible explanation is that in this
region (where Leadbetter has shown an average dispersion
curve exists) our assumption of simple iongitudinal and
transverse acoustic modes with no dispersion is at its best;
and in particular the no-dispersion assumption (i.e.« = g )

is best quite close to the first diffraction peak where the
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average dispersion curve has not yet broken over from its
initial linear rise.

We may estimate the wavelength of our "long-wavelength"
acoustic modes from the frequency at which the calculation
begins to fail. Taking this value as &% =8 ps'l, we find
for L modes

D= .
810" 52 . (‘/.23"10 fom./jec) z:
L 7 -
g” = 1 fuo " am
or
A 2 “/Z: e 3.3457em = 334

and for T modes,
T

42“‘ = 280" e

A

These would appear to indicate the minimum wavelength at which

o

22 A

f

the simple modes we have assumed can provide a decent picture
of the glass dynamics, at least as reflected in the scatter-

ing law.



APPENDIX ONE

THE FUNCTION G(Q,@w ) FOR VITREOUS BeFZ

We present plots of the measured scattering law inter-
polated at several values of Q, and of the function G(Q,«/ )
at constant angle (for positive energy transfers) from the

31 detector subgroups.

177



179

vez 1 =0 1w pejerodaoaul (@ U)S
-Q

1
_..ma.3
o¢é Sl 2l 8 b O - 8- 21- 9I- 02-
_ 1
I B R ! :__ T
_ ! 1 _~_ _ . ;
: |1 T _ __
_
+
_
1Y S21=0 10 (M'D)S

S QUNRPR CVEh &

2000

9000

0100

(m*0)S

v100

8100



179

1-Y0S° 1

_-ma.3
v O

=0 23e peoaerodasaur (@ L)S v wandid

b-

wl

2l- 9l-

Q¢e-

be-

1y 0S’1=0 10 (M D)S

d vouoyd w—"

|

____

mr
I

]

1000
2000

€000
000
G000

(m'0)S

9000
000

8000

-~ 6000



120

ve/ ' T=0 2e peaeiodasaul (m'l)S

-

oV o wanidtg

T1-e
-sd‘m
b2 02 91 21 8 b O - 8 2I- 9l- 02 2-
i } t i 1§ } 1 t } ] _____do
LA T
l | —T- __ — —1000
__ -+ __ —2000
| 1 L Jeooo
_ _
_ -+ —v000
|
4+ —{soo0
4+ —9000
+ —H2000
+ —800°0

1Y SL1=0 40 (m'D)S

l6000



(-¥0's =0 3® peaerodreaut (m'CL)S yy oanyid
_lmﬁ-g

181

8 b Ob 9¢ <2¢ 82 2 02 9l 2l 8 14 0)

. {000
- | | - 8000
_ | | 42100
_ ' -{9100
_ _ —0200
(m'D)S
| ' ' dvpz00
| —{8200

| _ —12€00
1-¥0'S=D 10 (mD)S

9¢00




‘ol ue Lulael3eds LT ae (@ '0)D gV 2and1yg
®

Sd/08d BI3WO0
0°se 0°

0°0€ o2 0°St 0°01 ~0'Ss 0,

182

I
v

& s
) ’ m

020°

N
/
/

\
020

(H93W0 ‘D) 9



‘o1due Fuiasl1edS 'yl 3I® (o2 ‘O)D 9V aanitg
[ 4

Sd/08Y_H93WO0
0°Sh 0°0h 0°SE 0°0€ 0°s2 0°02 0°st 0°01 0's 0°

193

Pv
v v v v v v

000°*

020°

4 \\l//\/ |

C
=

090°*

(93RO0 ‘D) 9



184

0°0h

*O[oUe LUTAHIARDS  1Z B (e»'D)DH 'LV 2andiy

Sd/7084 BI3W0
0°9¢ 0°2¢ 082 0°he 0°02 0°9t 02t 0'8 0'h 0.
+ + + -+ } + + $ o
S
- o
~
S
I —
/ y r//ll\\\}
— 2
N
4+
]

(BI3IW0 ‘D) 9



185

]

0°SE 0°0€

*9138ue JUuTIOI DS

Sd/70u0d_HI3N0
0°se 0°02

9'H7 38 (m'0)u '8V wansiijg

-

-

Ny

9g0° heo*
(HI3W0 ‘D) 9

8ho*

090°*



186

\\_—/

' 'l
v

w‘ o

0.5 3.0

OMEGAR RAD/PS

.0

26

6.5

L '} ' L
v v L L

050° % SR 020"
(H93W0 ‘D) 9

010°

000°

an. le.

scattoering.

G(Q,w) at 2%.2

Figure A9,



197

*o18ue YuTIL1IBDS  (rgg 1B (@ O)D
(-4

01V vanztg

Sd/0ud HI3W0
0°09 0°Hs 0°8h 0°2h 0°9€ 0°0€ 0°he 0°81 0°21

e d - M r N s
v v L v

o o

To

- 020°
(HI3W0 ‘D) 9

0€0°*



188

tOTHuR LULI9IIROS T /p AR (em*‘D)Y 11V =and1d

Sd/084 H93W0
0oL 0°c9 095 0°6h 0°2h 0°se 0°'82 0°12 0°h 0L 0"
v 8 4 \J v T v m
o
1o
Q
(]
10
oD
\./ o
] T _.NJ
9,
« D
lTO(
N
o=
-
IPR
©
N
JI

ono*



0°SL

s$°Le

*91due FUIISH]IIBOS 7 Ny o
L CY7 3B (™*0)5

Sd/084 HI3WO0 ,
§°25 0°Sh s'2€ 0°0€ §°22 0°st

*CIV vanv iy

-

v

020° ot10* 000°

(H93W0 ‘D) 9

0€0°




190

TOTSUL LULL91IBOS gy AR (@ 'D)D g1V 2anu1d
[ J

Sd/0BY BI3WO

S°L9 0°09 S°2s ~ 0°Sh S°LE 0°0€ S°e2 0°st S°L 0°,
+ + + y + + + + . + y g b=
3

o

te

_ ~

| ] 4

T

aumEE— .
// lim

=

]

(<2}

1

(s <)

(HI3W0 ‘D) 9



191

*o1%ur Yula9131BOS om.mq e (»'0)s

Sd/708Y BI3WO0
0-on 0

-

"IV sand1g

heo*

(HI3IW0 ‘D) 9

860"




192

0°se

5°25

0°Sh

*HLLLe Yulawlaeds  yrgg ae (m0)H
L4

Sd/0ud BI3W0
S°LE 0°0€ 5°22 0°St

"GV 2and1d

S°L 0"

.
v

: 020° o10° 000°
(H3WO ‘D) 9

0€Q*

0ho*

0s0°



193

*919ur Juta®1IROS H°gg I (MD)Y *GIV oani1g

Sd/add HI3W0
0°SL S°L9 009 $°28 0°Sh S°2€ 0°0€ §°22 0°St S°L 0",

v v v v v

-*

020°

(HI3W0 ‘D) 9

gt ..
A

0€0°*

oho"

0s0*



corduR U\._,L.muwuumomoo.oc e (m»'D)D L1V 8an31yg

Sd/0Ud BI3W0
0°08 S'28 . 0°Sh s'Le 0°0€ 522 0°st S°L 0"

'y .
v v

0°SL s

-A}S

A
v

910°

194
(B93W0°D) 9

" heo




*o1due FulIL9IIBROS gy 2e (m‘D)D g1V 2ang1g

Sd/0bY H93W0
; 095 0°eh 0'zh  0°Se 062 012 0°nt 0L 0",

A
v

- 210°

5

10

(HI3W0 ‘D) 9

v

elo’




196

S°es

POl ER eia013wds gty AR (e '0)U t61V Lan¥idg
. .

Sd/08Y HI3W0

0°sh

m-sh!m . .°-

drs

s'é 0°S1 s°L 0°,

800°

210°
(H93W0 ‘D) 9

elo’




197

0°09

5°28

0°Sh

*91due SU1I811EOS

Sd/0Bd BIO3WO
S'2€ 0

*0€
-l
—

sz

0L 3 (m'D)o

0°st

*QC¢V |anst1yg

s°L

0°,

% clo’
(4930 ‘D) 9

810°




198

0°08

cOT UL CULIDAARIS Ktz e (M Q)Y C1g¥ 2andtd
o

. Sd/708Y B93W0
0°2L O.L-m 0°98 0°oh 0°0h 0°cc 0°he 0°91 0°8 0°,
' : —+ - + —t ~+ —~ P
S
b
[} ]
../ 4-“.nwm
=
(@ ]
/ m
(o)
s D
IIO[
—
(<]
I 1o
N
=




199

Sd/08H BO3W0
s°e 0

*o18ue Juirelaeds yy/ 3B (e ‘O)D

*¢CV san<1yg

st

—t-

7

s10° 010° S00°
(BI3WO ‘D) 9 |

020°

Sc0°



200

oSz

4}8;

"HLoLE SULIDIIBIS 7oL 2R (e2*'D)H

Sd/08d BI3IWO
S°LE 0°0¢ 522 0°s1

"glV @and1yg

S°L 0°

e
\ g v

Y
=

010° S00° 000°

(B93W0°D) 9

S10°




201

'o1due YulILIIBIS  ('1y B (@ ‘D)L ‘HIy wandig

(HO3W0 ‘D) 9

Sd/08H BI3WO
0°SL $°L9 0°09 X 0°Sh S°Le 0°0¢ s'Z o'st s 0°,
4o
[l
o
1
4o
+o
N
o




202

*HLUUR LU1I021'IS 06 3B (M 0)DH  *gev eand1y

Sd/084 B33WO
0°sh S*L€ 0°0€ §°22 0°st S°L 0

n
$oi

ﬂb

—te - e
v v v

000°

S00°*

159
=Y)
1 2
<
m
(3]
12
—
(4]
4
o

620°



"
4-”

*91%ue Yutaealeos om.mm ae (M*D)H  *9gZV L2and1g

Sd/08d HI3W0
0°sh §°L6 0

e

"06 §°22 0°st s°L 0.

203

4
v v

+ ' m

22
oD
o
=
m
o)
s D
m(
wn
+o
Y]
o

Sc0°



204

*OTUR LUTIZIAABOS ot

Sd/08dY HI3W0
s o sl ok

V.

0

5°22

G2 (m'0)H

0°Sst

s't

4]

*LZV 2ang14g

v

s10° 010" S00° 000°
(H93W0 ‘D) 9

0c0°

Se0°



205

§°L9

*o18ur FUTIS11BOS 7t g6 ae (D)

Sd/70ud HI3WO
S°Le 0

0°st

<

§°25 0°Sh "0

v

v

—p—

s

*QCV ©INI 14

0,

g

s10° 010° 500°
(BI3W0 ‘D) 9

0co0°*

Se0°



206

0°08

"0 vk BUTIO1IRIS (006 2B (MmD)n gV 2anc1yg
Sd/0u8d B33WO0
0-2L 0°h9 0°9s 0°6h 0°0h 0°2¢ 0°h2 0°91 0°8 0,

: 800°
(B3RO ‘D) 9

clo’




207

‘o1due JUTISIIBOS /g6 ' (MI0)D Qv Lanviy

Sd/0YY HI3WO0
0"on 0

0°1e 0°9S X 2€ 0°h2 0°9t 08 o

-

v

000°*

800°

clo’

810°*

020°

(B93W0“D) 9



208

0°SL

*oTYuR cutaal1eds gteol 3e (m0)D
Sd/08d HI3WO0

"1gV @and1yg

S°19 0°09 5°28 0°Sh 5°2€ 0°0€ §°22 0°st S°L 0,
v L N L J v L v v L m
[ ]
1y
&
o)
i o
==
™m
o
. D
lYolO\(
wn
-
1o
N
[




209

0°se

s°8L 0°99 s'es

"913ur FuTae11BOS  grgol B (M 'O)o

Sd/08Y HI3WO0
s°2n 0°

he

Y

m.-w

0°L1 s'®

->

r'e
o -

v

T

'TEV eaniiny

800
(BO3WO D) 9

clo*



210

0°18

0-2L

0°€9

0°ts

*oTour Julaol3eds 01T 2 (Mm'0)D
®

Sd/08Y HI3W0
0°Sh 0°9€ 0°L2 0°81

Y

*€EV 8andty

08 0°

4
—- : 2

v

000°

800°

(H93W0 ‘D) 9

clo®

810°

020°



211

*o19ue Sutasiaeos (°HI1 2B (‘D).
®

Sd/0UY HI3KWO
S"2h 0'hE 5°S2 XA

re

*Hey 2and1g

S8 0",

-

3
v v v

600" 900° €00° 000
(B93W0 D) 9

c10*

S10°



212

0°SL

*OT L LUTADIIRDS Lol 3 (m*0)y gy 2ang14g

_ Sd/agy cwmzo
0°09 5°25 0°Sh s°L€ 0°0€ 522 0°S1 S°L 0"

S°L9 .
k + + + t + + + m
o

+

.
+ O
oQ
o=

800°

Jx_

_T

(HO3W0 ‘D) 9

elo’




APPENDIX TWO
MULTIPLE SCATTERING IN AN INCOHERENTLY SCATTERING
PLATE
Consider a plate of thickness t and of infinite lateral

extent. The incident beam (figure A36 ) makes angle &, with

Figure A36.
the plate normal. The scattered beam makes angle 691 with

the normal, and the scattering angle @ = I<9.~$', . (8<0)
The first scattering is simply

V() = R (8) e’“’f@) (- PRE{CN)
| | §(e.,5,)

where

(95)9.) = ZT i'(Sec e - $ec9,>

and
L.t sec B
§ é it ‘ ) & < V2 (transmission)
case
R(s) =
Z ‘ , & >% (reflection case)

Considering only elastic scattering, we have for the second

scattering Vg _ 1\«(03 -2W(R,)

R
V[a\ o'- Z tsed [[ ([- sece/sece)

o) TS g, 9)} A dy

|- & *
E([— sec & [3ec8)  (1-5ecOf5ec &) 4
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where

Q < 2ksin %y
Q, = 2ksie Y

are the wave vector transfers for the intermediate scattering
events, and the intermediate scattering angles are

qz coo"[&;w% S @ oo & + 06, é‘aoe]

O = o [Sn O 38 con &+ 209 0 00 8,
L

The indicated imtegrations are necessarily done numerically.
The total scattering in Vineyard's approximation is expressed

in terms of the first and second scattering as

V(@) = \4&’2) + V,_(:SZ) [l- Vz(a?/\ACQ) 1-.

It is not obvious that this is a valid approximation for
thin plates. The results of a calculation of I:’.T/PI using
this approximation, however, apree with results of Monte
Carlo simulations for incoherently scattering plates. The
Monte Carlo results are expected to be valid for a slowly
varying cross section such as that of vanadium, so we can
reasonably conclude that Vineyard's approximation is ade-

quate for our reference scatterer.



APPENDIX THREE
SAMPLE ATTENUATION FACTOR

)

For a sample with macroscopic total cross section Zr

<
contained in a holder of macroscopic total cross section.éir,

we define the following distances:

dg = distance traveled through container before
scattering

dg = distance traveled through sample before
scattering

d? = distance traveled through container after
scattering

d? = distance traveled through sample after

scattering.

A1l these distances depend on the scattering point within
the container, and the exit distances also depend on the
scattering angle. The sample attenuation factor is the

ratio of tube scattering with and without the sample, namely

SAF = ,/LxF[_Zrc(docf dlc) - Zr (4’5-‘,4’)] 4V
+ /-cxP[‘Z:(docM.c)] av

with the integration taken over the container volume. In the
case of a multiple tube sample container, one need only gen-
eralize the entry and exit distances as the total distance
traveled through sample or container in all the tubes
traversed, and éxtend the integration over the volume of

all the tubes.
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APFPENDTX FOUR

SSTIMATTON OF ERRORS IN RDF PrAK FARAMFTERS

In order to arrive at an estimate of the uncertainity
in our determination of the area, centroid and variance of
the Be-F, F-F and Be-Be peaks in the refined experimental

rdf, we have utilized the familiar error-propagation formula
1 of \& 2 of = it 2
e [#9.3,-9] = T(ax) + r(g)(gg) + G”ig,)(g;) +
which is valid provided the variances of x,v,z...are inde-

pendent. For our determination of coordination numbers, we

used the relation

e K™ va-“é‘&)m—

where K accounts for the scattering length weijhting in
the rdf, and 4¥ 1is the mesh spacing. For the variance

in 0 due to errors in 4Wf2§(r) then, we have

(R = kY e (HTged) )T

Our determination of T used the relation

v = Z‘#’ﬂ'w’j(w) ar /K&
so that

FHF) = (K)® | S eI (rarf + KR F2)
And finally we calculated the variances using

‘<Ar*)»:\:zs471556¥5(erﬁzév:/Zgz;
from which

Tarty) = WR)§ Zv‘(qm-‘gcr))@\.:)“ar)‘

+ 0P S AR (i) oo
+ TLR) Flz |
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and

T ((or‘)&) - f[(or‘))
2 <art) 1

We calculated the bond angles from the distances by
¥(x-7-x) = onAI«."( -';-’-)
29v
This gives for the variances

(s 500r0) = FRIERN N GO, any )
TORX-Y-X)) = 20 (Sn % 5(X-Y-x)) / o0 £ £ Lx=Y-x0)

We have calculated variances in our determinations of the
various parameters by first assuming that there are inde-
pendent errors in the values of 41Tr2§(r) in the refined
rdf. As an estimate of these errors, we used the mean
squared deviation of the refined rdf with termination errors
folded in, from the experimental rdf, in the peak regions
(ie., the mean squared deviation of the crosses in figure
29 from the solid curve). This is probably an overestimate
of the fitting errors in the refined rdf, but ignores the
statistical imprecision of the diffraction data.

In this way we can associate an estimated uncertainity
with each of the peak parameters derived from the refined

rdf. These have been included in table 6.
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