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A plasma created by exploding a thin lithium wire in a vacuum is analyzed using a
magnetohydrodynamic (MHD) model. The two-temperature MHD equations including finite thermal
conductivity and electrical resistivity are derived in one-dimensional cylindrical geometry. The
resulting system of six coupled nonlinear partial differential equations in six unknowns is then solved
numerically. Results of the calculation including spatial dependence of density, temperature, and
magnetic field and time dependence of the radial profile and average temperature are given. These
calculated properties are compared to available experimental results, giving favorable agreement.

. INTRODUCTION

The method of creating a plasma by discharging an
external LC circuit across a thin wire in a vacuum can
produce plasmas with greatly varying characteristics.
The high current across the wire results in plasmas of
high density (10*®*—10%° particles/cm?) and temperatures
ranging from a few eV ' up to 1 keV, ? depending on the
wire size and material, and the external circuit. These
exploding-wire devices are very useful for dense plasma
studies and are also of interest in the study of high-
density pinch dynamics. For such applications it is
important that one know the characteristics of the plas-
ma produced by the exploding wire, particularly such
variables as temperature, density, and magnetic field
distributions. It is possible to infer some of these vari-
ables from diagnostic measurements and by using sim-
ple models such as the Bennett relationship and mass
conservation. * However, such models usually assume
infinite electrical conductivity and constant temperature,
making them of doubtful validity for low-temperature
studies. In this paper we wish to describe detailed
numerical one-dimensional magnetohydrodynamic (MHD)
calculations of exploding-wire dynamics. The model is
described in Secs. II and III, and the predictions of the
calculations are compared with available experimental
measurements in Sec. IV,

1. MHD MODEL

The MHD model is based on the method of describing
the plasma as a hydromagnetic fluid, with separate
electron and ion temperatures and both finite thermal
conductivity and electrical resistivity. The equations
comprising the model are*® (in cgs emu units, tempera-
ture in eV):

Ohm’s Law
nd=E +ux B; (1)
Maxwell’s equations,
1 3E
VXB= + = —
B=dnJ+ 5 —» (2)
oB
VXE=- = (3)
conservation of mass and momentum,
Dv
Dt =pV-u, (4)
g“—t- =—vV(p, +p,) +vI XB; (5)
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conservation of electron and ion energy,

Doy _poveu+v9.(K,VT,) +vd- (nd) - 22 TLe=Ti) |

Dt aTe leq
(6)
De; _ _ . . 0e (T, -T))
o7 = —Pwvutov (K,vT,) +aT, i (7
and equations of state (a=e, i)
eazRTu/(Y—l): (8)
pav=RTa; (9)
where
Df(x,t)_of
LI =9 4y,
TR TR (10)

is the usual Lagrangian or convective time derivative.

Here and elsewhere, 7 is the resistivity, J is the
current density, E is the electric field, B is the mag-
netic field, u is the velocity, c¢ is the speed of light,

v is the specific volume, p,, e,, K,, and T, are,
respectively, the pressure, internal energy, thermal
conductivity, and temperature (in eV) of the electrons
(@ =e) and ions (@ =1), R is the gas constant, and f,, is
the electron-ion equilibration time.

It is now necessary to make some assumptions. First
it is assumed that the wave velocity u is much less than
¢, so that the displacement current in (2) can be ne-
glected; and in the momentum equation (5), viscous and
gravitational forces have been neglected. Also, we have
assumed a fully ionized plasma with charge neutrality
and no charge separation, so that the ions and electrons
move together as a single fluid but with different ion and
electron temperatures. Thus there is one velocity u for
both species, and the ion number density »; is found
from

n;=Ny/vA,, (11)

where N, is Avogadro’s number and A, is the atomic
weight of the ions. Then the electron density n,=Zn,.
Also, we assume the plasma behaves as a polytropic gas
so that (8) and (9) are valid. Here v is the ratio of the
specific heats; normally y=%. The geometry is cylin-
drical with symmetry in the 6 and z directions, so that,
neglecting end effects, only radial variations and time
dependence are allowed.

Lastly, we choose to describe the plasma in the
Lagrangian frame of reference, %" that is, a frame mov-
ing with the fluid at velocity u. For this choice the

Copyright © 1974 American Institute of Physics 1726



1727 Chapin, Duderstadt, and Bach: Numerical studies of exploding-wire plasmas 1727

derivative in (10), which is the total time rate of change
of the function f(r,#) in this frame, reduces to just (3f/

dt),,, where m is the transformed Lagrangian coordinate
defined by

P oarl ’ 2
msf ";” :2"_0. (12)
[¢]
Thus we see
d
- )

and m is now an independent Lagrangian variable and 7
becomes a dependent variable. Hence, we now write the
system of equations in terms of m. Physically, m is
the amount of mass per radian per cm in the plasma.
This variable definition is very useful in the numerical
solution of the equations, as will be discussed in

Sec. III.

Using the geometry described previously, the vari-
ables now are B=Bé,, J=Jé,, E=E§,, and u=ué,,
along with the other scalars. To get the magnetic field
diffusion equation, substitute (2) in (1) for J and take
the curl, then put (3) in the resulting equation. After
expanding the vector products and changing to the
Lagrangian frame of reference, we have

0B o (n orB ou
by _ =. 4
(at )m (4114’ av) Ba'r (14)

Note here that the resistivity n is a scalar since J is
perpendicular to B.®

To get the electron temperature equation, first re-
write (4) and (6) in the Lagrangian frame and substitute
(4) in (6) to obtain (dropping the subscript m on the time
derivatives)

de, L2 6T> . 8ee (r,-T)
= +v
3 peat 7 ar(Ke ar) TV - f (15)

Using (8) to expand de,/d¢ gives
de, e, T, R _ 2T

= e 2t _C7e 1
at 8T, at y-1 at’ (16)
plus (2) and (9) will yield

R 9T, v a( aTE)
—_f . T L =
-1 = Ty ot oy VK,

v dvB\? R (T,-T)
() - o e e

A similar equation results for the ion temperature
T, but without the joule heating term vnJ?, since the
current heats the lighter electrons and then energy is
transferred to the ions through the collision term in-
volving £,,.

To complete the set of equations, rewrite (4) and (5)
in Lagrangian form, and transform to the new variable
m using (13). The resulting equations are

du _ ra(m‘) r_a_(m‘) B B
dt ~ ' am\ v om \ v

ar am ’ (18)

(19)

i
&3
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dv dru

i 20)
(@) st o
ST () (3
_%(Te_t:fi, (22)
STt =T s o (7 (K‘ ar>+ vy (—TTT_i)

(23)

Equations (18)—(23) comprise the set of MHD equations
for six variables: u, », v, B, T,, and T,. The second
equation, which is just the definition of the velocity, is
necessary to complete the model. The forms for the
equilibration time ¢,, and resistivity # are from Spitzer,®
while the forms for the electron and ion thermal con-
ductivities K, and K, are taken from Braginskii. ®

111. NUMERICAL SOLUTION

Equations (18)—(23) represent a set of six nonlinear
coupled partial differential equations in six unknowns.
The equations were solved numerically in a manner
similar to the methods of Refs. 5 and 10. The scheme
entailed dividing the plasma into N concentric circles
or zones and then finite differencing the equations, **
using an implicit numerical solution to find B, T,, and
T,, and an explicit solution to find %, », and v. The
variables v, B, T,, and T, are calculated at the mid-
point of each zone, while # and r are calculated at the
boundary of each zone.

To begin the calculations, various initial and boundary
conditions are given to the code. These include the
initial and boundary temperatures T, and T,, initial
radius and density, the atomic weight of the ions, and ;
N, the number of zones. It is also necessary to know the -
value of the axial current flowing through the plasma so
that the magnetic field on the boundary can be calcu-
lated. This could be numerically calculated at each time
step from the parameters of the external circuit. How-
ever, since the circuit we utilized provided essentially
just a short circuit across the wire, the current used in
the code is of the form

I(t) = exp(~- at)l, sinwt, (24)
where «, I,, and w are input values.

The code begins by dividing the plasma into N radial
zones of equal spacing. Then Am, the mass in each zone
per centimeter per radian, is calculated from the finite
difference form of (13). This Am then remains constant
at the initial values as the code is run, hence becoming
an independent variable. The basic steps of the proce-

- dure are first to calculate the velocity % from (18), then

calculate the radius » from (19), and the specific volume
v from (20). Equations (21)—(23) are next solved to find
B, T,, and T,. Then the variables are shifted and the
algorithm repeats, calculating new values in terms of
the previous ones. The time steps Af are not constant
but instead are allowed to vary subject to constraints,
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FIG. 1, Calculated plasma front trajectory and density aver-
aged temperature as functions of time,

These limits involve the change in certain variables
from one time step to the next, and also the condition
that Af must be less than the time for a magnetosonic
wave*® to travel across a zone. Thus, if the variables
are changing slowly the time step may be increased, re-
sulting in shorter run times for the code. Also, to pre-
vent discontinuities in the region of shocks during the
numerical calculation, the usual Richtmyer-Von
Neumann artificial viscosity'!? is added to the ion tem-
perature equation (23) and the momentum equation (18).

Since this model did not contain ionization dynamics,
it was not possible to investigate the exploding wire at
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FIG. 2, Calculated ion density profiles vs radius at three
different times: 1.8, 2.0, and 2.2 u-sec,
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FIG. 3. Calculated temperature and magnetic field profiles vs
radius at time 2,0 u-sec.

early times. Instead studies were initiated at some later
time after the wire had been exploded and a fully ionized
plasma had been formed. The experiment utilized
lithium wires, and experimental measurements and
theoretical calculations® show that shortly after explo-
sion the plasma was fully ionized with the lithium ions
being either singly or doubly ionized.

IV. EXPLODING-WIRE ANALYSIS

The experiment under investigation consisted of ex-
truding a thin lithium wire, 25—50 u in diameter and
5 cm in length, in a vacuum chamber at 5 X10°° Torr.
A high-voltage source of 15 kV was used to charge up a
14-,F low-inductance capacitor, which was then dis-
charged by triggering a spark gap switch. The current
produced across the wire was measured to be of the
form of (24), with a peak current of J,=10° A occurring
at 3.5 usec. Streak photographs of the plasma radius
versus time show that the plasma is strongly pinched
until it is disrupted by instabilities at about 3 usec.

The MHD calculations were initiated 1.2 usec after
the triggering of the spark gap, since the time range
1.5—3.0 pusec was the most interesting interval as far
as the experimental studies were concerned. The radial
mesh was divided into 45 zones (N=45) and typical time
steps were 1—5 nsec. From the streak photographs, the
plasma diameter was found to be ~2.5 mm, 1.2 usec
after the initial discharge. Knowing the approximate



1729 Chapin, Duderstadt, and Bach: Numerical studies of exploding-wire plasmas 1729

diameter of the solid wire, the plasma density at 1.2
usec was calculated to be ~9.0X10' using particle con-
servation. The initial electron and ion temperatures
were assumed to be 1 eV. The following discussion of
results is for the analysis using these initial conditions
of density, diameter, and temperature.

Figure 1 shows the outer radius R, of the plasma and
the density averaged temperature (7T) versus time,
where (7) is found from numerical integration of

(T)= [on,Tar([n,dr. (25)

In (25) it does not matter whether the electron or ion
temperature is used because they are nearly identical,
due to the short equilibration times (on the order of
nanoseconds) for these densities and temperatures.

In Fig. 1, the pinching of the plasma is clearly indi-
cated, with four bounces occurring in the calculated
front trajectory. This is in good agreement with streak
photographs of the radial profile, which show similiar
pinching and bouncing. These streak photographs also
show a pattern of each peak in the profile being slightly
larger than the previous one, again in agreement with
the calculated profile. Also in Fig. 1, the plot of the
average temperature (T) shows peaks corresponding to
the pinching of the plasma, due to heating by compres-
sion. When expansion then occurs the temperature drops
slightly, as expected. However, (T) is over all an in-
creasing function with time, due to the constantly in-
creasing current which produces increasing joule heat-
ing effects. Average temperatures of slightly over 30
eV are found near the end of the calculation, when the
plasma has expanded to nearly 3 cm.

In Fig. 2, the variation of ion density with radius is

shown for three different times. Note that at 1.8 usec

a peak is shown near the center of the plasma, but at
later times the profile becomes smooth. This peak at
the early time results from the initial condition of using
a constant density profile. Typical ion densities are
"“shown to be in the range 5x10%—2 x10'"/cm®. For the
calculated temperatures at these times from Fig. 1, the
lithium ions are mainly singly ionized, resulting in
equal electron and ion densities.

Figure 3 shows the temperature (electron or ion) and
magnetic field as a function of radius at 2.0 usec. Both
profiles are found to be smooth increasing functions of
radius; and plots of these variables at other times yield
similiar shapes. The temperature varies from 9 eV at
the center of the plasma to nearly 40 eV at the boundary,
which gives a (7) from (25) of 18.9 eV, due to the higher
density near the center. The magnetic field varies from
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600 G at the center to 32 kG at the boundary. Using the
values of n, 7', and B from Figs. 2 and 3 at 2.0 usec,
the parameter Bis found to be greater than 1.0, where
B is the ratio of the plasma kinetic pressure from (9) to
the pressure exerted by the magnetic field. If gis
greater than 1.0, then the plasma should be expanding,
as can be seen from Fig. 1 at 2.0 psec.

One of the main purposes of the experiment is to mea-
sure the absorption of electromagnetic radiation incident
on the plasma. Since the absorption coefficient depends
on density and temperature, !® it can be calculated using
the results of the MHD code. The agreement between the
calculated and experimentally determined absorption
coefficients assuming inverse bremsstrahlung processes
is very good, providing a check on the results of the
model.

In conclusion, it appears that the predictions of this
MHD model of an exploding-wire plasma are consistent
with experimental measurements. The calculated front
trajectory and absorption coefficients are in agreement
with resuits of the experiment. It is hoped that this
computational model will prove useful in analyzing and
extrapolating further measurements performed on the
plasma.
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