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inapplicable if conductivity in the semiconducting 
phase could be described by a hopping model such as 
has been proposed for V20 3.36] The pressure dependence 
of the conductivity of both V02 and V20 a in the metallic 
state is (d/dp) In~1O-5/bar implying (d/dp Inu~ 
1O-5/bar. In semiconducting V20 a the pressure depend­
ence of (J is given by (d/dp) In~lO-4/bar; so neglect­
ing the effect of pressure on the mobility in Eq. (6) 
should cause an error of about 10% in (d/dp) InE. 
Such a calculation on Austin's data for the pressure 
dependence of the resistance at 125°K 23 shows dE/dp= 
4.6X 10-6 eV /bar. The value calculated from the pres­
sure dependence of the slope of the Inu vs l/T curve23 is 
dE/dp=5XlO-6 eV/bar. Although one might expect 
the value from Eq. (6) to be larger, the agreement is 
within experimental accuracy and the use of Eq. (6) 
neglecting (d/ dp) In~ seems justified for V20 3• The 
pressure dependence of the conductivity of semicon­
ducting V02 is given by (d/ dp) In~1O-5/bar. The 
difference between (d/ dp) lnu in metallic V02 and 
(d/ dp) lnu in semiconducting V02, as shown in Fig. 4, 

36 G. A. Acket and J. Volger, Physica 28, 277 (1962). 

is no more than about 10%; so the value of dE/dp is 
no more than about 10-7 eV /bar, consistent with Eq. 
(4). The small values measured for dE/dp and dTcldp 
then limit the decrease in ~ with pressure to (d/dp) In~= 
- 2X lO-6/bar. 

VI. SUMMARY 

In V02 the relationship between the pressure depend­
ence of the resistance and the pressure dependence of 
the transition temperature is consistent with Mott'sl6 
model for the onset of metallic conductivity. The val­
ues dR/dp and dTc/dp are small compared to those 
expected on the basis of Mott's argument that the 
electrical properties of such materials should vary 
strongly with interionic spacing. None of the other 
theories of the electrical and magnetic properties of 
the transition metal oxides explain the small pressure 
dependence of the properties of V02, and the matter 
warrants some attention. If the difference in the two 
oxides is related to the fact that V02 has only one 3d 
electron per cation, similar small pressure effects would 
be observed in Ti20 a• 
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The energy-distribution function for hot atoms produced by nuclear transformations is examined in 
terms of the fraction of the initial hot-atom energy. Energy dependent and independent asymmetric 
scattering is specifically considered. For gaseous tritium generated by the 3He (n, p) process, the asymptotic 
solution probably can serve as a reasonable approximation of the distribution function in the energy range 
2-20 eV. For hot atoms produced with an initial distribution of energies, such as 79Br(n, '}')-produced 
soBr, the asymptotic solution will be less valid than for tritium, but may still be a valid approximation. 

INTRODUCTION 

HOT atoms generated by nuclear processes undergo 
moderation and chemical reaction in a manner 

which appears to be similar in some respects to neutron 
thermalization (NT) and absorption processes. Mathe­
matical descriptions of hot-atom reactions, therefore, 
have been given in terms of simplified neutron-ther­
malization theory, although some of the assumptions 
required in the use of the theory may not be applicable 
to hot-atom reactions. 1 As discussed in Ref. 1, the 
least number of assumptions will be needed when ap­
plying NT theory to hot-atom systems of very low 
chemical yields or those involving a large amount of 

* Support of the U.S. Atomic Energy Commission, Division of 
Research, is gratefully acknowledged. 

t Undergraduate Honors Program Participant. 
1 C. Hsiung and A. A. Gordus, J. Am. Chern. Soc. 86, 2782 

(1964). The notation used in the present paper is consistent with 
this reference. 

inert-gas additive. For such systems, where the hot 
atoms are formed at an energy Eo which is appreciably 
larger than the energies at which most reaction occurs 
(perhaps about 1-20 eV), NT theory can be directly 
applied if an analytic form of the hot-atom energy 
distribution function is available. 

The purpose of this paper is to evaluate the condi­
tions under which a particular form of the energy 
distribution function, the asymptotic solution, can be 
used in hot-atom reactions. The variables we will con­
sider include the hot-atom energy relative to its initial 
energy E/ Eo, asymmetric scattering, and the energy 
dependences of the scattering asymmetry. 

We will frequently evaluate the distribution function 
with reference to tritium hot atoms generated by the 
3He(n, p)3T reaction. For this process Eo=2X105 eV. 

The energy distribution of neutrons which have been 
degraded energetically by successive collisions with par 
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ticles of low thermal energy is calculated using the 
Boltzmann transport equation. 

F(E) = L!i(Eo)ki(E, Eo) 
i 

rEO 
+ J

E 
'It!i(E')ki(E, E')[1-'ltPij(E')]F(E')dE, 

(1) 

where Pi; is the probability, per collision with Compo­
nent i, that the hot atom of energy E' will react to 
form the productj. For most calculations which follow, 
P;j(E') is assumed equal to zero since we will be 
interested in evaluating F(E) under conditions such 
that very little hot-atom reaction occurs. 

!i(E) is the collision fraction. This quantity is the 
mole fraction Xi corrected for relative collisional cross 
sections, 

ki(E, E') is the scattering function which indicates 
the probability that a hot atom of energy E' will be 
reduced to an energy E upon collision with a (thermal­
energy) component i. This function is related to the 
differential scattering cross section.! If scattering is 
isotropic, then 

ki(E, E')=1/E'(1-r;). (3) 

We frequently approximate asymmetric scattering 
by the expression! 

ki(E, E') 
-b(1+ri) 1 2bE 

E' + (1-ri)E'+ (E')2' 
(4) 

A plot of Eq. (4) vs E will be a straight line of slope 
2b/(E')2. It will be zero for all values less than riE' 
or greater than E'. Positive values of b will be chosen; 
as a result, ki(E, E') will be a linear increasing func­
tion in the range r;E' to E'. Such positive values of b, 
when converted to the differential scattering cross sec­
tion, indicate that low angle scattering (glancing col­
lisions) are more probable than large angle scattering 
(head-on collisions) and thus serve as an approximation 
of the experimentally observed scattering behavior.! 

Various analytical solutions of Eq. (1) are given by 
Boffi.2 For the particular case where isotropic scatter­
ing is assumed, Placzek3a has calculated, as a function 
of the fraction of the initial neutron energy, the devi­
ation in the energy distribution function, F (E), from 
the distribution function which exists after an infinite 
number of collisions (assuming no neutron absorption) . 
This latter distribution function, the asymptotic solu­
tion of the Boltzmann transport equation,3b is 

(5) 

2 V. C. Bolli, Nuovo Cimento 21,935 (1961). 
3 (a) G. Placzek, Phys. Rev. 69, 423 (1946); (b) S. Glasstone 

and M. C. Edlund, The Elements of Nuclear Reactor Theory (D. 
Van Nostrand Company, Inc., Princeton, New Jersey, 1952), 
Chap. 6. 

where a is the average decrease per collision in the 
logarithmic energy range of the energetic particle 

a= (In(E'/E) )Av. (6) 

The quantity E' is the neutron energy prior to a 
collision and E is the energy following the collision. 

For the specific case of isotropic, I, scattering, 

ar= 1 +[r;f (1-ri)] Inri, (7) 

where r;, the energy degradation factor, represents the 
smallest fraction of the initial energy which can be 
retained by a neutron following a collision with a 
particle of zero energy. For isotropic collisions involv­
ing a mixture of i substances, 

(8) 

Although it is possible to obtain analytical solutions 
for Eq. (1) for any energy range, the calculations are 
frequently extremely tedious. We therefore have re­
sorted to the evaluation of Eq. (1) by numerical inte­
gration using a computer. We define 

and assign 

G(E) =EF(E), 

Ki(E, E') = Eki(E, E'), 

LPij(E) =0. 

(9a) 

(9b) 

The problem reduces to an evaluation of G(E). Since 
the asymptotic solution of G(E), according to Eq. (10) 
is 1/a, it is necessary only to determine G(E) as a 
function of E/ Eo. As E/ Eo becomes smaller, G(E) 
approaches 1/a. The method of evaluating Eq. (12) 
is described in Appendix I. 

RESULTS 

Given in Fig. 1 are typical data for various asymme­
try functions as given by Eq. (4). [For Curves a, d, e, 
and f, ki(E, E') was set equal to zero at E=riE'. 
Therefore, according to Eq. (4), b=1/(1-ri)2.] As 
noted in Ref. 1, the expression for ai based on Eq. (4) is 

ai=ail- b[(1-rn/2+ri Inri], (10) 

where ail is given by Eq. (7). 
Curve a, for example, is based on ri=0.521 (b= 

4.36). According to Eqs. (7) and (10), ai=0.1B4. This 
corresponds to G(E)oo= 1/a=5.43, the value of G(E) 
computed (within < ±0.1 % after correcting for a sys­
tematic deviation, see Appendix I) for E/ Eo<0.2. 
Similar calculations can be made for the other curves 
of Fig. 1 to confirm that the level portions of the G(E) 
curves at E/Eo<'" 0.2 are each 1/a. 

If the scattering function, ki (E, E'), is discontinu­
ous at riE' then a discontinuity will exist in G(E) at 
E/ Eo= rio For example, isotropic scattering results in 
such discontinuity, as seen in Curves c and g of Fig. 1 
for which ri=0.521 and 0.02, respectively. 

From Fig. 1 it is seen that the greatest difference 
between G(E) and 1/a exists in the range E/Eo>ri. 
This difference, however, decreases as ri decreases 
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(Curves a, d, e, and f, for example) and G(E)~1/a 
as ,,~O for all values of E/ Eo as Placzek noted for the 
particular case of isotropic scattering. 

Curves a, c, f, and g indicate the variation resulting 
from constant 'i but different b values. For example, 
Curve a corresponds to 'i=0.521, b=4.358 whereas 
Curve c corresponds to isotropic scattering with 'i= 
0.521, b=O. Curve f is 'i=0.02, b= 1.041 whereas 
Curve g corresponds to isotropic scattering with 'i= 
0.02, b=O. In these two sets it is seen that the asym­
metric scattering function results in G(E) values which 
are more in accord with 1/a (especially at E/Eo>'i) 
than does the isotropic scattering function. For an asym­
metric scattering function which statistically weights 
the low-angle (small-energy-Ioss) collisions, a larger 
number of collisions are required, on the average, to 
decrease to a given value of E/ Eo, than are required 
if isotropic scattering prevails. Thus, the asymptotic 
solution (which requires an infinite number of colli­
sions) is approximated more closely using the positive­
slope asymmetric function than using the isotropic 
scattering function. 

Curves a, b, and d serve to illustrate the behavior 
of G(E) for a mixture of two substances. Curves a 
and d are for pure substances and Curve b is for a mix­
ture of the two such that the f values, Eq. (2), are each 
equal to 0.5. In calculating Curve b it was assumed that 
thefvalues were energy-independent; therefore, accord­
ing to Eq. (8), a= (0.5) (0.184)+(0.5) (0.308) =0.246 
and G(E)ro=4.07. It should be noted that at E/Eo> 
0.2, Curve b is more in accord with G(E) ro than either 
Curves a or d,4 rather than being a simple weighted 
average of the percentage deviations from the respec­
tive G(E)ro values. This is due to the fact that a 
mixture of two scattering functions, in effect, results 
in greater energy "mixing" as the hot atoms decrease 
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FIG. 1. Energy distribution function. Curves a(r.=0.521), 
d(,.=0.271), e(Yi=0.074), and j(,. = 0.020) are for positive-slope 
asymmetric scattering functions with b=1/(1-,;)2. Curve b: 
equal collision-fraction mixture of substances of Curves a and d. 
Curve c: ,.=0.521, b=O. Curve g: ,.=0.020, b=O. 

• For example, at E/ Eo->1.0, G(E) /G(E)",,=0.767, 0.852, and 
0.847 for Curves a, b, and d, respectively. 
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FIG. 2. Energy distribution function for hot atoms produced 
with variable Eo: ,.=0.271, b=O. Eo assumed to increase linearly 
in the range: curve a, 20 to 100 eV, curve b, 20 to 350 eV. 

in energy. Hence, the asymptotic solution is approxi­
mated within a smaller average number of collisions. 

Variable Eo 

For hot atoms generated by (n, 'Y) processes, where 
the nuclear binding energy may be released as a gamma­
ray cascade, partial cancellation of gamma-ray mo­
menta would result in a distribution of Eo values." 
For example, the 79Br (n, 'Y) BOBr activation process 
will impart to the BOBr initial energies which may vary 
from 0 to about 350 eV.6 Presented in Fig. 2 are curves 
for (G(E) )Ay based on Eo distributions which increase 
linearly7 from 20 eV to either 100 eV (Curve a) or 
350 eV (Curve b). Isotropic scattering with ,,=0.271 
was used; this results in G (E) ro = 1. 94. As seen in 
Fig. 2, the average G(E) value below 20 eV is in 
reasonable agreement with G( E) 00-

On the basis of only Figs. 1 and 2 it would appear 
that the asymptotic solution for F(E), Eq. (5), is a 
reasonable approximation to use in hot-atom calcula­
tions involving, for example, 3He (n, p) -produced trit­
ium or (n, 'Y)-activated BOBr. However, other factors, 
such as energy-dependent scattering asymmetry effects 
could modify this conclusion. Before evaluating these 
factors it is necessary to consider the manner in which 
the energy distribution function is to be used in 
applying neutron-thermalization theory to hot-atom 
reactions. 

USE OF F(E) 

The basic equation defining the fractional yield of 
a product j, Yij, resulting from the reaction of hot 
atoms with Molecule i is 

Yij= l E1fi (E)Pij(E)F(E)dE, (11) 
E2j 

6 C. Hsiung, H. Hsiung, and A. A. Gordus, J. Chern. Phys. 34, 
535 (1961). 

6 C. Hsiung and A. A. Gordus, J. Chern. Phys. 36, 847 (1962). 
7 Figure 7 of Ref. 5 suggests that such a linear dependence of 

Eo may serve as a reasonable approximation. 
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FIG. 3. Energy distribution function for an energy-dependent 
asymmetry factor, b= 1/ E(1-r.)2. Eo=2X1Q5, r;=0.020. Dashed 
curve is a plot of the actual value of l/a. 

where Eli and E2i are probably of the order of 20 and 
2 eV, respectively, and where Pii(E) is the probability 
of formation of Product j per collision of the hot atom 
with Molecule i. 

For simplicity in evaluating any energy-dependent 
effects of P(E), we only consider the portion of the 
integral of Eq. (11) containing F(E) and equate it 
to the expression which results if the asymptotic form 
of F(E), Eq. (5), is assumed valid. Thus 

lE1p (E)dE= In (E I /E2
) • (12) 

E2 aa 

It is then possible to calculate the apparent value aa 
using Eq. (12) and compare this value to the actual 
value of a which exists in the range EI to E2• 

As noted in Fig. 1, if Eo is 2X 105 eV, then for the 
range 2-20 eV, aa is (within <±0.1) the actual value 
of a. For the type of data given in Fig. 2, aa is, be­
tween 2 and 20 eV, at the most, only a few percent 
less than the actual a value. 

Energy-Dependent Scattering Function 

Theoretical considerations of atomic scattering indi­
cate that the asymmetry will be energy-dependent.8 

To investigate this effect we defined the parameter b 
of the asymmetry scattering function, Eq. (4), as 

b= 1/ E(1-ri)2. (13) 

For ri=0.020, b~ as E increases and the asymmetry 
in the scattering becomes appreciable only for energies 
less than about 20 eV. Given in Fig. 3 is a plot of 
G(E) for the energy-dependent asymmetric scattering 
using ri= 0.020. Since b in Eq. (4) is energy-dependent, 
a will also be energy-dependent and, using Eqs. (10) 
and (13), will be given by 

aCE) =0.920-0.438/ E. (14) 

The reciprocal of Eq. (14) is represented by the dashed 
curve in Fig. 3 using Eo= 2X 105 eV. 

Given in Table I are data for aa as determined from 
Eq. (12) using the computer data represented by the 
solid curve of Fig. 3. The actual (average) value of a 

8 H. W. S. Massey and E. H. S. Burhop, Electronic and Ionic 
Impact Phenomena (Oxford University Press, London, 1952), p. 
371. 

existing in these energy ranges is also given in Table I. 
This latter quantity was calculated using the expression 

( > 
_ 0.920 (lnEI/ E2) 

a Av-
In[(0.920EI-0.438) / (0.920E2-O.438) ] 

(15) 

As seen in Fig. 3, the dashed curve does not differ 
appreciably from the G(E) curve indicating that com­
pensation for an energy-dependent scattering function 
is at least partially achieved in the energy distribution 
function. The actual degree to which compensation has 
not been achieved depends on the energy range of 
interest. However, as indicated in Table I, the error 
in the apparent a value is usually not more than a few 
percent.9 

It seems unlikely that an energy dependence of the 
type discussed in this section would be appreciably 
greater than the fictitious dependence chosen for illus­
tration. As a result, we would conclude that energy­
dependent effects of this type probably do not intro­
duce appreciable error in the use of the asymptotic 
distribution function for hot-atom tritium reactions 
activated by the n, p nuclear process. This conclusion, 
however, is limited to tritium reaction systems for 
which the value of a is determined principally by only 
one component. In systems where two or more compo­
nents are present at appreciable concentrations, Eq. 
(8) indicates that the energy dependence of the collision 
fractions Ji will also affect the a term. 

Reaction Moderating Collisions 

Thus far we have assumed that collisions between 
a hot atom and thermal-energy atom or molecule lead 
to moderation of the hot atom by processes involving 
positive slope (b>O) asymmetric scattering. However, 
it would appear possible, for example, for some of the 
hot atoms to react to form a short-lived molecular 
complex which then dissociates freeing the hot atom.1° 
These hot atoms are also moderated, at least in the 
sense that the atoms can lose energy through such a 
reaction-dissociation process. In fact, the average en­
ergy loss by this process could conceivably be much 
larger than that achieved in moderating collisions. To 

TABLE I. Average and apparent energy-dependent a values.· 

El R2 
(eV) (eV) aa (a)Av 

20 10 0.897 0.888 
20 5 0.886 0.872 
20 2 0.857 0.830 
10 2 0.840 0.807 

• For Eo=2XlO' eV, r=0.020, and b, as given in Eq. (10), equal to 1.04/E; 
refer to Fig. 3. 

9 Other calculations were performed with b= 1/[(1-ri)2EiJ and 
also with r.=0.521. The differences between aa and (a )Av for this 
energy-dependent slope were of the same order of magnitude as 
those in Table I. 

10 E. K. C. Lee and F. S. Rowland, J. Am. Chern. Soc. 85, 897 
(196.,) . 
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investigate the effect on G(E) of such reaction-moder­
ating collisions we assumed that hot atoms of Eo= 
2X 105 eV are moderated initially by collisions for 
which r=0.271 and b= +1.500. At 300 eV we assumed 
that a given percent of the hot atoms will then undergo 
collisions for which r= 0.020 and b= -1.041. These 
data are given in Fig. 4, where it is seen that G(E) 
approximates the new distribution function at energies 
less than 60 eV (E/Eo=3XlO-4). 

The data of Fig. 4 serve further to confirm what is 
seen in Fig. 1, namely that, for energy-independent 
a values, the asymptotic solution is approximated 
within an energy range of E/ Einitiaj="-'0.2. If a rapid 
change in moderation occurs principally in the reactive 
energy range, El to E2, then the distribution function 
which exists in that energy range could differ from the 
asymptotic distribution function by as much as 200%-
300%. In the real hot-atom reaction systems any 
change in moderation is probably gradual over the 
energy range; as a result, the apparent a value in the 
reaction energy range will differ from the average 
asymptotic a value by what must certainly be less 
than 200%-300%. 

COMBINED ENERGY DEPENDENCIES 

As indicated by Eq. (11) evaluation of apparent a 
values should be made in terms of 

l EI 11EI 
f;(E) Pij(E) F(E)dE= - ji(E) Pij(E)d InE 

E2 aa E2 

(16) 

rather than in terms of Eq. (12). For pure systems 
(ji= 1.0), an evaluation of aa as performed above 
would require knowledge of Pij(E). Since the reaction 
probability will vary with energy, rather than be con­
stant as was assumed above, this implies that certain 
portions of the energy range El to E2 would have less 
effect on aa. However, the difference between aa and 
(a)A' should still be less than 200%-300%. 

In cases where a large amount of inert gas is present, 
such as in He-moderated T+CH4 reactions, Eqs. (2), 
(8), and (11) will yield 

=XCH41Eli[QQCH4(E)]PClI4.j(E) F(E)dE, (17) 
E2; He 

with a-taHe. For the example given by Eq. (17), the 
averaging process for determining aa requires averaging 
in terms of both peE) and the energy-dependent cross­
section ratio. 

SUMMARY 

On the basis of the data presented here it would 
appear that the use of the asymptotic energy distribu­
tion in 3He(n, p) activated tritium hot-atom reactions 
would lead to an error in aa which must be less than 

3.0 
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G(E) 
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10-' 1.0 

FIG. 4. Effect of reaction moderating collisions on the energy 
distribution function. Unperturbed scattering data: Ti=0.271, 
b=1.500; At E/Eo= 1.5 X 10-3, 20% (Curve a), 50% (Curve b), 
or 80% (Curve c) of the atoms then undergo scattering with 
T.=0.020, b=-1.041. 

200%-300%. In fact, it is perhaps not unreasonable 
to assign an upper limit to the error of ±50%. For 
(n, 'Y) activated reactions such as those leading to 
8°Br or 1281, the upper error limit in aa may be greater 
than ±50% since a large fraction of the hot atoms 
may be positively charged and the charge-transfer 
processes could contribute to pronounced energy de­
pendent scattering functions. 

Since the energy dependence of the cross-section 
ratios are as yet unknown, in cases where the collision 
cross-section ratio enters into the expression, such as 
Eq. (17), it would seem preferable to consider Eq. (17) 
in the form 

(18) 

where R= (QcHiQHeaHe)a and is considered an appar­
ent energy-averaged term. 

It is evident from the figures presented in this paper 
that the asymptotic solution can be considerably in 
error for hot-atom reactions activated by processes 
where Eo, or the range of Eo values, is in the region of 
2-50 eV. Examples of such activation methods include 
photochemical and beta-decay processes. 

APPENDIX 

Since the analytical solution of G(E) over the full 
range is tedious to calculate, we resorted to computer 
analysis. The range E/ Eo between 1 and 0.8X lO-5was 
divided into 90 equal segments on a logarithmic energy­
ratio scale. The average value on a logarithmic energy 
scale of Ki in each interval was used in the calculation. 

The value of G(E) in an energy interval was assumed 
constant. This assumption results in a cumulative sys­
tematic error. As noted in Fig. 1, for example, a con­
stant G(E) value is a reasonable approximation for 
E/ Eo < ,,-,10-1

• As a result, the principal contribution 
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to this systematic error will occur at higher values of 
Ej Eo and specifically at Ej Eo>r. 

It is relatively easy to determine the analytical so­
lution for G(E) in the range Ej Eo of r to 1.0. Using 
such an expression we calculated the true value of 
G(E) at Ej Eo=r and assumed that the error in the 
computer result at Ej Eo=r is not increased further at 
Ej Eo<r. The raw computer data for Gj(E) at Ej Eo<r 

exhibit oscillations about a value of G(E)~G(E)oo.l1 
When the correction at Ej Eo=r is applied to all data 
for Ej Eo<r the oscillations in G(E) are then centered 
around G(E)oo, which implies, as we have assumed, 
that a negligible contribution to the systematic error 
occurs at Ej Eo<r. 

11 The oscillations usually were centered about a value of G (E) 
which did not differ from G(E)oo by more than 0.2%. 
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Diatomic Gases 
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A comparison of theoretical and experimental vibrational relaxation times has been carried out for the 
halogens, nitrogen, oxygen and carbon monoxide. Reasonably good agreement is obtained for all gases 
except oxygen. For oxygen the predicted variation of the vibrational collision number with temperature 
appears to be correct; however, experimental values at high temperatures appear to be low by a factor of 
0.55. Values obtained at room temperature on the other hand agree well with theory. It would seem therefore 
that an anomalous decrease in the vibrational collision number takes place in the temperature range from 
3000 to 500oK. 

Since data for carbon monoxide could be fitted very well by theory, it is apparent that the effect of 
radiation is negligible, at least in the temperature range above lO00oK. This is consistent with the value 
of 0.03 sec for the radiative lifetime of carbon monoxide in the first excited vibrational state. 

An empirical relationship is established between the interaction constant a and the molecular diameter 
u, which reproduces the experimentally derived values quite closely. 

I. INTRODUCTION 

EXISTING treatments of vibrational excitation dur­
ing molecular collision can be related in one way 

or another to a series of papers published in the 1930's. 
Most prominent among these are the works of Zener,1·2 
who treated the problem of energy transfer both quan­
tum mechanically and classically, Jackson and Mott,3 
who treated in analytical detail the case of a repulsive 
exponential interaction potential by means of quantum 
mechanics, and Landau and Teller,4 who showed the 
dependence of the averaged vibrational excitation cross 
section on temperature. 

Somewhat later Schwartz, Slawsky, and Herzfeld5 

using a one-dimensional approach, subsequently ex­
tended to three dimensions,6 succeeded in establishing 
a fully quantum-mechanical description of the collision 
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process in an approximate, but reasonably accurate, 
form which could be used to calculate vibrational colli­
sion numbers. Such calculations have been made and 
the results compared with experimental data for many 
types of gas molecules.7 Concurrent with the work of 
Schwartz, Slawsky, and Herzfeld were a series of papers 
by Takayanagi,8 and Takayanagi and Kaneko,9 who 
presented a more complete quantum-mechanical de­
scription of the collision process, and gave numerical 
estimates of transition probabilities for 02-He and 
H2-H2 collisions. Unfortunately the results obtained 
by Takayanagi do not lend themselves to ready calcu­
lation as do those of Schwartz, Slaw sky, and Herzfeld; 
however, quite recentlylO.ll a series of papers has ap­
peared in which are tabulated quantities used in cal­
culating transition probabilities, and it is hoped that 
these will be used to correlate existing experimental 
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