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ABSTRACT

In this dissertation some basic relationships concerning the
gscattering of light from particles which are very small compared to
wavelengths of interest—specifically free electrons, ions, atoms and
simple molecules—are examined from a consistent application of quantum
perturbation theory to a many body system. Of major concern are par-
ticles in gaseous or plasma systems, although many of the results may
have broader validity. For the most part attention is confined to
nonresonance, linear, single scattering. Higher ordered corrections
to the scattering cross section which arise from the variation of the
refractive index from unity are neglected and the possible effects of
variations in the intensity of incident radiation over distances com-
parable to wavelengths of interest are not considered in detail. The
results obtained under these conditions appear to retain wide limits
of applicability which are discussed in Chapter I. However, where
necegsary, all of these conditions can be relaxed to varying degrees
through procedures which are mentioned at appropriate points in
Chapter I.

Among the major results obtained here are, first, a consistent and
informative derivation of the dependence of light scattering in gases
on particle-particle interactions; second, a comparitively simple
derivation of the angular distribution of the scattered light; third,
detailed relationships between scattering cross sections and oscillator
strengths which permit the calculation of Rayleigh and Raman scattering
cross gections under appropriate conditions; and fourth, a relationship
between familiar quantum expressions for scattering cross sections and
refractive indices which is significantly different than the well known
classical relationship under conditions for which the classgical rela-
tionship is often assumed to be valid.

vii






INTRODUCTION

In the late 1800's light scattering began to receive fairly wide-
spread attention which has persisted to the present and is now being
enhanced by the recent and continuing development of intense monochro-
matic light sources and sensitiVe detection schemes. As evidence of this
attention, many thousands of articles and books directly concerned with
light scattering have appeared since 1800. 1In the following paragraphs
an attempt is made to summarize the major published results up to August,
1965, which pertain most directly to this dissertation. After the sum-
mary, the dissertation is outlined and the results which appear to be
significant are described in some detail.

Recorded observations of light scattering from small particles date
back at least to 1802, whén Richterl observed the path of a light beam
passing through a sol of colloidal gold. Tynda112 reinvestigated this
effect in clouds of small particles created by chemical interactions
between vapors. He observed (1869) that the scattered light is pre-
dominantly blue, and if the incident light is polarized, the scattering
is then visible only in the plane perpendicular to this polarization.

While Tyndall and many others thought that scattering from similar
particles might account for the blue color df the sky, Lord Rayleigh5
argued that this phenomencon arises primarily from scattering by molecules.

i
In establishing this point of view, Rayleigh  developed (1899) a theory






of light scattering from molecules based on Maxwell's equations and the
idea that the oscillating electric fleld representing a beam of incident
radiation induces oscillating dipoles in scattering particles. These
ogclllating dipoles set up & secondary radiation field which represents
the scattered radiation. In general the radiation scattered from dif-
ferent particles Iinterferes such that the total effect may depend sensi-
tively on the relative positions of particles. However, Rayleigh &
showed that if the interactions between particles are neglected (ideal
gas assumption) then the effects of interference vanish and the total
intensity of scattered radlation may be obtalned by calculatlng the in-
tensity of light scattered by a single characteristic particle and then
multiplying by the number of scattering particles.

In 1915 Cabannes6 reported the first observatlon of light scattered
from carefully filtered gas. Shortly thefeafter, Smoluchowski7 and
struttd (Iord Rayleigh's son) confirmed this observation in independent
experiments. Rayleigh's theory successfully explalned the gross fea-
tures of the scattering; e.g., the preponderance of blue scattering and
the (approximate) relationship between the scattering cross section and
corresponding refractive indicesg. Although in its earllest form this
theory predicted that the light scattered through 90° would be totally
polarized perpendicular to the plane of scattering, Strutt? (1918) and
others observed slight depolarization In the light so scattered. Through

a modification of hils theory, introducing the assumption of anisotropic






scattering particles, Rayleighlo was able to explain the presence of de-
polarization and to relate it to the structure of the scattering particles.

Rayleigh's classical theory, suitably modified, has been employed
extengively up to the present time. Its popularity arises at least in
part from the simplicity and familiarity of its concepts and the fact
that its predictions have been reasonably consistent with the experimental
data obtained to date.

This theory does not apply directly to scattering of light from
particles whose linear dimensions are comparable to the wavelength of
the incident radiation or to systems of particles whose mutual inter-
actions observably effect the scattering. For the first case Rayleighll

12 . . . :
and Gans  developed extensions to Rayleigh's basic theory for particles
13
of intermediate size, and Mie (1908) developed a general theory.

With reference to the second case, the interactions between simple
molecules or atoms in gaseous systems away from a critical point appear
to affect the scattering directly only in fine detail. Experimental
observations of this fine detail have not been reported yet, but it
appears likely that these experiments are becoming feasible. However,
near a critical point in gases, and in plasmas, liquids and solids,
particle-particle interactions play an important role in determining

) . 1k
light scattering properties.

Two different but equivalent techniques have developed for analyzing

the effects of particle-particle interactions on light scattering. First



one may combine the contributions of individual particles, taking into
account the relative phases of the electric field oscillations repre-
senting these contributions at the point of observation. The relative
phases for coherent scattering* depend on particle relative positions
which may be described, for example, through the introduction of cor-
relation functions. For example, Debye15 has applied the individual
particle approach to dilute solutions of high polymers which do not
interact with each other strongly. Very recently, Pecoral6 has extended
this approach in order to examine the detailed spectral distribution of
light Rayleigh scattered from a monochromatic beam.

Second, the coherent scattering has been treated as the result of
fluctuations in the refractive index of the scattering medium which re-
sult from statistical fluctuations in macroscopic properties such as den-
sity or concentration. This approach is usually based upon classical
macroscopic electromagnetic theory. Smoluchowski17 (1908) first applied
the fluctuation analysis to light scattering, using it to account for
the strong scattering from gases and solutions near a critical point.
Einstein]‘8 (1910) developed the general fluctuation theory, and Ornstein
and Zernickel9 developed a detailed theory of critical scattering.
Brillouin®® (1922) predicted that fluctuations associated with stand-
ing sound waves should break up the Rayleigh scattering line into a

doublet. In the first experimental observation of the frequency dis-

¥See Section 2.1.



tribution of the light scattered by a liquid, Gross21 (1930) observed

a central line in addition to this doublet. In 1934 Iandau and Placzek22
attributed the cential line to thermal motions which are unorganized in
time.

Following these early works a great number of publications concern-
ing classical light scattering theory and related experiments have ap-
peared. Much of the fundamental work is summarized by Born,23 and, with
reference to scattering by simple molecules and atoms, by Cabannes
and Bhagavantam.l

Shortly after 1940 Deby‘el5 began development of the applications of
light scattering in chemistry. Stacey25 presents a fairly recent (1956)
account of these applications. The theory and applications of light
scattering from small particles is presented along with a comprehensive
bibliography by Van de Hulst26 (1957). The more recent publications

Electromagnetic Scattering27 (1963), and Phonons and Phonon Interac-

tions28 (1964) contain articles concerning light scattering as related
to chemistry, astrophysics, atmospheric physics, and physics of the

liquid and solid state.

The quantum theory began with a derivation from the correspon-

dence principle by Kramers and Heisenberg29 (1925) of an expression

for the light scattering from an isolated atom. This result was con-

50

firmed by Dirac's later derivation (1927) employing a modern formulation



of quantum mechanics. Besides the "elastic" light scattering predicted
by Rayleigh's classical theory, the results of Kramers and Heisenberg,
and Dirac suggested the possibility of "inelastic™ light scattering in
which, during a scattering transition, the scattering particle changes
state and either absorbs or gives up a discrete amount of energy. This
inelastic scattering was first identified by Raman5l (1928) at a time
when it provided important confirmation of the quantum light scattering
theory and quantum mechanics in general. The inelastic scattering is
often referred to as Raman scattering (or the Raman effect) as opposed
to the elastic Rayleigh scattering.

The early work on Raman scattering is summarized by Rocard52 (1928),
Cabanneseu (1929), Kohlrausch53 (1931) and Bhagavantamlu (1940). Al-
though quantum mechanics appears to be required for a detailed examina-
tion of Raman scattering, many of these significant early contributions
proceed at least in part from classical theory. However, in 1931 Placzek
began to publish a series of papers in which he developed and examined
the quantum expressions for light scattering in detail, and in particular,
applied group theory to obtain relationships between the properties of
the scattered radiation and the symmetry characteristics of the scatter-
ing particles. This serleg culminated 1n a detailed review articleBh

(1934) treating the general properties of both Rayleigh and Raman

geattering.
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After Placzek's work, the quantum theory has been applied exten-
sively to resonance scattering from atoms and molecules. Behringer55
presents a relatively modern account (1958) of the resonance theory.

The quantum theory has also been applied extensively to Raman scatter-
ing away from resonance,5 although classical theory is still used to
examine various aspects. of Raman scattering. The application of quantum
theory to Rayleigh scattering away from resonance seems to be less ex-
tensive, aside from Placzek's work, perhaps because of the appeal of the
classical approach noted earlier.

Most of the published gquantum treatments of light scattering from
atoms and molecules concentrate on the scattering from a single particle.
The scattering from an aggregate of such particles is determined by in-
troducing appropriate phase factors which depend on particle positions,
as in one classical approach. In the sense that the dependence on par-
ticle positions is not established directly from the basic gquantum for-
mulation such approaches represént inconsistent treatments of the
scattering by many particle systems, although they lead to correct re-
sults under certain conditions.

Soon after the development of the pulsed ruby laser, Hughe556
(1962) pointed out that scattering of an intense laser beam by free
electrons should be observable in a plasma, and if so, the scattered

radiation should contain detailed, spatially resolved information about

the plasma. Perhaps because of the great interest in plasma diagnostics,



and because of a gimilar problem which had just appeared councerning the
gcattering of radar waves in the ionosphere,57 several detailed theo-
retical analysis of the light scattering by free electrons in a plasma
appeared almost immediately. Notable among these analyses are those of’
Lamb,38 (1962) Rosenbluth and Rostoker,59 (1962) and Dubois and Gilin-
skyuo (1963). Shortly thereafter considerations of relativistic ef-

L1 ho

fects, collision effects = and nonlinear scattering appeared.,uﬁ The
first experimental observation of light scattering from a laboratory
plasma was reported by Funfer and co&\ror"k;erslm (1963) and, as experimental
difficulties were solved, more detailed observations were reported. This
technique 1s being developed into a useful diagnostic tool as evidenced
by the numerous reports of plasma light scattering experiments which

L

have been pregented recently.

\Ji

laser sources alsc greatly extend the experimental capabilities for
light scattering from gases, liqulds, and solids. First, the extreme
intensity of laser beams renders vigible all sorts of interesting non-
linear phenomena. The first observation of such phenomena were reported
by Colgrave, Franken, lLewis, and Sau:ldsalL6 Terhune and'coworkerswzhave
also publighed numerous observations of nonlinear phenomena.

Second, the extreme collimation, coherence, and monochromaticity
which is characteristic of laser beams allow the observation of fine

detail of the scattered light which contains a great deal of information

about the properties of the scattering medium. The theoretical work of



Pecoral and the recent experiments reported by Rank, Kiess, Fink, and
Wiggens“8 illustrate this remark.

Tn this dissertation some basic relationships concerning the scat-
tering of light from particles which are very small compared to wave-
lengths of interest—specifically free electrons, lons, atoms, and simple
molecules—are examined from a consistent application of quantum mechanical
perturbation theory to a many particle system. Of major concern are par-
ticles in gaseous or plasma systems, although many of the results may
have broader validity. For the most part attention is confined to non-
regonance, linear single scattering. Higher order corrections to the
scattering cross section which arise from the variation of the refrac-
tive index from unity are neglected and the possible effects of varia-
tions in the intensity of incident radiation over distances comparable
to wavelengths of interest are not considered in detail. The results
obtained under these conditions appear to retain wide limits of applica-
bility which are discussed in Chapter I. However, where necessary, all
of these conditions can be relaxed to varying degrees through procedures
which are mentioned at appropriate points in the main text.

In Chapter I a general light scattering cross section for free
electrons, ions, atoms, and molecules in a gas or plasma is derived.

The dependence of the cross section on relative positions of the scatter-
ing particles and on the particle internal degrees of freedom are developed

consistently. In this development terms arise corresponding to scattering
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transitions in whick two particles simultaneously change state. In Ap-
pendix C it is shown that these terms have a very strong resonance be-
havior and are probably insignificant except perhaps at resonance. Since
resonance scattering is not of immediate concern these terms are not con-
sidered further.

In Chapter II the dependence of the scattering from a system of
particles on the relative positions of the particles is developed through
a sinple approximation which is valid except within a fraction of an
angstrom of resonance. It is shown that this dependence may be expressed
in terms of the Van Hove G-functionsh9 which are time-dependent correla-
tion functions of particle positions. Similar results have been obtained

50

recently by others from classicall6 and quantum”” approaches. However,
it appears that the present derivation provides considerably more infor-
mation about the range of wvalidity of this formulation. Also in Chapter
TI the cross sgection integrated over final frequency is expressed in
terms of simpler correlation functions through the static approximation
which is familiar in neutron and x-ray scattering theory. Finally a
rough quantitative estimate of the significance of interference effects
between different scattering particles in gases is developed. From

this estimate it appears that these effects should be negligible in
nonresonance light scattering from gases of atoms and simple molecules

except in the vicinity of a critical point, insofar as the scatter-

ing integrated over final frequency is concerned. This conclusion
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is already well accepted although the quantitative estimate 1s perhaps
of some interest. However the possible importance of interference in
determining the fine detail of the frequency distribution of light
scattered from gases is not ruled out.

In Chapter III the scattering from free electrons in a plasma is
considered briefly. This chapter does not contain any significént
original contributions to the extensive work already published in this
field. However, perhaps of some interest is the comparison of the inter-
ference of scattering from free electrons with scattering from the other
particles which are present in a plasma. In most published analyses of
scattering from free electrons in a plasma, it is assumed that the free
electron scattering predominates overwhelmingly or at least may be con-
sidered separately. The approximation involved in this assumption is
displayed explicitly and discussed briefly in Chapter III.

In Section 4.1 the dependence of the scattering from atoms,
ions, and molecules on the internal states of these particles is
developed into a form which is identical to that obtained previously by,
for example, Dirac51 and Plgczek.Bh In Section 4.2 the angular depen-
dence of the scattering is derived using well known selection rules.
Although this angular dependence is the same as that obtained from
classical theory,25 and is implied but not put into the most convenient
form in Placzek's quantum treatment,Bh the present derivation may be of

interest because of its relative simplicity. In Section 4.3 it is shown
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that various light scattering cross sections mey be calculated from
appropriate oscillator strengths. The expressions for these calcula-
tions are put into a particularly simple form using the Wigner-Eckart

N
theorem. These results extend those of Placzek,5 who developed only
the relationship between the so-called trace scattering and oscillator
strengths. Also in Section 4.3 a relationship between Rayleigh scat-
tering cross sections and a well known quantum expression for the re-
fractive index is developed. A potentially significant difference exlsts
between this expression and the usual classical expression. Using the
properties of Racah coefficients this difference is expressed in a simple
form. In Section 4.4, some of the results of previous sections are 1l-
lustrated through the calculation of Rayleigh scattering cross sectilons
for ground state cesium atoms from oscillator strengths. The results
are interesting for several reasons:

a) The predominant cross section is large, being on the order of
or greater than 102D cm2 for incident wavelengths from 6000
A to 10,000 A, compared to cross sections for most atom and
simple molecules which are on the order of 10-28 cmg.

b) The transverse depolarization of the scattered radiation is
significant over wilde spectral regions away from resonance.
This result contradicts the frequent supposition that atoms
cannot depolarize transverse scattered radiation because, in
some sense, they are spherically symmetric.

c) The quantum relationship between the Rayleigh cross sections
for ground state cesium atoms and the corresponding refractive
index is in profound disagreement with the classical relation-
ship over spectral regions well removed from resonance, such
thet for this special case the descrepancy between these two

relationships ought to be accessible to conclusive experimental
verification.
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Tn Section 4.5 the relationship between the properties of the scattered
radiation and the symmetry of the scattering particles is discussed
briefly, and it is shown that the symmetry theory does not preclude
depolarization of transverse -scattered radiation by particles with
spherically symmetric change distributions in initial and final states.
Finally in Chapter V some of the implications of the results of this
dissertation are discussed and areas of possibly interesting future work

are mentioned.



CHAPTER I
DERIVATION OF A GENERAL LIGHT SCATTERING CROSS SECTION
FOR PARTICLES WHICH ARE VERY SMALL COMPARED TO
WAVELENGTHS OF INCIDENT AND SCATTERED RADIATION
In Chapter I we present a guantum analysis of light scattering
interactions in a gas or plasma. This analysis leads to the development
of scattering cross sections which relate the properties of the scattered
radiation to those of the incident radiation and scattering system. 1In
the theoretical approach adopted here we consider the scattering inter-
actions which occur in an arbitrarily large cubical cell. This cell pro-
cedure has been employed frequently for similar calculations, for example
by Heitler,52'Schiff,55 and Messiah.5l+ In each of their presentations
it is required that the cell should be so large that its size does not
affect the results of the calculation when one is calculating, for ex-
ample, a rate per unit volume. We shall also adopt this requirement for
the derivation of scattering cross sections to follow. In Section 1.5
it is argued that the large cell procedure should lead to a correct
analysis of the scattering at least as long as the properties of the
radiation (for example, intensity and spectral distribution) in the
actual experiment do not change significantly over distances comparable to

wavelengths of interest.

14
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l.1l. THE HAMILTONIAN FOR THE SCATTERING SYSTEM
The Hamiltonian for the scattering system within the cell may be
written in fhe form
€y

2
S (- ZPy)
H = %<“2rr1; LA VAt HR (1.1)

The sum over j is over all electrons (including bound electrons) and

nuclei in the cell. The potential V represents interactions between all
of the electrons and nuclei within the cell. HR igs the Hamiltonian for
the radiation.

Following a familiar procedure52 the radiation fields within the
cell are Fourier analyzed in terms of functions which, for mathematical
convenience, are required to satisfy periodic boundary conditions on the

walls of the cell. As a result one obtains

=) hek o (1)

and

_ l, _ .
AR t -8 ik,\»r
Ay ::Z ("’E‘"v?‘") Eije 7T T oe 3J (1.3)

Here I is the dimension of the cell. Notice that the subscript j desig-
nates the point in space at which A is to be evaluated. The index A in-
dicates a particular photon state of polarization ¢, and propogation

vector Eha The sum over A\ implies a sum over all values of k) consistent

with the periodic boundary conditions and a sum over two orthogonal
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polarizations for each value of EA' We note that in order to satisfy

the boundary condition just introduced k, assumes the values

24, 2T, 211
Ry = T St TSy T

g;z (1.b)

where ey, &y and e, are unit orthogonal vectors perpendicular to the
cell walls, and f,, m,, and n, assume all integral values in the sum
over A. The polarization vector &, which along with 5% determines a

particular photon state is perpendicular to k, such that

€,k =O (1.5)

The expansion coefficients o{ and o) act as photon creation and destruc-
tion operators, respectively. (See Egs. (1.31).)

In this section the Hamiltonian is put into a form which is con-
venient for the derivation of scattering cross sections. The first step
is to separate contributions due to atoms, lons, and molecules (hereafter
designated collectively as molecules) from contributions due to free
electrons. This separation is introduced by writing the Hamiltonian in

the form
H= %+ X+ (16)

where

Ne e =
(g, + EAy)
W =) =

% m

(1.7)



L7

N
Nm ~ N 2 &
(A~ S A _ Z M
%M :f Z =y __o@ LV o= 9{0( ey
4 ¥ 2

zma

Here Vy 1s the potential representing interactions between the Ny
electrons and nuclei in the ath molecule. Ne and Ny are the ngmbers

of free electrons and molecules in the cel‘l‘,E;{Z‘I represents the inter-
actions between particles. (The word "particle" is reserved to designate
free electrons and molecules.)

It is convenient to introduce appropriate center-of-mass transfor-
mations for the molecules to separate "external" degrees of freedom de-
scribing the motion of the center of mass of each molecule from "internal”
degrees of freedom describing the motion of bound electrons and nuclel
with respect to a molecular center of mass. There are a number of trans-
formations of this type, differing slightly in the definition of trans-
formation variables. A particular type of transformation may be chosen
for each type of particle on the basis of convenience. For example,

for atoms the transformation defined by

.10
Pua-z E}"QO (1:10)

is convenient. Here Mdb and o are the location and mass of the

nucleus; m and rgy are the location and mass of the jth electron in
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the atom. These transformations are discussed in Appendix A where it

is shown that one may write the resulting Hamiltonians in the form

N MR
’}QM = /v;x + Ho( + Hm (1.11)

X

Here Hgf contains only coordinates associated with the motion of the

particle as a whole, H§ contains only coordinates associated with the

motions of electrons and nuclei within the particle and Hgﬁ contains

those terms which express the interaction between the particle and the
radiation field.

It is convenient to write the Hamliltonlan for free electrons as

given by Eq. (1.7) in the form

R
He + He (1.12)
where
/P'L
1= Z 2?” (1.13)
T
Ne 1_ )
R_
He Z[MCAQ’ /ﬁ 2mc’- A?:\ (1.14)

Gl

The terms BME and HeR contain the interaction between the radiation
and the particle system. These interactions may be grouped together

into

R MR
\/R = He + H (1.15)

Substituting Egs. (1.1L) and (1.12) into Eq. (1.6) and employing
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Eg. (1.15), the Hamiltonian becomes

o= He - me+ HN + E}QI+ \/R+HR (1.16)

1.2. PERTURBATION THEORY AND SCATTERING TRANSITIONS

There is no known method for proceeding directly from the Hamiltonian
to a rigorous solution for a general radiation scattering problem. Thus
we are led to introduce a form of perturbation theory. For this purpose
the Hamiltonian as given by Eq. (1.16) is separated into a zero-order

contribution H° and a perturbation V as follows:

H=H"+V (1.17)
We choose the separation defined by
ot HN + I‘t““{ t + H " (1.18)
v = v+ VR (1.19)

All the contributions to H and V have been defined previously except

HL and VI. We require that
L,yl="3t
H + V= (1.20)

HI represents that part of the particle-particle interactions which 1is
included in the zero-order Hamiltonian, whereas VI represents the re-

maining part which is treated as a perturbation. It is desirable to
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choose HL so that the zero-order internal states of molecules in the
system will be factorable into individual states for each molecule.
This requirement is satisfied if HL is chosen to be any function of
external coordinates only. Then it follows that the eigenfunctions of

H°, defined by
O y° — o ° 1.21
HoY, = EL Y (1.21)
may be chosen to factor into internal, external, and radiation state

functions. In particular, the internal states satisfy

HN\b> = ENb\b> (1.22)

Y
and since HN = j{: Hg, these may be factored into individual particle
A

internal state functions such that¥*

“0>: \b\>‘b°~> 'bd>,b,\]M> (1.23)

where

H) by = Ep, | b e

*Here we assume that the particles are separately distinguishable. This
assumption is acceptable as long as the mean interparticle spacing is
much greater than particle dimension and De Broglie wavelengths, a
condition which prevails except under extreme pressure or very near
absolute zero.
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The external states are generated by the Hamiltonian
X e XM T
H = H +H + 1 (1.25)
such that

Hx\@> = E(B\(B> (1.26)

In general these states do not f-- .or into individual particle states

as the internal states do because of HI, which involves the external
coordinates of all the particles in such a way that they cannot be
separated into single particle additive contributions. However if gl

is neglected (ideal gas approximation) then the states 1ﬁ> can be chosen
to factor as in Egq. (1.23).

The radiation states are generated by HR as given by Eq. (1.2):

HR 2> = Eql (L.27)

These states may be expressed as products of substates of well-defined

52

polarization and propogation wvectors” ; i.e.,

l7>: \?|>\77->”’l'?x>"' (1.28)

The quantum number 7y represents the number of photons in the photon
state of polarization g) and propogation vector k. The creation op-
erators o{ and destruction operators ) introduced in Egs. (1.2) and

(1.3) operate on the radiation state as follows:



22

I

- AN ' N V i N
o iy 1% = Car )Ty e e (s

I

oG oLy oy = 0 [y By (1s0)

The complete zero-order eigenfunctions are given by products of
external, internal, and radiation state functions. They may be expressed

in the form

W = (@b 7 (1.31)

The state function for the system of particles and radiation, which
satisfies the Schrodinger equation
, )
HY = th3t W

may be expanded in terms of the zero-order wave functions as follows:

- — i 0
” Ca
The quantity laj(t)l' is interpretable as the probability that the
system will be in the state wg at time t. Suppose that the system 1s
in state \y‘z at t; then aj(t) = 61j. At a later time t+s, the prob-

ability that the system will be in an arbitrary state f 1is given by5l‘L
2 ll
‘ QP (t+—5) l = \U{_‘( (S> (1.32)

where U(s) is the time-development operator of the system. If the
Hamiltonian for the system is independent of time (as in the present

case) then ,
s |
11

UGs) = €

(1.33)
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In systems having continuous or dense state distributions. in
energy (as in the present case) perturbation theory approximations for
the probability [Ufi(s)|2 increase linearly with time in appropriate
time domains. Anticipating this result, we define a transition prob-

ability per unit time from state 1 to state f by

2
Time = 'ls“\ UH(S)‘ (1.54)

A goal of time-dependent perturbation theory is to calculate expressions
for Ti+=f to successive orders of approximation. In order to include

the dominant features of light scattering from gases, it is necessary

to carry the perturbation theory to second order at least, because in
many cases the second order contribution will be comparable to or even
larger than the first order contribution. (This point is discussed in
Section 4.1.) On the other hand, the next higher order of approximatien
contains contributions associated with nonlinear radiation effects and
other higher order corrections which we shall not examine in detail.*
Thus we confine present attention to second order perturbation theory

which leads to*¥

v; 4 ’
Tioe =5 )\/@ Z Il EICH

*See Sections 1.3, 1.5, 2.2, and 2.5 for remarks concerning these
higher-order contributions.
*%Z3ee, for example, Ref. 55, Sec. 4.3.
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Near resonance or if initial and/or final states are significantly
broadened or shifted in comparison with experimental resolution it is
necessary to consider the effects of state widths and shifts on the
scattering.¥ TFor this situation one may employ a form of perturbation
theory known as damping theory. This .approach is presented in basic
form by Heitler52; Messiah5lL gives 1t & fairly detailed treatment and
Akcas 56 has developed and applied it with notable success to a variety
of emission, absorption, and scattering problems in which line widths
are important. Because for the most part we shall be interested in
nonresonance scattering from particles whose initial and final states

of concern are sharp, the discussion of the effects of energy widths

and shifts on the scattering is relegated to Appendix B.

1.35. DEPENDENCE OF THE TRANSITION RATE PER UNIT TIME ON RADIATION STATES

In this section we determine an expression for the perturbation
which is appropriate for a system of free electrons, ions, atoms, and
molecules. Then the matrix elements and products of matrix elements of
V which occur in Ty.r as given by Eq. (1.35) or (B-1) are evaluated be-

tween radiation states which are appropriate to a scattering transition.

*The zero-order states, wg, are characterized by sharply defined energiss,
eigenvalues of HC. However, when these states are used to describe a sys-
tam with Hamiltonian HO+V, both a shift in energy .and an energy uncer-
tainty or width may become associated with each state.
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From Eq. (1.19), the perturbation V may be written in the form
I . \/R
\/ — \/..L. +.\/'\
Notice that VI contains no operators on the radiation states.
From Egs. (1.15), (1.1%) and (A.16), VR can be written in the
form Ne e 82 9
VR =ZXEZ5% (i +2mc2AgJ
L}
NM 2o -
. e € 2
Z\FYTE Ay * Ty +zmee Aoy

%

Thus it appears that the light scattering is due primarily to the

(1.36)

electrons of the system, bound and free, and that center-of-mass correc-
tions may be ignored in the perturbation to a good approximation.

It is convenient to separate VR into two parts as follows:

VAR \/‘ - Ve (1.57)

Nm Zy

chﬂ?; 4%+2_ch Pocg* Ty (1.38)
_!\lm 2

\/ ?:g;;,‘gz/\ + } 2_27??(2 /\sxg (1.39)

This separation is useful because Vl ig linear and V2 quadratic in

creation and destruction operators. Thus, matrix elements of Vl vanish
between all photon states except those which differ in only one occupa-
tion number, this number changing by one. Likewise, matrix elements of

V2 vanish between all radiation states except those which are the same,
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or between which two occupation numbers are different, each changing
by one, or between which only one occupation number is different,
changing by two.

The dependence of the matrix elements involved in Ty,f on radlation
states may now be determined. To do so, it is convenient to write out
this quantity as given by Eq. (1.35), substituting from Egs. (1.19) and
(1.37) for V, and indicating explicltly the factorization of the zero
order state functions into external particle, internal particle, and

radiation functions. As a result one obtains

_ 2T L v2, YT
_an-e&'lé'z’ ~ <V‘ #VorV )a'b'?’,ozw (1.40)

J 2\ I
—CE"ZE??" Egryzr = Eguy <V| PV 23

'y, g’

2
I 1 I
+V o+ . Earv/n — )
(X) <V V )@”b”'z”,Bb'?} g( &'¥? — Egupy
At this point it is convenient to restrict attention to scatter-

ing transitions. If we write the iniltial radiation state in the form

> = 1) 1% %> (1.41)

where |nl> represents the photon state Eﬂﬁl’ |n2> represents the photon
state €gko, and |nR> represents the remaining photon states, then the
final radiastion state corresponding to a single scattering transition

in which one photon 1s scattered from state eﬁEl to state gk, is given by

]?'> = \71“> ‘7L+‘>\?R> (1.42)
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Restricting attention to final states of this type we obtain from Eg.
(1.40) the transition probability per unit time for a scattering inter-
action in which the particle states change from (b to H'Db' and a
photon i1s scattered from state Ei&l to state ek, Most of the matrix
elements and matrix element products in Eq. (1.40) do not contribute
to this transition probability because of the.restriction on final
photon states. In the first term within the absolute square, matrix
elements of-Vl_Vanish since these are nonzero only between radiation
states in which a single occupation number changes. Likewise, matrix
elements of V'I vanish because this operator is diagonal between radia-
tion states. In the second term within the absolute square, the products
of matrix elements of V' with matrix elements of VL and V2 vanish be-
cause these are nonzero only between radiation states in which one or
three photons change state.¥

Products of matrix elements of V2 contribute fourth-order corrections

to the transition rate which correspond to nonlinear effects, and term
which may be assoclated with corrections to the refractive index. As

mentioned previously, these contributions will be neglected here.*¥

*Actually the latter transition will contribute to observed scattering
through events where two photons are absorbed and one is emitted, or
vice versa. Consideration of these transitions and similar higher
ordered transitions is excluded by our choice of final photon states.
These transitions could be included by allowing a more general final
photon state. However the resulting contribution to the scattering is
of third order in the radiation particle coupling; it appears that this
contribution is negligible at least under conditions of present interest
(linear, nonresonance scattering and refraction index near unity)°

*¥Gee Section 1.5 for a discussion of the gignificance of these
terms.
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Products of matrix elements of V2 and V% introduce corrections to the
scattéring rate which arise from particle-particle interactions. For
scattering systems in which all particles are initially in nondegenerate
ground states it can be argued that an appropriate choice for HI, namely,
<b|3(1|b>, will cause these contributions to be quite small. However,

in systems in which internal particle states change frequently as a re-
sult of collisions it is possible that these terms might introduce
significant corrections. These corrections will be ignored for the present
but they are considered briefly in Sections 2.2 and 2.5,

Dropping the terms mentioned in the previous paragraphs, Eg. (l.ho)

becomes
ALl 2
—\—(—Bb"l—-»@lé"l’ T R Vt%'b’?’,@b'? (1.43)
2
|
Z - \élb/yzl (B”b h# @n ";?n @b? 5 ( E(B/@ + Elo/b—/hw)
&6 " E@"b" T Bk

where

Ezd?@ = Ei@r" E:@

Egp, = By
and

Yo = E?'_E?: %c(kr*k’z.)

Substituting from Eg. (1.3) for A(r) in Egs. (1.38) and (1.39), one
obtains expressions for Vl and V2 in terms of photon creation and destruc-
tion operators. The matrix elements of these operators between photon

states may be evaluated immediately, using the properties outlined in

Egs. (1.29) and (1.30). One obtains for the matrix elements of Ve
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between the photon states given by Egs. (1.41) and (1.42):

e'L TrJF\C ?| I+ ?1_) <€ €2>

2 —_—
v@'\o'7')(357 o YHC" Ry Re (1. 4k)

2/ 6] %- e 8) +Z~Z<@'le"f‘ ¥ ay<uie= by |
i X4 -

where

ki - k
This contribution will be referred to as the first-order contribution
to the scattering. The reference is not to relative magnitude, but
to the sequence in the perturbation expansion.

The products of matrix elements in the second part of Eq. (1.43)
involve intermediate radiation states represented by |n“>. Because of
the properties of Vl, there are only two types of intermediate radia-
tion states for which the products of matrix elements do not vanish.

These are:

(a) l'?//> = ’7|"|>‘ ?z>\‘7g>
() |7 > = l7u>t7z.+'> |7R>

Evaluating these matrix elements between photon states, one obtains

Case (a): (1.45)

{
VI Iat QM nh i pt z (Z‘n"hc '?(H-'?.z)
gEn, 88" Ve bt g)(___){.
= \me \ . | EggtEpp-hoo
E_B"bl Qu" EBbV) (m klk 8 B bb

(x\E(@' —c\ez -pﬂm}éw i@'le ta- B 103~><;,|etkz Lre TT@M.\B’)]

NM Z,(

(x)[i(@)".\eik"\ﬁ’@}\ 188y, ZZQB"]Qik"Bd |8) <Jo"f€ik' Pt Ty, lb>]
¢
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Case (b):
(1.46)

Veup iy Vi _ )(MQP(W%)} |
E.B’lbﬂrell EO%b’z mc E |Q ka F_@// 4 Ema hwe

e [ l‘?\’f’a' " o & ' lkl"Ru N Lk g /
OOB:K@ R R, \‘B>SKE{+ZZ<(B e T 18D<kle™ %Tt%
K ,
0| <12 95y, i *’@"i o6

Here we have introduced the notation myj) = €\ '%qj, etec. These contributions
wlll be referred to as the second order contributions to the scattering.
Substituting Egs. (1.44), (1.45) and (1.46) into Eq. (1.43), one

obtains

(1. 47)
—Ema@'w = 2); <vfc‘> (Zﬂqc) V'f{ilzl) (E&’B*Eb’b‘t’@

(& €2>Z<(Bl€ 588y + (& &)ZZ(@] e “|03><b\e‘ Baly
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It is convenient at this point to introduce the dipole approxima-
tion, expanding the exponentials eiEfEaj, etc., involved in matrix
elements between internal states, and neglecting all but the leading
terms (unity). This approximation appears to be very good for light
scattering from atoms, ions, and simple molecules because the wave-
lengths involved are several orders of magnitude greater than the
particle dimensions and therefore ﬁ'Eaj << 1 over values of Eaj for
which the internal wave functions are significantly different from
zero. Thus the quadrupole and higher order scattering transition
which we neglect in the dipole approximation are, in general, very weak.

Adopting this approximation and at the same time multiplying out
the terms within the absolute square in Eq. (1.47), one obtains Eq.
(C.1). This equation is not reproduced here because of its complexity.
Much of this complexity arises from the cross products within the ab-
golute square of matrix elements involving different particles. These
cross terms give rise to scattering transitions in which two particles
may change states simultaneously. For example, both particles might
absorb energy from an incident photon during a single scattering transi-
tion. In Appendix C it is demonstrated that these contributions vanish
in the ideal gas approximation. Moreover, it appears that the cross
terms between molecule pairs, and between molecule and electron pailrs
should be very small in a real gas, or plasma at least away from

regsonance. However, it is not immediately clear that cross terms between
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pailrs of free electrons are small in, say, a plasma. Accordingly we
will retain the electron cross terms for the moment but drop all others

to obtain a much simplified expression for , which should be

Teon> @b
accurate at least away from resonance. This expression is

(1.48)

0T 2T he Z[O(H‘?Z)}
Tam—ely = 72 mcz) E ) R 5@’@*%’5“*’)
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Nwm } _ik, K o Y
bty { el 5 B (e et B R gy s, | )
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Here we have introduced the notation

Zot
= ZWO(W
&
Wg'g = %(E@”” Eg)

In the following section the relationship between T(an* ®'b'y’
and scattering cross sections will be developed.

1.k, REIATTONSHIPS BETWEEN Tgyp., q'p'n's SCATTERING CROSS SECTIONS
AND INTENSITY OF SCATTERED RADIATION

Scattering cross sections appear to be more convenient than transi-
tion probabilities for describing the scattering properties of a general

system. Accordingly, we define the differential scattering cross section

N 2. " y . L, ik
i ®le” h/ﬁy_\@><(8 ]etku r’/ﬁ,l@) <®|etk| Z*ﬂ,l@%@”}e k, gﬁl‘@}
2 (J)| - C/L)@//(B - [
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d(gi&l - EEKQ) such that

Rate at which photons are scattered from an

initial state of polarization ¢; and propoga-

tion vector ki to a final state with polariza-
G(Elﬁl > 5252)d5k2 = tion gp and propogation vector in d5k2at ko

a N (x) incident photon flux

(1.49)
In Chapter II it will become apparent that this cross section is indepen-
dent of the cell dimension L, as implied in Section 2.1. We proceed
now to develop the relationship between this quantity and T@bn+%ﬁb’n’
as given by Eq. (1.48).

The transition probability per unit time T@bn+d§b' y corresponds

n
to a transition between a specific initial state and specific final state.
However, during the course of a typical scattering experiment, the
initial and final particle states are not observed. In fact, the most
that one usually knows about the particle system is some of its statis-
tical properties such as temperature and average density. We assume
here that the statistical nature of the scattering system is properly
handled by an appropriate average of T@bnﬂigb’n’ over all unobserved
initial particle states and sum over all unobserved final particle
states. On the other hand we assume that the initial radiation state
is fixed by observation.

Representing by P@b the probability that the external particle
state is |@:> and the internal particle state is |b>, we obtain

T _SyYP
‘Pg—a*z’ “Zz_;GbT@bQ—;@’b"z’ (1.50)

b Q'K
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This quantity represents the probability per unit time that a photon will
be scattered from state g k; to state gs ko in a system whose statis-

tical properties are represented by EFgy. However one would like to know

the probability per unit time that photons will be scattered into final
states of polarization [ whose propogation vectors lie in the small
increment A5k2 about 52.» This quantity is obtained by summing Tnénr
over all final states of the specified polarization which lie in A5k2-

) 33
From Eq. (1.4), the number of such states is given by (I/2x) A kp, where

5

L is the cell dimension. If A k2 is sufficiently small, then T v will

Ul

not vary significantly over the sum and one obtains

3
L 3
E T—""Z' = <‘2T1F) N ke T??""?’ (1.51)
p'in ke
The cross section defined by Eq. (1.49) may now be obtained from Eq.

(1.51) upon dividing by the incident photon flux within the cell,

(ﬂlc/L5>’ and the number of scattering particles. Thus

T (€ ki~ €Re) = NI’ (%;)(fﬁ)?’-'-?_’?, (1.52)

We wish to develop the relation between this cross section, which
pertain to scattering in a cell, and the intensity of scattered radia-
tion which will be observed in an experiment. Before doing so it is
necessary to note that the radiation within the cell has been expanded
in a momentum representation. In this representation the radiation is

treated as if it were distributed uniformly over the cell. Thus our
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analysis of scattering within a large cell corresponds to an experiment
in which the intensity of incident radiation is uniform over a suf-
ficiently large scattering volume.* This incident radiation may be de-

scribed by I(e k) which is defined such that

3 intensity of incident radiation with polarization €

I(E.E)d kK = and propogation vector in d-k at k.

(1.53)
Here the intensity is measured in terms of energy crossing unit area
(normal to k) per unit time. The incident photon flux in the state

e, k, 1is given in terms of I(e k) by

3
(BL) ﬁ@) T (ak) (15%)

The number of scattered photons with polarization €, and propoga-
tion vectors in d5k2 about §2 which appear per unit time and volume is
obtained by multiplying the cross section defined in Eq. (1.L49) by the
incident photon flux in state S\, kh’ then summing over all initial
photon states. The cell is required to be large enough so that neither
the incident intensity nor the cross section change significantly be-
tween adjacent radiation states. Then to a good approximation the sum

over 5% may be replaced by an integral through the relation
5\
L 3
— (= L
> = (5] Jd
ky

*¥The scattering- volume is defined to be the volume common to the inci-
dent beam and scattering particles which is observed by the detector
of gcattered radiation. The lower limit on the dimension of the
scattering volume, beyond which the present results are not clearly
valid, is discussed in Section 1.5,
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and one obtains for the total number of photons scattered into states
with polarization € and propogation vectors in d5k2 about Eg per unit

time and unit volume¥*

ASL{Q%;YAS]Q' );\lck’l I(_E)«E\) (C;k—?&k) (1.55)

Here Ny is the average density of scattering particles: i.e.,

The intensity of scattered radiation at a point R measured from
the scattering volume is obtained by multiplying (1.55) by the scatter-
ing volume Vg and the energy per scattered photon hwo, and dividing by
Rg. (We meke the usual assumption that R is much greater than the

largest dimension of the scattering volume.) Defining IS(R[€2§2) such

that
3 intensity of scattered radiation at R with
IS(R|€2§2)d ks = polarization ¢, and propogation vector in
we obtain

(1.56)

I (Rl€ake) = VSRZZLI% ko T cxk)ﬂ‘(exk > E2k,)

It is convenient to express the cross section and intensities in terms

of frequencies and directions of propogation rather than in terms of

propogation vectors. This transformation is eagily effected, and one

*The sum over A now indicates a sum over the two possible polarization
associated with a particle propogation vector k. The dependence of the
polarization vector on k can be indicated by w;iting thege unit vector
in the form ¢ (k) however, we have shortenéd the notation to 5%
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obtains (using the free space dispersion relation Hck, = fwy, )

CL57)

jd AQ (§Aan|)q(§xw|Q»*§z AN

T5(R| €200 () =

| UJ|
)
and

2
T(Ew Qe Q) =C' Ry T(E k> k)  (159)

From Egqs. (1.58), (1.52), (1.50) and (1..8)
(1.59)
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Qe+ ogrg tlpp

The occupation number np in Eq. (1.48) contributes to stimulated
scattering. Since we are not_sbecifically concerned with stimulated
scattering here, this contribution has been neglected in Eg. (1.59).
This equation for the scattering cross section will serve as the start-

ing point for most of the work in Chapters II, III, and IV.*

*Note that the sums over internal and external states in Eq. (1.59) im-
ply integrals over continuously distributed eigenvalues. In particular,
the sum over b" implies an Integral over the continuously distributed
eigenvalues of the positive energy states of molecules as well as sums
over the discrete eigenvalues of both positive and negative energy states.
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1.5. DISCUSSION OF THE CROSS SECTION DERIVATION

As noted in Section 1.4, the results of that section apply to a
system in which the properties of the incident radiation are constant
over a "large" scattering volume. Here we wish to establish what is
meant by "large." The effects of spatial variations of radiation
properties may be examined by breaking up the scattering volume into
small cells over which these properties do not change significantly,
then calculating the scattering contributions from each cell. Osborn57
and Klevans58 have developed the small cell approach in connection with
problems of radiation transport. Taking their work into account, it
appears that as long as the dimensions of the cells are much larger
than wavelengths or correlation ranges of interest,* spatial variations

in these properties (within the limits of linear response) should not

affect the cross section.

On the other hand, as the diameter of the incident beam becomes
very small, the properties of the scattered radiation may depend signifi-
cantly on the shape of the scattering volume. For example, this situa-
tion may arise in light scattering from solids and liquids. Here the

scattering per molecule ig reduced, typically, by an order of magnitude

#By correlation range of interest is meant a range over which significant
correlations between motions of different particles exists in the scat-
tering system, and observably affect the scattering. Very long range
correlations exist in a large crystal, but the entire range may not be
of interest in the present respect because the longer range correlations
affect only the unresolved fine detail of the scattering. See Ref. 50
for a brief but lucid discussion of correlation ranges in various media.
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by interference from different parts of the scattering volume. If the
scattering volume is made extremely small such that its dimensions ap-
proach the incident and scattering wavelengths, the interference may be
less complete and the scattering correspondingly stronger. Somewhat
similar effects may arise for scattering from plasmas or systems near

a critical point.

Theimer59 has suggested that the shape of the scattering volume
may affect the scattering even in ideal gases. It may be possible to
investigate this situation from a quantum approach through methods such
as those developed by Osborn and Klevans. However, such an undertaking
appears to be a difficult, separate problem, and will not be considered
further here.

Several times in Chapter I we have used the free space dispersion

relation

where E, 1is the photon energy in state N. This relation is consistent
with the radiation Hamiltonian given by Eq. (1.2). In the ensuing
straightforward development of the radiation-——particle interaction,
higher-order corrections which may be associated with a nonunity re-
fractive index appear in terms of the perturbation expansion which have
been omitted. This approximation appears to be acceptable in gaseous or
plasma systems at least well away from resonance. However, such correc-

tions can be included to a certain approximation through a method developed
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by’Mead.éo This method invclves the introduction of a slightly modified
radiation Hamiltonian containing an arbitrary parameter which can be
adjusted to cause the most significant of the higher order contributions
to the refractive index to vanish. As a result, these contributions are
incorporated through the parameter into the lower order terms. This
so~-called photon dressing can be introduced into the development of

this chapter without great difficulty.

In obtaining Eq. (1.59), the effects of nonlinear scattering have
been neglected consistently. Since these effects are accegsible at
least using presently available gilant pulse lasgers,* some care ought
to be taken to examine the possible significance of nonlinear scatter-
ing in any experiment employing high intensity incident light. Theoreti-
cal considerations of this problem have already been m.en’cioned.”3 How-
ever, George and coworkers6l have observed no evidence of nonlinear
scattering at moderate laser beam intensities, nor have Watson and

Clarkq62

*One clear example occurs when the laser beam breaks down a gaseous
scattering system, turning it intc a plasma. This well known phenom-
enon can be demonstrated by carefully focussing the beam of any quality
10 Mw laser. Observations of less drastic nonlinear scattering in
gases are not known to the author, although this phenomenon is being
observed in liquids and solids.



CHAPTER II

THE DEPENDENCE OF LIGHT SCATTERING CROSS SECTIONS ON EXTERNAL STATES

It is evident from the energy-conserving d-function in the general
cross section as given by Egq. (1.59) that the frequency distribution of
light scattered from a monochromatic beam in a gas or plasma ig deter-
mined by energy exchanges between the incident photons and the internal
and external states of the scattering system. From experiment it ap-
pears that the various possible energy exchanges with discrete internal
states determine the location of spectral lines of scattered light,
These energy exchanges may range from zero to amounts comparable to the
energy of the incident photon. In contrast, energy exchanges with the
external states in a gas or plasma are continuously distributed and

6

are usually extremely small, being on the order of 107" times the in-
cident photon energy for light scattering from atoms. These small en-
ergy exchanges depend on particle motions and particle-particle inter-
actions; they play a major role in determining the detailed shapes of
the spectral lines of scattered light.

Tn this chapter the dependence of light scattering cross sections
on external states is expressed in terms of two-time correlation func-
tions of particle positions, namely, the Van Hove G—functionsau9 Al-
though this formulation is not necessarily the best for the purpose

of calculating light scattering cross sections, the clear and simple

physical interpretation of the classical limits of the G-functions and

L1
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the connection established with the many other subjects in which the
G-functions have been involved makes it interesting and worthwhile.
Moreover, fairly good calculations of the G-functions (or rather, their
classical limits) for many systems of interest are available or being
developed rapidly, so that where a formulation of scattering cross sec-
tions in terms of G-functions 1g valid, the dependence on external states
may often be estimated quickly. |

Previously, from the clagsical fluctuation theory of light scat-
tering, Pecoral6 hag argued that the scattering cross sections might
be expresgsed in terms of classical limits of the G-functions. On the
other hand, Sjbrlanderso has noted that while "direct" light scatter-
ing¥* can be expressed in terms of G-functions, if scattering transi-
tiong through intermediate gtates are significant then the quantum
light scattering cross section is not related rigorously to the G-func-
tions, but rather to more complicated correlations involving an addi-
tional time wvariable.

It is argued in Section L.l that transitions through intermediate
states play an important role in light scattering from atoms and mole-
cules. However, we are able to show in Section 2.1 that the correspond-
ing light scattering cross sections may be expressed in terms of the
Van Hove G-functions through an approximation which appears to be satis-

fied very well in many nonresonance light scattering experiments. In

*That 1s, scattering which arises predominantly from the first-order
contribution of the perturbation theory.



L3

Sections 2.2 and 2.3, properties of the G-functions and their clasgical
limits are employed to discuss the detailed shape of spectral lines of
scattered radiation. In Section 2.4 the cross section integrated over
a particular gpectral line of the scattered radiation is related to a

single time correlation function through the so-called static approxi-

mation, and the properties of this cross section which depend on exter-
nal states are discussed. Finally, in Section 2.5, some limitations to

the G-function formulation are pointed out.

2.1. THE CROSS SECTION IN TERMS OF CORREILATION FUNCTIONS

The light scattering cross section as given by Eq. (1.59) is the
starting point for the work in this section. Drawing upon the argu-
ments of Chapter III, it is assumed that the resonance contributions to

the free electron scattering may be ignored. As a result, Eq. (1.59)

becomes
(2.1)

T(EWR—€2002 Q) = L2 ) ;@bé e+
'(B

0|(e Ca>Z<®le“ 5|g) + (e1-e2) iz«@’ 5Bl gbs,
N Lk R 7 / L‘Q R

I e S il Pl it oA I LI
Z;%

5> 8| T |by

’F\YY) W —~ CO@//@ - Ct)b//b

2
e e e (et B T |5 <8 el b 3

Gl + Logr] + G W,
In this equation the dependence of the first-order terms on exter-

nal coordinates 1s not the same as that of the second-order terms, com-

plicating any attempt to separate the external state contributions to
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the cross section from the internal state contributions. This complica-
tion can be removed if it is possible to ignore Wph @ in the denomina-
tors of the resonance terms and sum over ®", employing the closure prop-
erty of the external state functions. In Appendix D it is shown that

in the ideal gas the error introduced by ignoring w R'® is of order
v/c (w1 /g -wym) in the first term and V/C(wl/(bg‘lwbnb> in the second term.
Here v is the velocity of a typical scattering particle. Therefore

the error introduced in fhe ideal gas approximation by ignoring w@"@
will be negliglble when the separation from resonance is large compared
to the Doppler broadening of corresponding emission lines—a small
fraction of an angstrom at room temperature.

In a real gas, experimental observations of the sharpness of emis-
sion spectral lines support the conclusion that De'e will still be
small for those matrix elements < (B"|ei%§-°-ni}03> which are significant.

If the separation from resonance ig much greater than w R"® for these
matrix elements then it appears that to a good approximation one may

ignore w 8" and sum over @" in Eg. (2.1) to obtain

(2.2)
T(Eitv, Q1= Extwa Qo) =—,ijf %)J <§-— Z_ ZP §(Wggton-0)
&8 Bb
N (- Rx
% | {8[e™ T |8y Aupl
3

Here we have defined

A, = (Er&)8&y, | 1% o€ Ne (2.5)
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and for Ne<d « £ Nc*NMJ

Ough = (€1-€2) B8y, (2.4)
| (LB Tl B2<6 1 T [ b _<K|m:lb’><t§'\ﬂmlb>¥
' {'_”g it Wy W + W'

Near room temperature in a neutral gas, separation from resonance by
12 -1 . .
10 sec” ", or in terms of wavelength, by one angstrom or more, 1s
probably a sufficient criterion for the validity of Eg. (2.2).
In order to develop the relationship between Eq. (2.2) and par-

ticle correlation functions, it is convenient to introduce

(% e
6((/0@'@ + w%b"‘*’) = 2T _mt e

Substituting this expression for the Dirac ®-function in Eq. (2.2), the

cross section becomes

G-(El OJ| l—)C'LCU'LQz = an:Lw (YY\CQ‘)&%- (2.5)
oo
(x)SAt ST 08l B E 0@ €5 e g
A Y,

Now the sum over ®' may be carried out directly, invoking the closure

property of the external state functions, to obtain

TEwh=>alnlh)= ZTFNOJI o ZZ%E (2:6)
® bb

o (4o @) Qlutle ™ FSH T g

Xk
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It is convenient to introduce the expansion
! ) 3 n
C X L’K'Rd/-tr (Lt) tK:
Q:VTH e~ " e ? nl H - (2.7)

where by definition

[:HX (K ‘?o(’] — e“ﬁ'\g“"

and so forth. The operator

(k w» =&

represents the n tlme derivative of e k- Ry in a system described by
the Hamiltonian Hx, that 1s, a system of particles whose mutual inter-
actions are functions only of the distances between their centers. In
this type of system the series in Eq. (2.7) is in the form of a Taylor
| . ()
expansion in time, and may be represented by the operator e — ~U
. , —ikoBa .

in the Heisenberg scheme. In the same scheme e — may be written

e"ﬂi‘*ﬁa(o) . . . . (2-6)

. Introducing this notation into. Eq. , the expression

for the scattering cross section becomes

: oY &
T(&1602 > €0 Q) = v, () £ )T

Z gy, Doy SJT@ wbbw)f((B K Ral) b Ro(c) gy (57
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It is convenient to break up this cross section into "coherent”
(b=b') and "incoherent" (b#b') contributions which are designated by

o and orI, respectively, such that

760> G20 = 77 ) ZZP& (2.9)

9 2 Oy Ol SA-C &“¢B|e™ B“(")etf" Belt) g
oot/

T Q6w ) = awﬁw; mz)ZZ\ &k (2.10)

(X)Zagb’b A, 5 It et(wgb‘w)r<@ | 5 R ol B (@) >
oo

The incoherent cross section may be simplified immediately. This
cross section involves the product ao:b'b aa'b'b‘ Writing out this
product from Eq. (2.&), then employing the fact that the internal state
functions factor into individual particle state functions as indicated

in Eq. (1.25), one finds that for b'#b, a*

e baoc'b'b vanishes unless

a=0'. This result 1s obtained because of the orthogonality of the in-
dividual particle internal state functions. Therefore the incoherent

cross section reduces to the form

gt (E1 Q™ €2l $22) = m <mc’—> ZZ (2.11)

OQZ 0, S‘Jt (g w)t@,e-m'&(o)e\-h.&U:)l(g>
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The fact that Q#Q' terms vanish in the incoherent cross section
implies that it is not directly sensitive to the relative positions of
the scattering particles. This conclusion was originally established
by Breit.O?

On the other hand, the a#x' terms remain in the coherent scat-
tering cross section and the resulting interference in coherent scatter-
ing may play a significant role, even in gases.

It is interesting to note that these conclusions do not depend on
the preceeding approximations in this chapter, and in fact, one may es-
tablish them from the general expression for the cross section given by
Eq. (1.59).

In order to develop a rélationship between the scattering cross
sections given by Egs. (2.9) and (2.11) and particle correlation functions

it would be convenient to average

<(Bl e—lﬁ R (0 erS‘ R« (T) |63>

over all external states. However, this averaging process is compli-
cated by the fact that in general P(Bb depends on both internal and
external stateg in such a way that this dependence is not easy to

separate. If one introduces the approximation
Re=Tal

then the cross section as given by Eq. (2.8) becomes
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< - _ oy ‘éif 2 )
T (6100 @ G i) = 2N, mﬂ) %Pb (2.12)
('X)Za:b'b bl jclt 8( (w%’w)t<é% R (O)Q'L K R (t+r)>
S
where
<éi\f§'8u(0) em.&u(c)> _ 8%<‘B'émg“(o)e“f‘gwmj@

For a system of particles of the same type all of which are initially

in a nondegenerate ground state

and the scattering cross section as given by Eq. (2.12) is appropriate
with the sum over b restricted to the single term b,. Initially this
cross section will be developed in terms of correlation functions.

Then the results will be extended to more complicated systems. To begin

L9

the development, following the method of Van Hove '~ it is convenient

to introduce a Fourier transform of

<éi'f‘-'8°((°)€i\'_‘i_'@ot'(f)>
defined by (2.13)
3 KR \ /
G (R)T) = (2T) N'ﬁﬁwe @< e R0 ik Re <z.-)>
= (ZW)_GN-\ j\dgﬂ JEUBENY <€U§~ [I_l— B«(C)]

o eug. [2+p- Rw(ﬂ])
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Integrating over k and k' one obtains

G (BT = N Jd {[n-Bu0]8[2+e-Rale )]> (2.14)

The dependence ofC;aa,(p,T) on initial time is not indicated. The
integral over r may not be performed directly because the arguments of
the two &-functions do not commute (except for T=0).

Inverse transformation of Eq. (2.13) ylelds

<€—L5’8=((C)€L5‘Bo<'cf>> = N S&SP ot G (pr) (21

If Eq. (2.15) is substituted into Egs. (2.8), (2.9), and (2.11), the

cross sections become

(2.16)
U_(C((/\) Q€U -,_) mcz) Z_Za"(bba“'kb So( I<K w- wbk)
’ orr ot (2.17)
U’C(@ws@"@o‘”& 5.2”‘) = ‘L<§,<1) L__aod;b Ot Som'(K w)
_ (2.18)
U-L(QKAJ;C_Zi_’_E_—_Z_QJLQZ > %Z ’adgb) So(o( (K w- wbb>

when

v (kR-wT] L
Suwt ()W) = 7 |d%pdTe Gy (B1T)  (2:19)
At times it will be useful to break up the coherent cross section
into coherent direct (a=q'), and coherent interference (Q/') contribu-

tions as follows:
(2.20)

TPEWQR- €L, ) = ,,Nm Zla’(bt’l S““(K’w)

l
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, o (02 VS04, -
T G OﬁezwzQz)—_— o (—-—zﬁ c) oy At Sm, (w) (2.21)
A ol!
For a system of like particles each initially in the same individual

internal state|p>

) 2
laxlolol = Aypb Axlbb = laﬁ(’}

and
L (W T
Q— 1

> Gy ST = ) |agsl e

A B'#p
In analogy with Egs. (2.3) and (2.4) (2.22)

_ 2 (e 1 eImlp<eimler _<lmle’ X @”\Wz@f\

O\@Ip — Z(_C..’ gZ)cg@/(i +%W§ a)!_.wp“p - wz.*_w@“s

for molecules, and
Agp = €1 SR (2.23)

for free electron.
Introducing these results into Egs. (2.18), (2.20),and (2.21) and
substituting for Sy (k,w) from Eg. (2.19), the cross sections become

for a system of like particles each in the same initial state

. Qe (e*m Z 2
TO(GWQ~E002Q,) = m,(??@) (Qrs’@} (2.24)

0 |ddee [s-e-erl 62 p,0)

2\L
Q—CN(@Q);C_L "’62@2@2) = ZCTL;Z;, <%EL2> (a@(g }Z (2.25)

ul fﬁpdr gl f-el G e
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2T Qv

z 2
THEW Q26w Q) = e (%{;) L:,— (aﬁ'ﬁ | (2.26)
ke + (Copla-
(x) jd%dtet[‘ p + o] G (o)

where

GS($>T> = ;Gm X9 (2.27)

and

/
GP@fU = Z GWX’ (ﬁ)f) (2.28)

Kot/

The sum of these two functions is

G (@;t> = GS<E)'C) + GP(E)t> (2.29)

M

The superscripts S and P stand for "single" and "pair," respectively.

S AP . . .
The functionsG s G and G are identical to the G-functions intro-

duced by Van'Hbve,h9

who describes in some detail the significance and
behavior of these functions in various types of scattering systems. A
few of their properties which are of immediate interest are discussed
in the following paragraphs.

From Eq. (2.27) and the fact that Ry(t) and Ry (t+7) commute for

T=0,

GS (Lio) = §(8) (2.30)

and

GWE»M = %(ﬁ) (2.31)
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where

ace) = N1 CS[Bute) v Rar@)] .
AxX’

The G-functions can be calculated directly for an ideal gas. These
calculations are carried out in Appendix E. The results for particles

in a Maxwellian distribution at a temperature T are

) mp-

h%4
s . /V\ > ’ ZCZE
GiG( )C)_—:. (T_TTZZE € (2.33)

and

P N-1
- — 2.34
G, (£7T) E (2.34)
where in Eq. (2.33)
£F=0-2 (2.35)
and @ = kT where k in Boltzmann's constant.
(=
Notice that ? and therefore C; are complex. Although the G-
functions clearly depend on pairs of position coordinates and therefore
contain effects of particle correlations, they do not seem to conform
to a simple physical interpretation. Moveover, the calculation of
these functions for realistic models of many physical systems has proven
to be quite difficult. One popular recourse has been to replace the G-
. . . - . S
functions by corresponding classical limits which we denote by kfj (p,T),
P 2 c - .
%B (p ,7) and (p_,T). A classical limit may be obtained from the

quantum function simply by replacing the noncommuting operators Ra(O)

and Ry(T) by their commuting classical counterparts, at the same time
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replacing the average over quantum states by a classical ensemble
average. This is the so-called Vineyard perscription.6h

Rosenbaum and Zweife165 have examined the validity of the
Vineyard perscription for scattering cross sections. They find that

the dominant correction to the cross section is given by the factor

e _@n°

—

e?.@ e NG

where € is the energy transfer to external states, M, the mass of the
scattering particles, and Ap, the momentum transfer during a scattering
transition. For neutron scattering this factor is significant under
appropriate conditions (high incident energy, large momentum transfers,
and scattering particles of small mass). On the other hand, for light
scattering the momentum transfer #k and energy transfer M to external
states are extremely small in comparison, and this correction is

very small except near absolute zero.

Thus it appears that the classical limits of the G-functions are
adequate for light scattering cross sections. This conclusion is sup-
ported by a direct comparison of the quantum scattering cross section
for the ideal gas (which can be calculated rigorously) and the corre-
sponding classical cross section obtained using the Vineyard perscrip-
tion. Such a comparison is developed in Appendix E.

One obtains for the classical limit of G(g ,T)

(ﬁ(ﬁ;t) =Z <8[Bo((o) +P- Ry (t+z)> (2.36)

oo’
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Corresponding results are obtained fox'%bs(ﬁ ,T) and(%?P(ﬁ_,T). In
scattering systems whose statistical properties do not vary over space,
these classical limits possess simple physical interpretations; i.e.,
the conditional probability, given that there is a

particle at r at time 0, that there is a particle in
d5p at r + p_ at time T.

Lﬁ (p_:T)dBD

J(p:T

the conditional probability, given that there is a par-
ticle at r at time O, that the same particle is in d5p_
at time .-+

the conditional probability, given that there is a
particle at r at time Q, that a different particle
is in d5p at r + p_at time .-+

4 (p_,m)a%p

The classical limit of g(p_) is algo of interest. This limit is obtained
simply by replacing the guantum average in Egq. (2.52) by a classical
average. Both the quantum and classical functions have the physical in-
terpretation

g(p)dBp = the conditional probability, given that there is a

particle at r, that simultaneously there is a particle
in adp at r + p_.

The results obtained so far apply to a system of like particles,
each of which is in the same initial state. These results may be ex-
tended directly to a system containing several different types of par-
ticles, each of which is in a nondegenerate ground state. The cross
gection given by Eq. (2.12) is still appropriate. Breaking up the sums

over o and o' into M sums apiece, one for each type of particle, one obtains
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(2.37)

TEWQi» €2, ) = ST (m& ZZiZ ao{L’b ao{’bb
g pp o

) [diade B8+ @l ooy

Here Nll and Nu: are the numbers of particles of type p and u', respec-
tively. Since all particles of a given type are in the same initial

state, we have

Nux Nye
ZZ_Zaquwake "erw(f)r) ZQPULa,bbe bbfZ C (,@r)

bl o/
The subscripts p and p'’ on()\*b'b and au'b'b denote arbitrary particles
" _

of type 4 and u', respectively. Substituting this result into-Eq.

(2.37), the cross section becomes

J(ew Q- §ZCUzQZ> = Q_CTL:;'<mZ'L) L_ Z apblo O“/A’b’

N/
(x>§d A_C_el[ﬁ'_EHOJB‘o‘w)t] z Gy (217)

Finally, bresking up this cross section into coherent direct, coherent

(2.38)

interference, and incoherent cross sections, one obtains

: 2 -
D<6|Q)IQ|')€’LOO7..Q1 ZTI'(?;\\(W\CQ ZP@IQ@F\ jA A'L'BL(K I WD Gp(far) (2. 39)

TN E Qe D)=, mc’>Z- O Opy
T
(x) gégPdfe Loee ]Ge@'("'r)

THEwQ > Q) = 2_7;' (g5) Z@ | Qg (2.41)
) fﬁpd e s Gl g2

(2.40)
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'a fV
In these equations B designates both the type of particle and a par-
ticular initial state. In Eq. (2.40) B' also designates both a type
of particle and its initial state, whereas in Eq. (2.41) B' designates
an appropriate final state. Of course go far the initial states are

restricted to nondegenerate ground states. The functions

N

63 (£:0)= 110 Guc£) 2.2
A

Na Ng/

y
GBP(%’ (£7) = ’H“p G [er) (2.43)

have been introduced. The prime on the sum over B' implies that if

X !

B =p', the term for which & = &' is to be excluded.
We denote the classical limits of Gg and Gl;a' by Lﬁg and
§a1o These clagsical limits may be obtained from their quantum
counterparts in the same manner emplcyed to obtaint?s and\:jP° In a

system whose statistical properties do not vary over space they have the

physical interpretaticns

i?g(p,T)dEp Z conditicnal probability, given that a particle of type
B is at possition r at time O, that the same particle
will be in d9p at r + p_ at time 7.

E?gﬁ'(Q”’T)dBQ = conditional probability, given that a particle of

type B 1s at position r at time C, that a different
particle of type B' will be in d3p at r + p_ at time
To

P (o_,7)s

Note that B may equal B' incf]ﬁﬁ, o
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To a certain approximation Egs. (2.39), (2.40), and (2.41) may be
applied to systems of particles in varioug initial internal states
by treating particles of the same kind but in different initial inter-
nal states as different types of particles. In this approximation the
effect on correlations of particle transitions from one internal state
to another is neglected. If the distribution of particles about each
other does not depend sensitively on the initial states of the particles,
then this approximation ought to be good. Otherwise it may still be an
acceptable first approximation. In subsequent work this approximation
will be adopted wherever necessary. However it is discussed again in

Section 2.5.

As mentioned previously, the light scattered from a monochromatic
incident beam will be concentrated, typically, into a number of sharp
spectral lines. Of course these lines may overlap, or appear to do so
because of the limited resolution of an experiment. For coherent
scattering wyy, = 0 and, as a result, the corresponding line will be
centered on or very near the incident line at wj. On the other hand,
lines arising from incoherent scattering may be centered on or very
near wy, if wp'p =0 (states b and b' members of the same level), or
shifted up or down in frequency if ay, iy % 0. Thus a particular line

will correspond to an internal state transition from an initial level
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B to a final level B'.*¥ 1In order to calculate the incoherent cross
section for a particular line it is only necessary to sum over those

states B and B' in the corresponding levels B and B'. We denote this
B B

restricted sum by }Z }: and the corresponding cross section by
B B

q‘B'—;B(C' ¢ Ql—’€1(/\)¢£ ‘2.1\”60 (mC'Z> ZP L

3 [6p +wgr = w)T] aSee) (2.44)
(x)ycl pdre S(et

It may be that several different sets of levels have the same
. . , BB’
energy difference, in which case ¢ must be summed over those sets
in order to obtain the cross section for the observed line. A particular

example of this situation arises for incoherent Rayleigh scattering; the

corresponding cross section is given by
Loy (€100 Q> €210, Qa) =ZGBQB(@|Q)'QW”€’%‘U?-§}1 (2.45)
B

Because of the prime on the sum over B' in Eq. (2.44), only degenerate
levels contribute to OIRayo Thus this cross section would not be sig-
nificantfor argon gas at STP because nearly all the atoms are in non-
degenerate ground states.

The scattering of light from free electrons is often called Thomson

scattering. It is convenient for present purposes to apply the term

*Here we define a level to include all states within a small energy
range corresponding to the resolution of the contemplated experiment.
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Rayleigh scattering to that for which wpr'py = O. We refer to Raman

scattering as that for which wy 1y # 0. Under these conventions the co-

herent cross section contains the Thomson scattering and coherent

Rayleigh scattering whereas the incoherent cross sections contain

Raman scattering and any incoherent Rayleigh scattering that may arise.
In Sections 2.2 and 2.3 the results of this section are used to

discuss the coherent and incoherent cross sections in more detail.

2.2. THE COHERENT SCATTERING CROSS SECTION

It is convenient to consider first the behavior of the coherent
scattering cross section in an ideal gas. We assume for simplicity that
the scattering system is composed of identical particles in a nondegenerate
ground state. Substituting from Egs. (E.29) and (E.30) for the Fourier
transforms of classical limits of the G-functions in an ideal gas, one

obtains from Egs. (2.39) and (2.%0)
2

l Ma®
qCD(Q(,L),Q,—aClCszz Ocji(—i)l p@l (2TT@K2>/ 26+ (2. 46)

TG Q- €2020) = (S | O] M-S )8) )

Because of the ®-functions S(E) 8(w) which appear in Eq. (2.47), inter-
ference scattering in an ideal gas is indistinguishable from the inci-
dent beam and thus unobservable in a scattering experiment. This result
is consistent with the well. known conclusion first established by Lord

Rayleighu’5 that the light scattered from the particles of an ideal
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gas may be regarded as the sum of the light scattered from each par-
ticle.

We turn now to a consideration of coherent scattering in a real
gas. In this case it is not clear that interference scattering may be
ignored, particularly if one is interested in the frequency distribution
of the scattered light in a particular spectral line. As implied pre-
viously, in gases near STP observation of the detailed shape of a line
would require resolution of better than 0.0l angstrom. Admittedly,
using conventional experimental techniques it would be difficult to
attain such resolution because of the problems involved in obtaining a
sufficiently intense and monochromatic incident beam as well as problems
concerning spectrographic resolution which are especially severe at the
low light intensities characteristic of scattering experiments. How-
ever, appropriate laser light sources will provide intense, sufficiently
monochromatic light beams. Using such sources, it appears likely that
high resolution techniques such as those employing a Fabry Perot etalon66
or optical heterodyne techniques67 may allow the observation of detailed
line shapes in light scattering from gases.

With such experiments in mind it appears worthwhile to consider
the frequency dependence of the coherently scattered light from a real
gas, including both direct and interference scattering contributions.

Tn our formulation this frequency dependence depends upon%ﬂ (p_,T).

"Semi-quantitative estimates" of this function and its transform in
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argon gas at atmospheric pressure and 0°C have been calculated by Nelkin
and Yip,68 whose results indicate that the frequency dependence of the
scattered light should be considerably different from that resulting
from the ideal gas assumption. 8Similar results were obtained for a
gas by Iandau and Plac.zek22 in 1934 from classical fluctuation theory.
The present approach appears to offer the advantage of a more detailed
analysls. Recently, considerable interest seems to be developing in
this approach.69

The detail in the frequency spectrum reflects the differences be-
tweentﬂ (p_,T) and %ﬁIE(p_,T)'which arise because of the interactions
between -particles which are present in the real gas. However, the ef-
fect of these interactions on the frequency spectrum is not contained
entirely intf](p_;T). That part of the partlcle-particle interactions
represented by W (see Egs. (1.19) and (1.20)) may give rise to pres-
sure broadening of initial, intermediate, and final states. Away from
resonance the widths of the intermediate states do not play a signifi-
cant role. Furthermore, it is argued in Appendix B that the widths of
initial and final states should affect the cross section through their
difference. Since the initial and finel internal states are the same,
and the external and radiation states change only slightly, the initial
and final widths should be nearly equal and their effect should be small.

However, the perturbation VI also affects the cross section through

the matrix elements VIV'2 and V2VI which occur in the numerators of the
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second-order term, and through matrix products V2VIVI, VIVQVI,

II2 1171 11I1 I11, ,
VVV, VVV, VVV,and VVV in the third-order terms which have
not been considered previously. These contributions are discussed
briefly in Section 2.5. In particular, it appears that the matrix
element product VlVIVl may introduce a broadening of the spectral dis-

tribution which could obscure the detail contributed by %3(p_,7) under

certain conditions.

Very near the critical point in a gas the isothermal compressibility
(aV/dP) grows large. As a result there is very little "restoring force"
for density fluctuations within the gas and these fluctuyations grow
large, displaying strong correlation. Under this circumstance, coherent
interference scattering can dominate the scattering cross section which
increases by many orders of magnitude to the point where the scattering
becomes clearly visible to the naked eye. This phenomenon is known as
critical scattering or critical opalescence. The classical theory of
19

ceritical scattering was developed by Ornstein and Zernicke™ with con-

tributions from Placzek,TO and others. Early experimental observations

71

of critical scattering are discussed by Caatbzamnes.El‘L Fixman'™ presents
a recent (1964) summary of the theory of the critical state, and de-
votes some attention to critical scattering experiments. These experi-
ments have been performed on gases and liquid mixtures (in which concen-

tration fluctuations instead of density fluctuations generate the criti-

cal scattering). They usually involve measurements of the angular
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digtributicn of the scattered light, which differs considerably from
that of noncritical sgcattering. It is interesting to note from Fixman's
remarks that the present theory of critical scattering and correspond-
ing experimental results do not always agree satisfactorily.

We shall not discuss the phenomenon of critical scattering in de-
tail here, but wish to point out the relevance of the G-function for-
malism and the posgible interest of measurements of the frequency distribu-
tion of light scattered from a monochromatic beam passing through a

gystem near the critical gstate. Such experiments have apparently not

been reported yet.

2.5, THE INCCHERENT SCATTERING CROSS SECTION
Tnccherent Rayleigh gecattering ls observed when a significant number
of particies in the gcattering system are in initial levels containing
two or more states. One example of such a system i1s cesium vapor,
which at several hundred degreeg centigrade ig composed predominantly
of single atoms in ground stateg which are twofold degenerate because
of the electron spin of 1/20 Another example 1s a polyatomic gas,
where several types of true degeneracy may be present in addition to

closely spaced rotational states, which, if they cannot be resolved,

are included in the present definition of a level. In Section 4.2 it

is shown that among other things, incoherent scattering accounts for
depolarization of light Rayleigh-scattered through 90°, an important

henomenon as it reveals coungiderable information about the structure
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of the scattering particles.
For the incoherent Raylelgh scattering, one obtains from Egs. (2.L4L4)

and (2.45)

T4 (601 Q2 €200,Q2) = 2rw| (md)ZZ ,a‘gﬁl

[icp-cor] (2.48)
o |dpdee T G@w,r)

In the ideal gas approximation, assuming a Maxwellian distribution at a
temperature T and, for simplicity, like particles in nondegenerate ground

states, substituting for S S from Eq. (‘E 30) one obtains

TEP(6 Q6w h)= 8k (fne 5, ""\ 2 &9

i
M\l -
) (zmk’-) < 2@ Kz

The cross section for the Raman scattering line corresponding to
the transition from level B to level B' is given by Eq. (2.44). Again
in the ideal gas approximation, under the same assumptions leading to
Eq. (2.49) one obtains

2 (S )Z Jagsl
Bﬁ*SCG(Ah£2(*€2L01£QQ — mc, Pﬁ
>\/L z@Ki(w'wB'B)
(x) (27(@!«9—

It is interesting to note that the detailed shape of an incoherent scat-
S

tering line is related to(%jB instead ofLﬂa. In an experiment which ob-

serves light Rayleigh-scattered through 90°, that part of the light

which 1s polarized parallel to the plane of scattering arises entirely

from incoherent scattering whereas in & typical situation the liéht
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polarized perpendicular to the plane of scattering will arise predomi-
nantly from coherent scattering.¥* Since the latter is related to‘ﬁj
and the former to fﬁg it 1s conceivable and appears likely that the
Rayleigh line shape may depend significantly on the polarization ob-
served at the detector.
2.4. THE CROSS SECTION FOR A PARTICUIAR RAYLIEIGH OR RAMAN LINE,
INTEGRATED OVER wo

Up to this point in Chapter II, cross sections which describe the
detailed shapes of spectral lines of light scattered from a monoenergetic
incident beam in gases have been develofed and examined. However, as
pointed out previcusly, observation of this detail is extremely difficult,
lying near tﬁe limit of prelaser capabilities. Apparently the most de-
tailed quantity measured carefully to date (in gas scattering experiments)
is the intensity of lines integrated over frequency as a function of
polarizatién or angle of scattering. From Eq. (1.57), for the line cor-
responding to the transition from level B to level B' we have for the

integrated intensity

258’(‘3 €2 Q)= VSR‘\Q_’OZ;_— fdwi JQ] T (60 2)

(2.51)
g dew zc‘% TB 860 Q~ €200 Q)
Substituting from Eq. (2.4L4) for ¢ B+B', this equation becomes
BB’ — VS
IS (R’CZQ7°> RQ Q_Tr chZjéwlAQ‘I(eAw‘O) (2.52)

*Thege gtatements are justified in Chapter IV.
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For the intensity corresponding to coherent direct, coherent inter-

1
ference or incoherent Rayleigh scattering the cross section oBéB . 10

Eq. (2.51) should be replaced by OCD, UCN, or OIRay’ respectively.

The cross sections integrated over wp petgin considerable informa-
tion about the scattering particles, and probably will remain important
gxperimentally and theoretically even as refined laser scattering techniques
are developed. These cross sections can be expressed in terms of one-
time correlation functions through the so-called static approximation
which is well known in neutron and x-ray scattering theory. These cor-
relation functions are easier to calculateand interpret than the Van
Hove G-functions.

Perhaps the simplest development of the static approximation in-
volves an approximate integration over ws in Eq. (2.52). The integrand
depends on Wo through the ration (wgﬂbl)e, through the quantities
]Q_ﬁxalg and through k and w. However, the variation of all these quan-
tities except w over a typically sharp line is usually negligible. Thus
it appears that to a good approximation one may evaluate (wgﬁbl)g,
|CIB15|2 and k at the line center, for which wo = w1 -Wp 1y Moreover,
because of the sharpness of the line, to a good approximation the lower

limit of the integral over wp may be extended to -w. Under these ap-

it

proximations the integration acts only on e , yielding 2nd(71). Then



68

the integral over T may be performed directly, and one obtains

B—>B(R €2 > — VsNo (MC2> Sdmd@ (C/\CUIQD

(2.52)
0 (4 we')jjﬁzmﬁﬁl J& 5 G2 (p.0)
where
K = Ke t C%B'B 2
e ko = L(Q-L2)
It is convenient to define . jf | (2.53)
TP 00 0)= SL(ETIR) 10 e 0o

and likewise for the coherent direet, coherent interference, and incoherent

Rayleigh cross sections

’l

Ko
T P~ Q) =(mc”- IQ@ B ) ﬁ‘g l Gz @0  (2.54)

o P
Q—CN(C,CO Ql §€AQ2_) (mCD/ Pa(g{g (lﬁ(sjd [K e G@ﬁl (.@,0) (255)

Ia@‘é@.ngV’é"zQ’Z) (MZZ%WMI yd f EG (19'0) (2.56)

From Eqs. (2.42) awd (2.1L4),

G (£,0)=8(p) (2.57)

From Egs. (2.43) and (2.1k4),

Ne Ng/
Grp(p0 = Z (SRt +2-Ru(0)]> (2.58)

v
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Consistent with Eg. (2.32), we define

Yee ) = ;y (80) (2.59)

Then 8pp! has the physical interpretation (in a system whose statistical
properties do no vary over space)
2
gBB,(p)d5p = the conditional probability, given that there is a par-

tical of type B at r at time t, that simultaneously
there will be a particle of type B' in d3p about r + p.

Substituting Egs. (2.57) and (2.59) into Egs. (2.53), (2.54), (2.55),

and (2.56), one obtains:

B ®
Q—B-*?B/@::lw, Q-6Q) = lwl BB(mcz) %:%Z; 'aﬂ'ﬁ) (2.60)

2 \2 yA

TP (W) = (£2) Z@:Prs |Ogg] (2.61)
= e/

TN(ewQ~E ) = (‘Y%Ez)r;ﬁ,@ a*@&a@up (2.62)

o [ F qpu(e)
. B (2.63)
O—IO?%@CJ:QF*@-QD = (%1)12‘2_/% (ae‘s 'L
B Bp

In the static approximation, the intensity integrated over a spectral
line corresponding to a particular type of scattering may then be ob-

tained from the equation

A - CoL ). .
T(R €2 Q) = V°RN§ }A:fdwd&?: Lew@) Z:%‘,LQ@MQ,-’@S_L) (2.64)

where the appropriate cross section, as given by Egs. (2.60), (2.61)
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(2.62), or (2.63) is to be inserted, and ws/w) evaluated at the line
center.

These results are well known. It has been shown here merely that
they follow from the quantum expressions for the cross sections away
from resonance in the static approximation. At least to the extent
that the static approximetion is valid, the dependence of these cross
sections on internal and external states is separated (except for ef-
fects arising from line widths and higher order terms in the perturba-
tion expansion here neglected).

Explicit correction terms to the static approximation can be de-
veloped by expanding the gquantities which were evaluated at line centers
in power series in w. Or, one may employ the approach introduced by
Placzek72 with regard to neutron and x-ray scattering, in which the static
approximation appears as the first contribution in the expansion of the
cross section in terms of quantities which are closely related to moments
of the energy distribution of the scattered particles or radiation about
the line center.

Using either approach the first few correction terms in the ideal
gas are extremely small. It does not seem likely that these corrections
will be significant in a real gas or plasma except, perhaps, in the

rare circumstance in which

Sk w) = S'ABPAteiDS'QWﬂG(#»Z‘) (2.65)
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1s sensitive to small variations in k such as those which occur as w

passes through the gpectral range Aw over which a line is significant.
It is possible to present a fairly convincing argument that inter-

ference scattering will be insignificant in a real gas of atoms or

simple molecules well away from a critical point. In order to keep

the notation simple we will consider a system of like particles in non-

degenerate ground states. Then Eg. (2.62) becomes
g (g e age)
TM e~ @ Q) = (£,) ](lps'pl dpe " " g(p (2.66)

In the ideal gas approximation, from Egs. (2.31) and (2.34)

N=1
@I@ (p): B (2.67)

and for this case the Fourier integral over p_ yields(N-lyI;(Qn)56(E)
which corregponds to unobservable forward scattering. It is convenient

to define
9 (8) = (@)= e (R) (2.69)

Since the integrals of g(p.) and gIG(p_) over all p_ both equal N-1,

we have

" 69)
Jd%a,0) =0 26

Also, from Eq. (2.32)

9,(R) = Qi(-8) (2.70)
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Since gIG(p_) does not contribute to observable scattering, for any
obgervable contribution to ZPN one may replace g(p.) in Egq. (2.66) by
g1(p-), obtaining
. Q 'Kb‘f
eN — (€2 agp| [Pee™
T (cwQ~ €aldr) = <7n"c13 Qep d’pe AN(R) (2.71)

We seek a maximum value for the integral

L = Sdgp !B E g, (f) (2.72)

Noting from Eq. (2.70) that g1(p.) is an even function of p_ the in-

tegral becomes
L= _fel3(> Cor (Ko £) 94(£) (2.73)

Expanding cos(ﬁp»p_)_in a pover series, the leading contribution to

vanishes because of Eq. (2.69), and one obtains

An upper limit for the value of this Integral is given by

Lo =0 g I3 (a2t lae)] e
7

In gases under conditions not near a critical point correlations between
particles seem to persist only over very short distances comparable to
particle dimensions. We assume that these distances may be characterized

by a correlation range R such that the absolute value of gl(p_) lies
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within the envelope
\Qt(e)lwma — e (2.76)
Substituting this expression for |g1(p.)| in Eq. (2.75) and integrating
over p_, one obtains
oo
23
N, Y (KeR) 7 (2441)
IS +
T < 4T RN, ) (24 (2.77)
max }:l
This series converges if kgR < 1. For light scattering ko is of order
10° e (60004
cm”"(6000A), whereas in gases of atoms or simple molecules we assume
R 1077 cm. At STP Ny = 3 x 109 cu™>. For these values the series

is dominated by the first term and

L
Loy = 10

From Egs. (2.61) and (2.62) this integral is the ratio

TN (6WQ = €2Q2)

g (6w Q- €Qa)

for a scattering system containing particles all in the same initial state.
Simila:* results can be obtained under equivalent conditions for scatter-
ing systems containing more than one type of particle. Therefore we con-
clude that as far as the scattering integrated over a spectral line

is concerned, the coherent interference contribution should not be
significant in comparison to the coherent direct contribution in gases

of atoms or simple molecules away from critical point.
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2.5. FURTHER CONSIDERATION OF THE REIATIONSHIP BETWEEN SCATTERING
CROSS SECTIONS AND THE VAN HOVE G-FUNCTIONS

In Section 2.1 we have expressed nonresonance light scattering
cross sections in terms of correlation functions of particle posltions
in a model system whose particle-particle interactions are discribed by
the Hamlltonian HX. Thus the model system is one whose interparticle
interactions depend only on the center-of-mass positions of the par-
ticles. We have been able to take into account part of the effect on
particle correlations of the internal states of particles in the scat-
tering system by treating particles in different states as particles
of different types. However, it is implied in this treatment that
the particles in the model system have been and will be in their
initial states for all time. Thus we have neglected the effect of in-
ternal state transition on the position correlations. If internal
gstate transitions affect the distribution of particles about each
other over ranges and times which are significant for light scatter-
ing, the expression of the light scattering cross sections in terms
of Van Hove G-functions as developed in Section 2.1 is subject to
question.

At least part of the effect of internal state transitions may be con-
tained in terms of the perturbation theory which have not been con-
gsidered in Chapter II up to this point. For example, one may regard
the matrix element products V2VI and VIV2 as matrix elements of V2

between initial and final states which are partially corrected for
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collisional transitions. Third-order terms of the form VEVIVI,

VIVEVI, V2V2VI, VlVlVI, and VIVlVl may be regarded similarly. These
corrections might be incorporated into a more detailed definition

of the G-functions in terms of corrected external state functions. It
probably would be extremely difficult to calculate such functions with
contemporary techniques; rather the present significance of this sug-
gestion is that internal state transitions should be considered in cal-
culating classical limits of the G-functions. For example, the effect
of inelastic collisions might be considered in calculating correlations
between electrons and ions.

It appears that these contributions will be small for systems of
particles with nondegenerate ground states whose separation from first
excited states is large compared to the kinetic energy per particle.
Again, noble gases at temperatures up to several thousand degrees
Kelvin form good examples of such systems. In systems of particles
with degenerate or close lying initial states, it is more likely that
these correction terms may be significant.

Matrix element products of the form VlVIVl apparently cannot be
regarded as products of matrix elements of the form Vvl vetween
corrected initial and final states; rather they seem to pertain to the
interaction of the scattering particles in intermediate states with the
rest of the particle system. From elementary considerations52 it appears

that these transitions may contribute a broadening of the lines of
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gscattered radiation. For example, Ioudon73 considers matrix elements
of this type to account for energy exchanges between photons and phonons
in a crystal during scattering interactions.

These conjectures will not be pursued further, because they lie
beyond the scope of the second-order perturbation theory to which this
dissertation has been confined. However, it may be necessary to consider
the possible significance of these terms, particularly in such sensitive
experiments as those mentioned in Section 2.2.

It ig evident from Appendix D that in gases at separationg from
resonance comparable to v/c w1, the description of scattering cross
gections in terms of Van Hove G-functions fails. This result may be
illustrated by a simple calculation under the ideal gas assumption.

We shall not pursue this subject further here because of the many
other considerations which must enter a careful treatment of resonance
scattering; e.g., widths and shifts of states, possible multiple inter-
actions, and dispersion corrections due to the relatively sensitive

variation of the refractive index near resonance.



CHAPTER ITII

SCATTERING FROM FREE ELECTRONS IN A PLASMA

Over a wide range of incident frequencies away from resonance,
single free electrons have larger light scattering cross sections than
many molecules by several orders of magnitude. This fact is evident
from Table 3.1. Thus in a system which contains a significant number
of free electrons, these electrons may be the dominant scatterers. Even
if the free electron scattering does not dominate it will often be dis-
tinguishable from scattering by atoms because of pronounced differences
in the frequency distributions of light scattered from the two types
of particles.

Much of the current interest 1ln scattering from free electrons
arises from theoretical indications that such scattering in a plasma
ought to reveal valuable, difficult-to-obtain information about the
plasma, in particular about the electron density and velocity dis-
tribution. Although the scattering experiments are not easy, this
promise has been sufficient to inspire numerous sustained experimental
efforts. Judging from recently published reports,L‘L5 a significant num-
ber of these efforts have attained reasonable success, and light scat-
tering appears to be becoming a well established diagnostic tool.

In this chapter are discussed the steps necessary to obtain from

the general scattering cross section given by Eq. (1.59) the expression

7



78

TABLE 3.1

RAYLEIGH SCATTERING CROSS SECTIONS AT 6943 5
(The cross sections are equivalent to ¢,,R8Y as defined by Egq.
(k.29). They are also equal to o,,CD, as defined in Eg. (4.17),
to within a few percent. The particles are in ground states
unless otherwise indicated.)

Particle 0,,78Y in cn®/steradian
Free electron .79x].0'25 (a)
H atom 2,Lx10-28 ()
H atom in 28
metastable state 6.12x10"2) (c)
A .8L3x10-28 (a)
Xe 5.71x10"2 (a)
No 1.0kx10-28 (d)
Cs atom .89x10-25 (e)
52 61

(a) Heitler (@) George et al.

(b) Mittleman and Wolfrﬂ’L (e) Section 4.4, Fig. k4.3,
this dissertation.

(c) Wolfgang Zernik ”
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for the free electron light scattering cross section which serves as
a starting point for many of the published (quantum and classical)
theoretical analyses of free electron scattering.
The cross section given by Eq. (1.59) should apply to a plasma
system at least as long as
a) the incident frequency is well above the plasma
frequency and not too near resonance with atomic

or molecular levels in the system, and

b) the incident beam is not too intense or too
finely focussed.¥*

In order to obtain from this equation the desired expression for the
free electron crosg section, first it is necessary to neglect the
second-order contribution to the free electron scattering in Eg. (1.59),

that is, to neglect
- Roe " N 'k“\‘.:
Z Z_ g<@']etk2 py,187)< i "}d/P@ 8
Wi- We'g | -
_ <63:leu3|'fa' '(B"><8”le—tkz‘ﬁ/()27_ ‘@)>
Cug + CA)@H@

3.1)

This approximation is not difficult to Justify in the ideal gas, for
then using the arguments presented in Appendix C one may show directly
that the terms in (3.1) for which 4+#§ vanish, whereas the terms for
which.@:g are of order vg/c times the first-order free electron con-
tributions or smaller; that is, they are relativistic terms of the type

which ought to be neglected in a nonrelativistic treatment.

*These conditions are established more precisely in Chapter I and the
references quoted therein.
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Detailed theoretical analyse538’39’uo which, however, neglect the
resonance contributions of (3.1), suggest that the free electrons scat-

ter light Jjust as an ideal gas as long as the condition

}\l
>\D>> 4-”0”"@/2 (5‘2)

is satisfied. Here Ap is the Debye length characteristic of the plasma,
N is the incident wavelength and © is the angle of scatter as defined
in Fig. 4.2. It is apparent from Fig. 3.1 that the ideal gas approxima-
tion is acceptable except in relatively cold, dense plasmas and/or
small angle scattering. One might argue that if the ideal gas approxi-
mation is acceptable for the first-order contribution to the scattering
it is probably also acceptable for the second-order cqntribution, in
which case the latter would introduce negligible corrections.

However, for the case of light scattering at very small angles
and/or from dense plasmas, or the case of radar wave scattering from
the ionosphere, inequality (3.2) is no longer satisfied and detailed
theoretical analyses of the scattering (again considering only the
direct scattering contributions) indicate that it will be markedly dif-
ferent from that predicted from the ideal gas approximation. The
characteristics of the scattering in this region may be described

qualitatively as follows:*¥ First the central Doppler-broadened peak

*This qualitative description is based on the quantitative results of
Iamb.58 We assume that electrons and ions are in Maxwellian velocity
distributions at approximately equal temperatures.
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Fig. 3.1. Debye length versus plasma density and temperature
for singly charged particles.
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which is present in the ideal gas becomes much narrower, in fact ap-
proaching the width of the peak corresponding to Doppler broadening
from the more slowly moviﬁg ions. ©Since in the ideal gas the Doppler
broadening arises from energy exchanges necessary to conserve momentum
between the scattering photon and the particle from which it scatters,
narrowing of the central peak suggests that more than one particle is
taking up the recoil momentum hK; in particular it appears that an ion
ig taking up most of the recoil momentum. This phenomenon bears an
interesting analogy to the Mossbauer effect.

Second, satellite peaks appear distributed symmetrically about the
main peak. These peaks can be associated with exchanges of energy be-
tween gcattering photons and the collective modes of the plasma, in
particular with those associated with the plasma frequency. This
phenomernon bears some analogy to Brillouin scattering, although in s
plasma the long range coulomb forces rather than short range inter-
molecular forces are supporting the collective modes.

These results arise from the first-order contribution to free
electron scattering in Eq. (1.59). However, it is not completely
clear that the second-order contribution to the free electron scatter-
ing is negligible, particularly in the case where the scattering differs
markedly from that predicted by the ideal gas approximation. In fact,
as particle-particle interactions become more significant, the trend is

for the relative importance of the second-order terms to increase. This
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statement is based on the fact that in the extreme case in which the
electrons are bound, the second-order term for light scattering (as
opposed to x-ray scattering) is almost always comparable to or larger
than the first order term.*

Dubois and Gilinskiho have devoted some attention to the possible
significance of the second-order terms, using Green's function tech-
niques. Nevertheless, this issue does not seem to be completely re-
solved at the present time and further consideration of the second-
order terms may be warranted, particularly under conditions where (3.2)
fails.

Henceforth we will fall into step, assuming that the second-order
contribution to the free electron scattering is negligible. Then more
than a few angstroms away from resonance with discrete atomic or
molecular transitions, the scattering from a plasma 1s described by
Eq. (1.59). Using the methods of Chapter II this cross section may
be put into the form

(j‘(g‘w,g,-agzwlﬁzﬁ = QYC (glwlgl‘? E’LQJ’LQ'L) (3'3)
+ql (ﬁsO)nQi"ﬁzwzQL\)

L
TC(Gu = Ertnl) = ’u'wl (Y‘fkcl> Z—R’ a@ﬁ Aele (3.4)

X) jra- pdr e e PT) Gy (BT)

(3.5)

T (E\CJ|Q,-96’2(/J7_Qz> = mcl 3—‘(3 )aﬁﬁl

Lﬂf’dre‘ [0 + (@ @ G (7)

*See Section 4.1 of Chapter IV.



8L

where

. ~ .P
G (£17) = Gp(8DSgqr + Gher (81D o

Equations (2.39) and (2.40) have been combined to give Eq. (3.4) whereas
Eq. (3.5) is identical with Eq. (2.41). All of the free electron
ascattering is contained in the coherent scattering cross section.

Tt is apparent from Eq. (3.4) that the scattering from free elec-
trons may interfere with the coherent scattering from atoms, ions and
molecules. The interference depends on the Van Hove G-functions
Gﬁﬁu(p_,T) which degcribe correlations between different types of par-
ticles. However, as noted previously the light scattering cross sec-
tion for a single free electron is several orders of magnitude larger
than the corresponding cross section for most atoms and simple molecules.
This situation is illustrated in Table 5.1 with two interesting excep-
tions.

The fact that the free electron cross section is larger implies
that the quantity4155 for a free electron will be larger, the ratio
being equal to the square root of the ratio of single particle cross
sections. Thus in many cases to a good approximation one need consider
only the free electrons as scatterers. An extreme case 1g scattering
from a fully lonized hydrogen plasma. For this case only the free
electron terms contribute to Eq. (3.3). The scattering from the hydro-
gen nuclei is not included in Eq. (1.59); it was omitted in Chapter I

along with other terms of similar magnitude which meke up the center-
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of-mass correction.

Neglecting all scatterers except free electrons, and neglecting
the second-order free electron contributions, the scattering cross
gection becomes

CA)Q_ 632“ Z 1.
g 5 CWo () ):w———-(-**" (€y€n)
_A (3.7)
N \
. l(h' -l
() gcij,ocll"e 2ot G, (L)T),

where the subscript e designates free electrons. In the Vineyard
perscription classical limit* this result is identical to the cross
section derived from classical electromasgnetic theory and used as a

starting point, for example, by Iamb,58 and by Rosenbluth and Rostoker.59

%¥See the discussion following Eg. (2.35) for a description of the
Vineyard perscription.



CHAPTER IV

DEPENDENCE OF SCATTERING CROSS SECTIONS ON INTERNAL STATES

In Chapter II we have shown that the dependence of light scattering
cross sections in gases on external and internal states may be treated
separately away from resonance. In Section 4.1 the dependence on internal
states is developed into a familiar fofm. In Section 4.2 the internal
state angular dependence of the cross sections are determined and ex-
pressed in several convenient forms. In Section 4.3, relations between
cross sections, oscillator strengths, and refractive indices are developed
and examined. In Section 4.4, the Rayleigh scattering cross sections
for ground state cesium atoms are calculated from oscillator strengths
and used to illustrate some of the points raised in previous sections.
Finally, in Section 4.5, the relationship between the charge symmetry
of the scattering particles and the depolarization of the scattered
radiation is investigated briefly.

4.1 DEVELOPMENT OF THE SCATTERING CROSS SECTION DEPENDENCE ON INTERNAL

STATES

The dependence of the scattering cross sections developed in
Chapter II on internal states is contained in the expressions le,BIQ

andClg 8 CLB'ﬁ' which appear in these cross sections. The quantity

Cla,a is defined by Eg. (2.22), from which we obtain (h.1)
St LY EImle>Emle Cpim IB"><'E"ITV2|B>}
Ogp = 2, (€1-E2)6p ¥ 17, Lo\ — Cogls W+ wop'p!

8//
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Tn order to obtain Eq. (4%.1), wp in Eg. (2.23) has been evaluated

at the center of the line corresponding to the transition B+B', for which

This approximation dppears to be excellent for all croess gectiong of
present concern at least away from resonance.

Both the first- and second-order terms in Eg. (L4.1) contribute to
coherent gcattering. For nonresonance scattering of light, they are
usually of approximately the same magnitude and opposite sign, such
that they tend to cancel each other. This point 1s apparent from the
following argument: The coherent direct cross section is usually the
dominant contribution to the Rayleigh cross section in a gaseous scat-
tering system. If this cross section is calculated from only the first

order terms in Eq. (2.61) in the ideal gas approximation, one obtains

ot \* L -2
TPl en Q- €al) = <'r(:r?'27-> (_g,,@_) 7 (4.2)
= 79110 (Ga)Z om®

However, this cross section is larger than the obgerved Rayleigh cross
sections of most atoms and simple molecules away from resonance by at
least two orders of magnitude. Therefore, at least when the obgerved
cross section is much smaller than that given by Eq. (L4.2) we are led
to conclude that the second-order contribution is nearly equal to the
firgt-order contribution in magnitude and opposite in sign so that

the two contributionsg tend to cancel. Since this situation obtains for
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mogt atoms and molecules for Rayleigh scattering away from resonance,*
it appears that the second-order term is almost always significant in
light scattering cross sections. (Of course, only the second-order
terms contribute to incoherent scattering.)

In fact, using the manipulationg to be presented in this section
one can show that in the limit w; + O the first- and second-order terms
exactly cancel. As w) increases from zero, the coherent direct cross
section also increases from zero with the well known mi dependence un-
til the resonance region is approached. This increase is associated
with the slow increase of the second-order term with wy from an initial
(w1=0) value equal to the negative of the first-order term.

Rather than consider separately the first- and second-order con-
tributions to the coherent scattering cross section, it is possible
and convenient to combine them through manipulations which have been
presented by Dirac.”t The combined form is also convenient for the in-
coherent scattering cross sections to which only the second-order
term contributes. In this case the second-order term is merely ex-
pressed in another form. One may effect this combination in the follow-

ing way: Consider the expression

§§<@'tnzl@'> <plp 18y =<pl e gp el M =\ [hplly (+3)

The right hand side 1s obtained upon summing over intermediate states.

*See Table 3.1.
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Noting that =xpo and p; are sums.of canonically-conjugate momentum and

position components, it is easily shown that
I Cmapller = -LhZ, (6 &) da'p (4.1)

From Egs. (4.3) and (4.4), the first-order term in Eq. (4.1) may pe

written in the form

Za(€1r€)55p = .L%. Z{(p’l T2 )e <8 f 16> - <l lf3’><?“|ﬂ2'p>} (4.5)
7z

The second-order term may be put into a similar form by employing

the relation
(m [N
M= 6] (5:6)

Here j designates a vector component. One may demonstrate directly

that this relation is rigorous for the Hamiltonian

Ze _ﬂ_q_
Hp =2 2 + V(R sp) (5.7)
()
However, Hg as given by Eq. (1.15) contains additional terms of the
Zp'
form 1/2M E; ﬂbéﬂi.‘The contribution of these terms to the commutator
Je

in Eq. (4.6) is included in the center-of-mass corrections which we
have argued may be ignored to an excellent approximation. (See the com-
ments following Eq. (1.36).) Furthermore, it is often necessary to add
a spin Hamiltonian to (4.7) along with a term describing spin orbit

interactions of the form A(p_)§'£. The former does not contribute to
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the commutator and the contribution of the latter term Eg_the commutator

may be shown to be negligible as far as light scattering is concerned.
Substituting from Eq. (4.6) for m; in the second-order term in

Eq. (4.1), one obtains

% <pimlg > <pImIBy_ <p|Thigp<e"I T \62}
Pfl

= w@“‘g W+ C.u(3u( (4.8)

. LY)'\Z{ i EIT I ele 1) - Tt o BIRIEH T WJ?

Substituting this result and Eq. (4.5) into Eq. (L4.1), one obtains

1) Z§<@!Trzl¢3"><@”lﬁ\ﬁ> <B'IA1p7<R" T |8)
Rop= T 7

L)I s” wl + CA){SIIPI

It is convenient to employ Eq. (4.6) once more, substituting for mp.

This step yields
(k.9)

O = ";“'ﬁw, g PRl EIRIB + 5 mﬁ, SelRle @R lp f

Note that

;%ﬁl,wﬂxp"m'ﬁ>‘<ﬁ'lﬁlﬂ”><@"l&lﬁ>} =0 (%)

Adding this null contribution to Eq. (4.9), one obtains finally (4. 11)

055 = s (- wﬁ,ﬁi{ ERIEXER_GlelsXriae |

Cu'—(,dﬁup C\)|+ wBI/BI

It is convenient to introduce the quantity

{(@lD.lB”)(P"l[/2|B'> <{le2|3"><(3"|0|3>§ (4.12)

CWerg ~ ) Cprg! + O

(Cm)
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where D is the dipole moment operator defined by

D=ep (4.13)

Comparing Eqs. (4.13) and (4.12), it is evident that

et .
(Codyop= ~ Tniariopp) o8 (b.24)
Note that (ClE)BB, can be written
(C\")P*ﬂ' = €14 €y (CM>B“’P' (4.15)

where

(C@Q%_,‘g; :]E Z{<ﬁ‘ D/} IP”><PU| Dk \P‘> +<@'Dﬂlﬂ"><§“lDH B’> (4.16)
7l e Copr +
Here j and £ designate vector components along the axls of a rectilinear
coordinate system. The components (CJZ)Bﬁ' represent the well known
polarizability tensor or scattering tensor. This quantity is employed
frequently in the literature to describe interactions between radiation
and atoms or molecules.

In terms of (012)551, the scattering cross sections presented in

Chapter II assume the forms

b _ _
UcD(E\OOlQ\—»ng?_): G"?'z. = %Bs (U]'L)p-»(a (k.17)

g B

>/ -B_ /
T8 e &) = TETDR) @lpny 0

g &
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O—I Rony (€ (J\)l —->EzQ2> q —'Z ZP (G‘n B g/ (4.19)

B ep
where
_ w\<w\—wﬁrp>5
(Q_\’Lj(j—)@' = ca \ <C\Q)p+P’ (.20)
Finally,

qc“(é‘w.Q.—angZ)— ZP (Cﬂ)(%*ﬁ‘(c”‘ﬁ—’ﬁ‘ (k.21)

5 Fo e gu0e)

The shorter notation introduced in Eqs. (L4.17), (4.18) and (L4.19)
facilitates subsequent manipulations.

Similar expressions are obtained for the final frequency dependent
cross sections discussed in Sections 2.1, 2.2, and 2.3 of Chapter II.
These cross sections are in agreement with the results of Placzek* and

Dirac,51 among others.

4.2, ANGULAR DEPENDENCE OF THE CROSS SECTIONS ON INTERNAL STATES

In this section the internal state angular dependence of the scat-
tering cross sections developed in Chapter II are derived and examined.
The results are compared with those of the classical theory as presented
by Born,23 and with the quantum results obtained previously by PLaczek.Bl‘L
The classical and quantum results agree (as far as the angular depen-

dences are concerned). The present derivation is offered because it ap-

pears to be conslderably simpler and shorter than previous derivations.

*Ref. 34, Chapter 5, Eq. (5.4).



95

From Egs. (4.17) through (4.21) it is evident that |(C]_2)5_)B.|2
and (C]_g);[3 (012)5'5' contain the internal state angular dependences
of the cross sections. 1In order to analyze these dependences, it is
convenient to introduce a rectilinear coordinate system defined such

that ¢ is parallel to the z-axis and ¢, is in the xz-plane. Then

2

D=D0Dr (4.22)

and

D, = Dy e ¥ + Dy i (.3)

Here is the angle between ¢, and €,. Substituting these expressions
=1 =2

into Eq. (4.12), one obtains

’ . E& " l EECQFLLP+"E$< ‘ (f ,> |
(C\O@_.,P;’- “ﬁ}é_' <@\ \%ji[w. st |87 (h.on)

4 <P] Dz. ML‘J*- Dx Am%@"){@“} DZ “3/>
Wgrp! + (v

This equation may be simplified using certain properties of the
single particle internal state functions [B>. These properties result
from the fact that the zero-order Hamiltonian for the scattering system,
as given by Eq. (1.18), commutes with the total internal angular momentum
operator 3 for any particular particle. It follows that the total in-

ternal angular momentum of each particle is conserved in direction and

magnitude in the zero-order approximation, and that the state functions
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A
for any particular particle may be chosen to be éigenfunctions of Jg

A
and Jy.*¥ We denote the state functions so chosen by [TJM>; these

functions satisfy

f}(‘ lt:f M } - V, Y lt T/\/\>
T2 \TTmy = T(TH) |comy
Sz ‘[“jAA> = AA‘(7JAA>

Here QEH represents the internal Hamiltonian for a single particle.
For a demonstration of the important result that E;y is independent of
the magnetic quantum number see Ref. 55, Section 2.7.

Well known selection rules apply to matrix elements of D, and Dx
between state functions of this type. TFor example, from Ref. T§,

Chapter 10, Section 8

{T3M | Dz [Tamp = O, M'#M
(L.25)

T am | Dy |TImpy = O ) M ME]
Introducing the eigenfunctions ITJM> into Eq. (4.24) and employing these

gelection rules, one may sum over M" directly to obtain

% E3m| D [TTMTT'M| Dy @ + Dyt Y [T

| _ L
(Cll)cw-s‘t'a"/v\' A Z

ZIIJ‘I[

, STImIDzeset + Deow Wlrasm < am | D, [T/ 3m )

Clgn 3, Z‘T - C:L)‘

(()(,1:3'/;)2-13—; + O

¥lote that if multipole interactions between particles and electric
fields are included in the zero-order Hamiltonian or force theAchoice
of state functions |ﬁ> which are not eigenfunctions of J2 and J,, then
these conclusions and those which follow are not valid in general.



9%

Writing out the absolute square 2, it follows immediately

€12l ew]
from Eqs. (4.25) that the coefficients of sin ¥ vanish if M'=M and the
coefficients of cos ¥ vanish if M'%M. Therefore cross products between
cos ¥ and sin | terms vanish and the absolute square breaks up into

two terms as follows:
"L

7 ) 2
\(C\O_)UM STym| = @qu/ \ (G >rIM —»'c/y/w\ + oY ‘(sz)t :rM-;r‘rm"

It follows from Eq. (4.20) that

2
(U—IO—)CIM—»U:IMI = Y <GZ‘Z)CIM—3Z/S'M’ (i.26)

+ an® q/ (Tzx )'CJ‘M ST M
Only the first term contributes if M=M'; only the second, if M#M' .
The scattering in a direction perpendicular to both ¢1 and Q7
is conventionally referred to as transverse scattering. We define the
ratio of the transverse scattering intensity with polarization perpen-

dicular to ¢, to that with polarization parallel to g; to be the trans-

1
verse depolarization p.* In a gas not near a critical point employ-
ing the static approximation and neglecting coherent interference

scattering (see Section 2.4), the ratio of intensities is equal to

the ratio of appropriate cross sections defined in Egs. (4.17) through

(4.19). Thus, for example, the line corresponding to a transition

*Note that this depolarization is defined for linearly polarized inci-
dent light. Frequently in the literature the normal depolarization for
unpolarized incident light is introduced.
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from level B to level B' is given by

BB/
Uzx
vy ™ oW (1.27)
Uzz

The transverse depolarizations for lines corresponding to incoherent
Rayleigh and coherent scattering are defined similarly. It should be
noted that if several of the cross sections contribute to a line, the
depolarization is given by the ratio of sums of these cross sections
and is not equal to the sum of the depolarizations of the separate
contributions in general.

Now we consider the implications of these results concerning the
coherent scattering cross sections. By definition, for coherent scat-
tering T=T1', J=J', and M=M'. From Eg. (4.17) and the discussion follow-
ing Eq. (L4.26), UZXCD vanishes since M=M'. Thus from Egs. (4.17) and
(4.26), one obtains for the coherent direct cross section:

Q(f‘; = CO"%"’LL})ZPFTM @ZZ)cm—mm (k.28)
[
A similar expression can be developed for the coherent interference
cross section as given by Eq. (4.21). Also one may apply these results
to the final frequency dependent coherent cross sections of Chapter II.

The normal depolarization vanishes for all coherent cross sections and

the internal state angular dependence is contained in the factor cosgw.
Next we consider Rayleigh scattering. The Rayleigh scattering
cross section is given by the sum of coherent direct, coherent inter-

ference, and incoherent Rayleigh cross sections. In Section 2.4 of
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Chapter II it is shown that the contribution of the coherent interference
scattering from most gaseous systems is extremely small. This contribu-
tion will be neglected in the discussion of Rayleigh scattering in this
and the following sections, allowing the introduction of relatively
simple notation. However, where significant, the coherent interference
scattering may be included in a development of this type in a straight-
forward manner.

Adding the coherent direct and incoherent Rayleigh crouss sections

as given by Egs. (4.17) and (4.19), one obtains

TIM
M

°,
Q'?;“‘é =Zé ZPE‘J‘M <Q-|Q)'CTM-YC‘T’M' (4.29)

Substituting for (clE)UM_,t.J,M, from Eq. (4.26), it follows that

T = (oY Thot 4 o2 T (4.30)

\

The normal depolarization for Rayleigh scattering is

T3

R
Uor

(4.31)

F% =

Note that p, must vanish for Rayleigh scattering involving initial and
final states of wvanishing total angular momentum. This conclusion
follows since if J=J'=0 for each term in the sum in Eq. (4.30), then
necessarily M=M'=0 and as a result each contribution to GZXRaY must

vanish. Thus depolarization should vanish for Rayleigh scattering from
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ground state argon or neon atoms, for which J=0 (but not completely in
scattering from Xenon or Helium 3 atoms because of their nuclear spin-—see
Section L4.L).

For Rayleigh scattering, one obtains from Egs. (4.30) and (4.31)

(Tﬁtﬂ- = (Jj&f* ((knle’-F R bxafzqﬁ) (4.32)

U'?;_‘* B [(l-—i%)mzq) + @] (1.33)

Ra,
This cross section is completely determined by the quantities oy, Y

and py, both of which can be measured in a transverse scattering experi-
ment. In the next section we shall show that under certain conditions
both of these quantities can also be calculated from oscillator strengths
and furthermore OizRay may be related to a corresponding refractive index.

The classical theory of light scattering from molecules as developed
by Born leads to a relationship between the Rayleigh scattering cross

section and refractive index given by¥

ot {[[n==1)% -Q] Py
O’?Ef_‘*:?; (‘W‘" + = cor ¥ +Q) (.34)

¥Ref. 23, Chapter VII, Section 81 from Eq. (5.2).
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Here Y) is the index of refraction measured at a particle density GT?
This equation is valid for incident frequencies far removed from reso-
nence compared to widths of the corresponding states.* Taking the ratio
of the cross sections evaluated for ¥ = n/2 and ¥ = 0, one obtains

for the normel depolarization (for linearly polarized incident radia-

tion)
’ 0
“; = Nnt-i g ()‘*-35)
4ncn> 5 ()

Substituting from this equation for @ in Eq. (L4.34) one obtains

7= () pll-0odtrg) e

Comparing Egs. (4.33) and (4.36) it is apparent that the angular de-

pendence of the gquantum and classical Rayleigh cross sections are
identical.

The scattering cross section for any particular Raman line may
also be put into the form of Eq. (4.33). For example, for the line
corresponding to the transition B+B' we obtain

/
G’?;B = B_,B[(l 345>C°4q'* PB»B] (+-31)

Here 0223 is defined by Eq. (4.18) and Pg.pts BY Eq. (4.27). Again
the angular dependence agrees with that obtained by Born from classical

arguments.

*See footnote on previous page and also Ref. 23, Chapter VII, Section T3.
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It is helpful upon occasion to express Egs. (4.33) and (4.37) in
terms of scattering angles rather than the angle between polarizations.
A number of different schemes may be used to define scattering angles.
One scheme which is useful when the incident radiation is linearly
polarized is illustrated in Fig. 4.1. 1In terms of the angles & and ¢,

this scheme yields

oo ¥ = Coufomd (4.38)

Of particular interest for comparison with previous quantum results of
Placmﬂ?%s the cross section summed over final polarizations. One may
sum over any two orthogonal final polarizations, but the most convenient
are those for which £=0 and & = x/2. Substituting Eq. (4.38) into Eg.

(4.33) or Eq. (4.37) and performing this sum, one obtains

Tlo = VUzz [(l*"(’) ~(I-p) Co/fqb] (4.39)

This result agrees with that obtained by Placzek from a different
formulation of the cross section. Placzek's formulation is well suited
for the derivation of symmetry selection rules (see Section 4.5) but
does not yield directly the final polarization dependent scattering
cross sections such as in Eq. (4.33).

For cases in which the incident beam is not totally polarized,
perhaps the most useful scheme for expressing scattering angles is that

illustrated in Fig. 4.2. Note that
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cos¥ = cos& sin¢

E —/—

OAlk2 and in plane
defined by €, and k»
€5 in plane L k2

Fig. 4.1. Relationship between polarization angle ¥ and scattering
angles @ and .
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OA L k, and k,
OB 1 k,
OC 1 k,

cos ¥ = cos§, cos§,
+ sing, sin§,cos 8

] d’

Fig. 4.2. Relationship between polarization angle ¥ and scattering
angles O, _5.1 and .
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O Y = COLE Confy +bmF am§y Lot ® (4.%0)

This result may be substituted into Eqs. (4.28), (4.33), and (4.37) in
order to obtain the angular dependences of the cross sections in terms
of the scattering angles €1, €2, and ©. A number of special cases are

of interest:
Case 1: £7=0. Then
) 2
T = Oéz[(l—wm Fo + P] CREN

If the polarization of the scattered beam is not analyzed, then one must
sum over the unobserved polarizations. These may be chosen such that

£5,=0 and n/2, yielding

Tp = Tz (14P) (.42

case 2: E&q=/2. Then

Tpp = Tuz [(1-Plain? Frecd® + Pl )

If the polarization of the scattered beam is not observed

Tjo = Q—Z‘LEU‘P) cod* O + QP] (.l

Case 3: Monochromatic incident beam partially polarized. If the
polarization of the incident beam is resolved into x and y components,

one obtains from Eq. (2.51) for the scattering of a monochromatic beam



104

from a volume VS

Vs Ne
Is(R \ §1Q2> = R2 % I(ﬁxéthf)z) Tx2 (k)
+ I(Ez.,wlé’ym_zz }
Defining
T (i) = 1ewe) + T(ewe) (1.26)
and

n = I(ng](Sy)/I(w’g/> (4.47)

then

L (RI&Qe) = \%I(W@‘g) [ﬂg_xz + <|‘ﬂ)q22]

or

IS<R|§ZQZ) = \_/_5%2 (C‘)lglf) Tzz%ﬂ[(l—f’)an?z et +p]

(4.18)
+ (l—ﬂ>[(|—e> col §, + 19]}

Other special cases may be developed in a similar fashion.
4.3. REIATIONSHIPS BETWEEN SCATTERING CROSS SECTIONS, OSCILLATOR
STRENGTHS, AND REFRACTIVE INDICES
In this section, the scattering cross section is expressed in a
convenient form using the Wigner-Eckart theorem. Employing this expres-
sion, the relationships between Rayleigh and Raman cross sections and
oscillator strengths are examined. It is shown that the Rayleigh

scattering cross section and the corresponding depolarization can be
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calculated directly from appropriate oscillator strengths for particles
in initial states degenerate only in the magnetic quantum number M.
Likewise it is shown that Raman scattering cross sections and the cor-
responding depolarization can be calculated directly from oscillator
strengths for w; sufficiently near resonance with an intermediate level
which is degenerate only in the magnetic quantum number. Finally,
breasking up the scattering cross section into two parts which correspond,
respectively, to isotropic and anisotropic components of the scattering
tensor, a relationship between the Rayleigh scattering cross section
and a quantum expression for the corresponding refractive index is de-
veloped. This relationship 1s compared to the classical relationship
between these two quantities and it is shown that there is a significant
difference between the quantum and classical results except in the

case of scattering particles with vanishing angular momentum.

From Eq. (4.29), under the condition that all initial and final
states of nonvanishing total angular momentum are degenerate in the
magnetic quantum number M, the Rayleigh and Raman cross sections of

interest involve

T Z
— 7 \ ‘
(Q-i‘r)t::r—»t’?’ = 2T (T eam— Tame (4.59)
M=J m=-¥

From Egs: (4.49) and (4.20) and (L.16)
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oy (W—wWeg,zs) { Ceam| D [T Im) <t"_3' "m’|gy Icam

(esew = @) Gulgeml  Wors -,

(4.50)

L <o Dy |T" 3" M" > 3" M) D mm}]

Because of the different ways in which the sums over M and M' enter
the expressions for the oscillator strengths and refractive indices, it
is convenient to express the dependence of the matrix elements involved
in Eq. (4.50) on M explicitly. Such expressions arise from the general
properties of angular momentum as developed, for example, by Condon and
Shortley.76 We utilize a concise statement of these properties in the

form of the Wigner-Eckart theorem,¥* which allows one to write

2 7
Coam| DplTamd = (1) “Ceslpliay (_3;4 W ,,,,) (k.51)

The quantities D are the irreducible tensor components of the dipole

moment operator D, defined by

D = D,
D = _J% (Dx h DY) (4.52)
R = %(DX‘LDY>
such that
Px= —%— (D' ) DD (k.53)

Dy = 45(Dyt D)

*¥This theorem and related subjects are discussed in detail by Messiah.5u
We use the notation of this reference.
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The reduced matrix elements <#JHDHT'J’> are independent of M and

u'. The Wi bots ( 119273 '
3! gner 3-J symbols contain the M-dependence in-

MMMz

cluding the selection rules on M introduced previously as well as

selection rules on J. The relevant properties of these symbols are
5k . 88

well known, and they have been extensively tabulated ~ for given

values of J and M.

Applying the Wigner-Eckart theorem to Eq. (4.50) one obtains

(4. 54)
(T ) = oy (w1~ Crmyes)® Z Z— Wy + Wrrs'cly
22 ’C\T-)T'J' ﬁlcq' <Q3+|) ¥ J_”(wtﬂjuw wl (Q)_C,,J,,,CJ_+ w')
. Low [T Xﬂf’)
x) T3 pllerap DT I7p (—MOM MoM
and , (k.55) )
(@8] (Ca) -ory )3 ) J X \4
(Tox) e 127 TN Z (e aliplizrad v alplic e
XTIty htct (2T + \) vt (R L
" " " 1 /J’I J— Q
T3 J'IJ)_J\J] WJ::) :\:]_ )
(x) -MoM>[(—M'IM <M"'M | MiM/ M 1M> \mom
Lo TI ~ ) Wrgnpr g T G0

Consider the Rayleigh scattering cross section for particles whose

. : Ray
initial states are degenerate only in M. Then from Eq. (4.5&), Oz

is given by
(4.56)
2
Z Z gty (Colliza’ 'l(Jlj”)
— 2 KT 720
<G—ZZ>ZJ—->IJ )ﬁch 23+ ® t,\, 37 %) Mo M
On the other hand, emission oscillator strengths for a line corresponding

76

to a transition from a level T"J" to the level 7J are defined by
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am  Copngr
?U,J,,qw = 3&n QCIL” ZV l<7.'IM|Dlt"J"M”>I (4.57)

Employing the Wigner-Eckart theorem, this equation becomes

_ 2m oy 2
F’B’I”)'CT -——32? %ﬁ J<-(_- UHDH.C/’J”>' (4.58)

The sums over M and M" have been performed using an orthogonality property
of the 3-J symbols.
Substituting from Eq. (h.58) for the absolute square of reduced

matrix elements in Eq. (4.54), one obtains

— F 2
T3 TT N 3-/1)2
< ng =1 (MCJ (QD‘)% ;nw%"ﬂc:r‘w? SMOM (k.59)
Employing the same procedure, from Eq. (%.5%5) one obtains
| 2 e,
4/t V5 'TsTT
(T2x) =9 (_@___) | Z
ety = = Wi (e (234 )% Ty (160)
T :r"> J‘lJ”) J')J‘”)(J IJ/’)
\ <—MOM -M'IM -M-I M J\-Mo M
x — N
( ) CL)C"J”) tj—wl wcl/:r//)'z_‘d— + wl

From these results and Eq. (4.31) the normal depolarization may be
calculated. It follows from Eq. (4.33) that if the relevant oscillator
strengths are known, the Rayleigh scattering cross section may be cal-
culated directly. An example of such a calculation for cesium atoms

is presented in Section L4.lL.
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Now let us consider the relationship between Raman scattering cross
sections and oscillator strengths. The following remarks apply also to
Raylelgh scattering cross sections for particles whose initlal states
are degenerate in T or J. These cross sections involve (“1J)TJ+T'J'
for 1'J' # 7J, as given by Eq. (4.50). From Eq. (L4.58) it is apparent
that the oscillator strengths f ongu g yield the absolute squares of
the reduced matrix elements, but reveal no information about their
phases. Knowledge of the latter quantities is necessary in order to
combine properly the contributions from various intermediate states
within the absolute square in Eq. (4.50). Therefore, in general the
oscillator strengths alone do not suffice for calculation of Raman
cross sections. However, it often happens that sufficlently near

resonance only one term in the sum over T"J", sayT)J, , is significant

and for example, Eq. (h.50) may yield to a good approximation

oM
@Ez) — C‘Jl(@:‘wt’:’,r:r)B ‘ > (h.61)
) TI-TT AF\’LC‘} (Q_3-+|) wtl-l)zy = (I
& TIJ] J‘lT|>
0 |<estioliny |t IETio] m/l () (G

or, in terms of oscillator strengths

q Q),(w, wC'T’CJ’) <€2>2

<W27.> 5 (h.62)
T T (Womrr=wy )& N\
2,7 (A
2T+ 5 mj,>2 m,)
x) (A)Z]J',,I_‘J'O.)C'J;’(/J/ -\-tl‘]',—?tJ' ¥[|‘)’,—) [’J’L (—MOM -MoM

M
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Similar results are obtained for (QZX)TJ+T'J' sufficiently near resonance.
In this situation the Raman cross section may be calculated directly

from the relevant oscillator strengths. Of course very near resonance
the widths and shifts of the intermediate states must be taken into
account. For this case, following the notation of Appendix B, to a
certain approximation the resonance denominator in Eg. (h;6l) or (L4.62)

becomes

z A
(wC,J,,Z'J' -wy) + Wo,

Now we wish to consider the relationship between Rayleigh scattering
cross sections and the corresponding refractive indices. The classical
relationship of this type is given by Eqs. (4.3L4) or Eq. (4.36). In
order to demonstrate the quantum relationship it is convenient to develop
the scattering cross section in a slightly different form. Starting

from Eq. (4.12), we note that (Cip) gysrrgiy Mey be written in the form

_ 2 .
Here the components Chu of the scattering tensor are defined by

l <'E J.Ml D,\lE"J"M"><C”~T"M"| D,u ‘UJ-WO

—

GQA > M
WTIMm->TIM h Gy wt" FNTT T O.)‘

(k.6h)
L oMl DT amm T s me | D, [TImp

Wrrgn o131 +
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The irreducible tensor components D\ and L, are given by Eq. (4.52)
and the components 6& and é%tof the vectors indicating initial and

Tinal polarization of the scattered photon are defined by

€ = €z
(k.65)
A i
€y = - J’% (€n~tEw)
gy = Q_,f(é.me.y)
2

and likewise for €. The quantities €7y, €1y and €7, are components
of €1 along the three orthogonal axes introduced to define components
A
of D and J.
The scattering tensor may be expressed as the sum of an isotropic
component (CO)TJM+T'J'M' and anisotropic components (C%H)TJW+T'J'M'

ag follows:

— | o _ A I
(Co)ramTam = {C A )+ C/\A E M= T/TM (k.66)
(Co)r:rm—at'rfm' = [Cao‘ G- C‘”Jtm STITIM! (k.67)
(€ == %, 60
A sm-sTiam [FART = oS S S Tiem (1.68)

In terms of reduced matrix elements these components become

<C°>LTM STIM — vcgr;r’ SMm’ wl"’Jlﬁ ry e g
B‘F\ <2J+|) Z"J” (CL)EHJ-//J-CJ-‘Q),)(QJZ-/IJ-IJ/ T ‘HA)I)

(4.69)

()<ea|o |z (eallol T f
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and
( {)T+J’+)\
| _ v ‘ -E-J-' AL /-UJ-I D -CHJ—II
e = o ) GBI,
ZIIJ'I'
J | J” I, ! IH) <J‘ \ J’//)< J‘l’ l J’/Il)
(x) %<—Mx M")(-M'_fw MY N (_‘>)+}/~ Mp MM m
Mu wtlla-l!)t J’ - wl (_A)t”‘]‘”) [’J’ r CA)‘

A
- (Co )t TM>T'ITM S5yt 5MM’5,\,~}A<">

Substituting from Egs. (4.63) and (4.66) into Eq. (4.20) and summing over

M and M', one obtains

(4. 71)

2\ o A |
Ak {C (SXF/‘*('D * CWLJM%’J’M’

3

w\(wl'wr’d"—ata'> Z
e (2T+1) e

mﬁ)c ToTUr —

Substituting from Egs. (4.69) and (4.70) for (CO)TJMﬁT'J'M' and

(Ciﬁ) TMr M one may show directly that in the 'sum over MM' the
T

cross terms in the absolute square in Eq. (h.Tl) vanish; it follows that

this equation may be written in the form

<ql'L>U—»t'I' = (Q—|2>tr_ﬂ’$’ N mﬂi)g»ﬂ/ (k.72)
where (4.73)
0 _ Cdl (Cx)l—(/«)t/%tl)z I A2 o Xlz
<q.|2' TroTY cq <23‘+ |) MZN\' E)\ E‘)\ (C )CJ'M—,Y’J'M' (")

3 2
Co(Goy - Wor,r7)

c$

- éya” coa Y I(Cc)uo—» I‘Jo,
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and

o (W= wl”J’;TI)3
; _ L2 /o
<U_'Q>U->I’J’ Cct(2T+l) MM,] €4 E/‘* (CA/“)C

IMaTTe
(4.74)
)l

— o8] ((A)|-(A){_"3'/J?__I)3§ Cod? ('PZ
M

cA(er+1)

COO)CJ’M-*L'J"M'

1
+ pm® Y %; (C‘L')U'M-—VI'J'M' ’ }

The angular dependences are easily obtained by choosing the coordinate

system so that the z-axis is parallel to g; and so that ¢, lies in the

xz-plane. In order to obtain Eg. (4.T4), we have used the relationship

] 2 Z \ ¢
Z_ ‘(CO')Um—» Z’I’M'\ T l(CO“>UM"*C'5'M/ \
MM MM
Introducing the notation
2
(&o)ZJ—eI’J’ = sy ‘ (CO)CJO—»Z’JO I (4.75)
' SPACE i

(QD)Z‘I—)C’J‘ - 2y+| Coo tJ‘M—)t’J’M (4.76)

and

] .
— l
(Q syt = 73:7% 7«" (o gy | 0T

one obtains from Egs. (4.72), (4.73) and (4.7L)

w, (W, - Wy 3,
@2 )ryary = = = . (4.78)

(x) { 0e® Y [(Q?CJ—»C’J’ + @o)eyvy - @), tb‘J @), v J’:g
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From Eq. (4.78) a connection between the quantum expressions for
the Rayleigh scattering cross section and the refractive index may be
established. For particles in an initial level 1J which is degenerate
only in M, the Rayleigh scattering cross section is given by (012)TJ+TJ

which, from Egs. (4.78) and (4.75), involves

( 0) 9_ CO'C{/J
tJO-)tJO 3%(23-1. I) 'C "J" T.'J

o [l \Dllf"J’>l (4.79)

On the other hand a well known quantum expression for the refractive

50,63

index becomes for particles in initial states degenerate only in M

-‘.T a)zll " . 'Z
e = N L ke £ <l e
Z-IIJ-/I )

[}
M (1.80)

‘JTT an (A)t";r") tT

a
2J’+\ {cT|DlT's \

ADL C"J‘" CJ‘

where q? is the particle density. Substituting from this equation into

Eq. (4.79) for the sum over T"J", one obtains

o -
(C )zJo—»tJ'o 41T’T) (H l> (-81)
and, from Eq. (4.75)
o _ (0t >2 4.8
Q@ )'co'-e?:J T N4TN (+-82)

Finally, substituting this equation into Eq. (4.78), the Rayleigh

scattering cross section becomes
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(4.%3)

_ sﬂu(g;;) (- @»M]ww@:>U.,wf

<Q-IZ>—C' ToTT ct

In Appendix F it is shown that

4 | 3
(QL)ZJ‘—’Z‘I -3 <Q:’)U_. tr~ W E;;— (k.84)
wh
F 2 Kulolres® Kedolerd e
o7 ‘F\‘Z(ZJ_‘H)%!—- rpgh w’CJ”J"I,'EJ-_ Q)’Q wf"’d”” TJ‘ CA')Q-

| Z[W(JHIJ"'I'):TS)] [ IS “5 C!icus]
S

Here W(J"1J''1;JS) is a Racah coefficient as defined in Ref. 77,

and Clls

MM is a Clebsch-Gordan coefficient. The Clebsch-Gordan coef-

ficients are related to the 3-J symbols by

Ji-JotMi rMe J;ﬂ(j‘ o s 2) (4.86)

3, T2 J:
Cham = €1 o M, e

These coefficients are employed in Eq. ( 485) rather than 3-J symbols
in order to retain notation similar to that of Ref. T77.
Substituting from Eq. (4.8l4) into Eq. (4.83) for (Q}) gs g, One

obtains

1 ne—|
) ) | /Ay
(e TI-TT c‘*ﬂ(ér;m 3(&>rm.'3‘

Ry |+ Qg |

(4.87)
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It is interesting to compare this result with the classical ex-
pression for the Rayleigh cross section as given by Eg. (4.3L4).

Associlating (Ql) with Q, it is apparent that the guantum and

IR AL
clagsical relationships differ because of the presence of the factor
2 1 . .
®; Fry in the former. For J=0, F.j, and (Ql)TJ+TJ vanish along with
depolarization and the quantum and classical relationships are in

agreement. For J = 1/2, (Qé)TJ+TJ vanishes and from Eq. (L4.84)

3, 4.88
(&Ia)“(é-»r% = Zr“'wl EJ’ e

For this special case Eqg. (4.83) can be put into the form

4 N .
Byt - ) 0" k.8
<mz)tJnetJ - *éz‘; ‘foW“) [(l (J)Coz. L})Jﬁ (;)J (4.89)

Eqg. (4.89) differs from the classical expression given by Eq. (L.36)

in that it does not contain the factor B/B-Ap. The calculations of
gscattering cross sections for cesium atoms which are presented in
Section 4.4 indicate that this factor can differ considerably from
unity over broad spectral regions. Thus it appears that there can

be substantial disagreement between the quantum and classical equa-
tions for the Rayleigh cross section in terms of the refractive

index. This disagreement is evident from Table 4.1, where refractive
indices for a gaseous system of ground state cesiim atoms as calculated

from Eqs. (4.36) and (L4.89) are compared.
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For J > 1/2 both F.j and (Q%) will be nonzero in general.

TJ+7d

Both of these guantities depend on the relative magnitudes of the re-
duced matrix elements which must be calculated for each type of scatter-

ing particle. Whenever 5&% Frg is significant in comparison with

(Qi)TJ+TJ the depolarization correction to the classical relationsghip
between the Rayleigh scattering cross section and the refractive in-
dex, for example the factor 3/(3-hpy) in Eg. (4.36), will differ sig-
nificantly from the corresponding quantum factor.

Over the past fifty years, many‘light scattering experiments which
involve comparisons of refractive indices and scattering cross sections
have been reported.* However these comparisons do not suffice to es-
tablish the significance of the "quantum correction” F.jy. One problem
is that most light scattering experiments involve incident beams of
broad frequency distribution, whereas F.j probably depends sensitively

on frequency and, for J > 1/2, can assume both positive and negative

values. Another problem is that experimental determination of an

*¥For example see Refs. 1k, 24 61, 78,
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absolute light scattering cross section is quite difficult and sub ject
to large errors. Most of the comparisons just me:ntioned agree with
the classical relationship between cross section and refractive index
to within 10%. One set of experiments reported by Vaucouleurs78
obtains agreement within 1%. These results suggest that the "quantum
correction” may be small away from resonance in the visible spectrum.

A remark concerning the definition of 3 is in order at this point.
This operator has been defined as the total angular momentum operator
for the particle in question. However, it appears that in many cases
certain contributions to the total angular momentum which couple weakly
to the electron angular momentum may be neglected in calculating light
scattering cross sections and depolarization. This argument is developed

in Section 4.4, where the neglect of the spin of the cesium nucleus in

calculating cross sectlons away from resonance is discussed.

L.4, CAICUIATION OF RAYLEIGH SCATTERING CROSS SECTIONS FOR CESIUM ATCMS

In this section the calculation of Rayleigh scattering cross sec-
tions for cesium atoms in ground states is discussed and results pre-
sented for incident wavelengths from 6000 to 10,000 R. This calculation
is used to illustrate some of the general properties of the relevant
equations.

The ground states of cesium are represented by the designation
681/2 having a total (electronic) angular momentum J = 1/2. From

selection rules on J for dipole transitions, the intermediate levels
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which contribute to the scattering are characterized by J" = 1/2 and
= 3/2; these are the only values of J" for which the relevant 3-J
symbols are nonzero. Substituting the numerical values of these

symbols into Egs. (4.59) and (4.60) and summing over M and M', one

obtains (4.90)
]S U R )°
zz) (FEZ) - &%2 o -0 N w;", o
P
.2 (%.91)
(Tl = CO? (—V% ' ﬁi%«) T ]
et [ (A%”i T,’_ &)ZI"L Tz', 2 @ ";%JZ—";._&J? wf"%ﬁl"

The cross sections calculated from these equations are plotted in Fig.

4.3, The corresponding depolarization is plotted in Fig. 4.4. The con-
tributions of all significant bound intermediate states are included in
the calculations, whereas the contributions associated with intermediate
states in the positive energy continuum are not included. The latter do
not appear to be significant in the frequency range of present inte*est.

9

Theoretical oscillator strengths values obtained by Stone'” are employed

in these calculations. Stone's results compare well with the recent

80

measurements of Kvater and Meister.
From Fig. 4.3 it appears that the Rayleigh scattering cross section
for ground state cesium atoms is large over wide spectral regions com-
pared with the Rayleigh cross sections for most atoms and simple
28 2
molecules, which are on the order of 10 em®. From Fig. 4.4 strong

depolarization is present in spite of the fact that the cesium ground

states hayé spherically symmetric charge distributions. This apparent
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paradox is discussed in Section 4.5.

Calculated values for the refractive index for wavelengths from
8000 A to 10,000 A are listed in Table 4.1. These values are obtained
from the cross sections as plotted in Fig. 4.3 and the guantum and
classical relations between the refractive index and Rayleigh scatter-
ing cross section given by Egs. (4.89) and (4.36), respectively. The
extent of the disagreement between these relations for the special
case of gropnd state cesium atoms is evident from the table.

From the forms of Egs. (4.90) and (4.91) it appears that contribu-
tidns to ozy and oyy from different intermediate states may interfere
within the absolute square. Indeed the interference between J" = 1/2
and J" = 3/2 terms causes oy, to fall off in between the corresponding
resonance points, whereas it causes oyy t0 decrease rapldly outside
the resonance points. If the spin orbit interactions were neglected,
then the oscillator strengths fT"l/2,Tl/2 and fT"3/2,T1/2 would be in
the ratio 1:2, “5-r"1/2,¢1/2 would equal “’1-"3/2,71/2’ and it is evident
from Eq. (4.91) that o,y would vanish because of destructive inter-
ference between the J" = 1/2 ahd J" = 3/2 contributions. The spin

orbit interaction introduces depolarization by

a) introducing energy shifts such that wr"3/2,11/2 # Wr"1/2,71/2s
and

b) changing the ratio of oscillator strengths.
Each effect tends to remove the complete destructive interference. Ef-

fect (a) is significant at separation from resonance comparable to or



123

mm-Omem.ml 0¢88

Nm-oﬁxmm.m 22-01¥29°2 00001 22-0T¥NT T 088

22-0TxXG6 ¢ 22-01xL0" 1 0056 22-0TX02 *t 0¢lg

55-0T¥H2"9 22-0TX689 0026 55-0TXCT"T 12-0T¥He T 0¢98

55-01%21°8 55-01X.8"6 0016 25-01%X¢2*9 12-0TXTS T 0299

15-0TX61°1 12-0TXL12 0006 15-0TXST1 1 12-0TXL6°1 0098

12-0T%gT°1 15-0TX¢T ¢ 0968 15-0TX6H 15-01XSg" ¢ 04648

Nm-onwn.w 15-0TX02 % 0L6g 02-0TX9G T 02-0TXH6°1 0¢SQ

12-0T¥81*9 0969 om-oaxmm.a- 0z-0TX6S 1~ 0T14Q

om-oaxmm.a 0668 Hm-oﬁwa.P- 12-0T¥9M " g~ 004Q

0z-0T¥18°2~ oh6gQ 15-0TXo 1~ 12-0T¥g& "1~ 00%Q

15 -0TXGL ¢~ 0269 55-0TX¢T"9- 22-0T%X2¢ 9" 002g

. 12-0TXgL* T~ 0068 55-01XLg ¢~ 52-0TX6 ¢~ 0008

- - ® ° ° vm.v p ® omv
(9¢"%) -bE woxg (6g°1) *bg woxy - (9¢°#) *ba woxz (68°1) °bg woxg swoxsBuy

U2 W I Ty 2l W ithy .

e T2 2t e !

(°1 - ZU JI0J anTeA

AreuldewT UB SPTSTA UOTRRISI TBOISSBIO 2U3 oSJ2UM 1J8T Usaq 2ABY saorvds jueld °oouspusadsp yjzdusl
-9ABM 29U} JO STTBISP 9yl nO JuTJaq O3 pPSTJIBA oIB STBAJILSQUT YarBuslaasMm oY *AL1=aa130adsaa “(9¢°#) pue
(6g°1) °sbd £q USATS XSpUT SATIOBIJSI PUB UOT3D9S SSOID YITSTABY SU} USSM3SQ SUOTIBISI [BOTSSBIO puB
umauend syj3 puB ¢°f °*8T4 UT Po330Td SUOT3D8S SSOAD YITSTABY SY3 WOIJ PS}BINOTBO 9IB SSOTPUT SS3YL)

WALSAS SNOHSYD V NI SHLVIS ANNO¥H NI SWOLY WNISHO ¥04 SHOIANI HAILOVHAWY

T4 FIAVL



124

less than the spin orbit splitting of the corresponding intermediate
level. This effect accounts for the strong depolarization around

6800 & in Fig. L.4. On the other hand, effect (b), where significant,
contributes to depolarization over broader frequency ranges. Both ef-
fects are present in the depolarization arising from the higher excited
levels of cesium. Thus the spin orbit depolarization is not strictly
a resonance phenomenon.

Up to this point the possibility that nuclear spin might introdﬁce
depolarization has not been considered. Initially, for simplicity, we
discuss this possibility for an atom with vanishing electron angular
momentum in the initial and final states, but with nonvanishing nuclear
spin, such as He5 or Xe 131, Because of the selection rule AM=tl on
Opx? depolarization arises in Rayleigh scattering from this type of
atom only if the nuclear ahgular momentum is reoriented during the
scattering transition. This possibility may be examined by introducing
into Eq. (4.91) state functions for the whole atom (including the
nucleus) which are also eigenfunctions of the total atomic angular
momentum (electron plus nuclear angular momentum) operator 32 and 3z
Then noting that the nuclear spin interacts with the electron angular
momentum through a hyperfine interaction, splitting the intermediate
states, depolarization is introduced through effect (a) of the previous

paragraph. The hyperfine interaction does not appear to change ratios

of oscillator strengths significantly (in contradistinction to the
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electron spin orbit interaction); in this case the nuclear spin intro-
duces significant depolarization only within separation from resonance
comparable to the hyperfine splitting. It appears that this conclusion
applies to scattering from cesium atoms, such that depolarization
arising from the spin of %he cesium nucleus (7/2) should be negligible
in comparison to the gpin orbit splitting at separations from resonance
large compared with the hyperfine splitting of corfesponding excited
levels (a small fraction of an angstrom).

Placzek5h hag discussed briefly the depolarization arising from the
hyperfine interaction, citing as an example the Hg 2537 line. If a
beam of light which is constant in intensity over the 2537 E lefel is
passed through mercury vapor, five sharp, closely spaced lines appear
in the spectrum of the scattered radiation as the result of resonance
Rayleigh scattering through the five hyperfine components of the cor-
responding intermediate level. Placzek notes that MitcheliBl has cal-
culated the depolarization of each line, and Ellett and McNair,
Keussler,83 Ol.son,8lL and Iarrick and Heydenburg85 have obtained experi-
mental results which agree fairly well with the calculations.

The nuclear spin has one other significant effect on Rayleigh
scattering from cesium. Because of the resulting hyperfine splitting
of the cesium ground level, part of the "Rayleigh scattering" is actually
shifted glightly frqm the incident frequency. However, this shift is

so small (about 0.15 A) that it would be difficult to resolve under

typical experimental conditions.
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L.5. DEPOIARIZATION AND THE SYMMETRY CHARACTERISTICS OF THE

SCATTERING PARTICLES

In this section we redevelop & Dbasic selection rule for various
components of the scattering tensor which is based on the symmetry
properties of the scattering particles, and then show that this selec-
tion rule does not exclude depolarization of light scattered from par-
ticles with spherically symmetric charge distributions in initial and
final states.

In order to develop the selection rule it is convenient to express
the scattering tensor (Cij)ﬁ+ﬁ' in the form of a single matrix element.

From Eg. (4.16) this tensor is represented by the components

(Cyp) =Ly E<BB\D@iB”B”><B“(s"I DB
Bg— B i Al

‘F\ Tl (}-) B,/ B - (J)
B ! (k.92)
| <IDEEEPI0 6]
COB'R *+ O

Here B designates a particular level and P, a particular state within
this level. The dependence of the scattering tensor on intermediate
states may be expressed in another form by introducing the projection

operator Pp which 1s defined such that

PBiB(S> — l'Bﬁ for all states B in the level B

RIBEy = 0, B #E

This operator may be written in various forms as a functional of the

(4.93)

Hamiltonianzyi which operates on the state functions ‘BB> gsuch that
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W |Bey = EglBg
For example

, N X —Eg/
Fé 7:: BI/QLB (EB—EBB) (4,94)

clearly satisfies the property (4.93). Another form which may be more

convenient for certain purposes is
5/1 ( >
(T(H-Eg
P = g/ dTe (4.95)

& Sl 78

»l—

Utilizing the property (4.93) of Pg, Eq. (4.91) can be written

(4.96)
- 1 ‘ §<B€’ Dj- me ’ B“@”> <B”B"| D} l Blﬁ'>
(Cﬁﬂ )B(3—> B T T Warp -
+ <B@\ D,Q PB'“ ' B“ﬁ”><8”6“ l Dq l B/p,>}
Wa”p t W)

The sum over B"B" may now be performed directly, employing the closure

property ol the functions |B"B"™> to obtain

(Coplggamy = (BRI Cye | B (4.97)
‘where
R/D D P.D,
-1 L R ¥

B
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Definite selection rules can be developed for the matrix element*

<Bf3‘ GQQ‘B".}’> = thLH;‘(’S GQIL'JBP ()4.99)

from the following argument. The integral on the right hand side is
invariant under any point transformation T (such as rotation or reflec-

tion about a point, reflection about a plane, etc.) which operates only

on integration variables; i.e.,
e - Jch: Ty Cpo P /] (4.100)
J\(:J'C quP A4 L{)B'P' - BR % B'f
For any transformation such that
~ > N :
T [LP;@ CMLFB'ﬁ') =t Ll)Bﬁ Cﬁl L'JB/(:;I (k.101)

where t is a number, we have from Eq. (L4.100)

(4.102)

() —t) Sc‘t LPEP o L"B'(S’ =0

If t;él, then obviously the integral must vanish. For example consider
the point transformation _U: which represents reflection through a

point. For state functions of definite parity we have

Ty =1¢

If JI?(:SL( then from Eq. (4.9%) or (4.95), H Pp = Pg and

*The notation Jdtr in Eg. (4.99) implies a sum over discrete spin coor-
denotes as well as an integral over continuous position coordinates.
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Ve

O Ce= G

Then if the states 15275} and yg'gt have opposite parity

~ k o1 % n
hiA [‘\f"ge C?‘Z LPB'[S} = - q’s(s CaL LPB'pI

and the integral must vanish. Note.that for the group of all symmetry
'
operations which leave;zi’invariant, ejz transforms like DjD,. It

follows that if the integral

jA‘C q";@ D’@'Dﬂ" "})BIBI (4.103)

can be shown to vanish using a transformation belonging to the symmetry

group of ,3{ , then Cij must vanish also. PlaczekBu has developed de-

tailed symmetry selection rules based on this relationship between (4.99)
and (4.103) in his extensive work on the application of group theory

to light scattering. However, it ought to be emphasized that for the
purpose of determining selection rules for <C§i)BB+B'B’ from Eq. (4.103),
one should use only point symmetry transformations belonging to the
symmetry group‘fa of the Hamiltonian SkZ. If Eq. (4.97) is shown to
vanish using a transformation not contained in ‘f? , 1t does not follow
that (Cj()Bﬁ+B’ﬁ' must vanish. A good example of this point is pre-
sented in Rayleigh scattering from ground state cesium atoms. According
to the results of Section 4.2, depolarization arises from the scatter-

ing tensor component (CZX)BB+B'B" On the other hand we may show that
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jllt q/gﬁ [21 [X L+%B, = O

by reflecting the electron position coordinates about the yz-plane,
noting that the ground states WBB and’wBﬁ, are invariant in this trans-
formation and D,D, changes sign. However, this result does not imply
that (CZX)BB»BIBI vanishes, since the spin-orbit contribution to !}e
changes under this reflection (and other any other transformation which
may be used to show that the integral vanishes). Thus the symmetry

theory does not contradict the results of Section bk,



CHAPTER V

CONCLUSION

There seem to be several possibly interesting extensions of the
theoretical results obtained in previous chapters. Also several experi-
ments are suggested. These are discussed in this chapter.

In Section 1.1 terms arose in the second-order contribution to the
scattering cross section which correspond to scattering events in which
two particles change state simultaneously. Of course if third-order
contributions had been considered, terms in which three particles change
state would arise, etc. There is a tendency to ignore such contribu-
tions on the grounds that they are "nonphysical." We show in Appendix C
that these terms vanish in the ideal gas approximation, and in a real
gas they have a strong resonance character. It is possible that these
terms might be significant for scattering near resonance in sufficiently
dense scattering systems. Both experimental and theoretical investiga-
tions of this possibility appear accessible and might be of interest.

The possible dependence of the scattering on the dimensions of the
incident beam and scattering volume mentioned in Section 1.5 might be

o7

investigated through such methods as those developed by Osborn and

58

Klevans. Using the relatively powerful single mode gas lasers now
available, the scattering from volumes with dimensions on the order of

a micron ought to be observable. .In liquids and solids the scattering

131
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from such a small volume might be considerably more intense because of
diminution of destructive interference. Such scattering might reveal
interesting properties of the medium. In gases this type of experiment

59

might be used to check Theimer's suggestion”” that the scattering in a
gas depends on the shape of the scattering volume if the volume is suf-
ficientdy small.

From Chapter IT and Appendix D, it appears that the expression of
the scattering cross section in terms of Van Hove G-functions fails
near resonance. Likewise, the expression of the cross section integrated
over final frequency in terms of the single time correlation functions
g(p_) fails at resonance. Using methods similar to those introduced
in Appendix D, in the ideal gas approximation one may still sum over
intermediate external states, obtaining subsequent expressions for the
resonance scattering cross sections in terms of modified correlation
functions. In a real gas the situation is more complicated because
the energy of the intermediate external state is no longer determined
by the initial external state through the matrix element <®”|eil£'~3-|@)>.
However, meaningful results might still be obtained through appropriate
approximations. Noting that resonance scattering is an important mecha-
nism in stellar atmospheres, strongly affecting radiation transport,
it appears that the formulation of resonance scattering cross sections

in terms of modified correlation functions might be of considerable

interest to astrophysicists. This formulation might complement other
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methods of examining resonance scattering such as those developed by
Spitzer.

The calculations presented in Section 4.l indicate that the light
Rayleigh-scattered from ground state cesium atoms will show strong de-
polarization for incident wavelengths near 8800 A. TIn fact, the normal
depolarization 1s greater than one over a spectral range greater than
100 2, This indication of strong depolarization is in disagreement
with the results of classical theory which, for separation from resonance
which is large compared to line widths, predicts a maximum value of 1/5
for normal depolarization.25 Experimental investigation of the depolari-
zation would appear to be of considerable interest because if it is ob-
served to be as large as predicted in Section L.k, then the classical
theory will be contradicted under conditions for which it was thought
to be valid.

Both experimental and theoretical examination of the descrepancy
between the quantum and classical expressions for Rayleigh scattering
crogs sections in terms of refractive indices and depolarization, con-
tained in the factor F.jy in Eq. (4.85), would be of interest. We note
that the magnitude of F,j depends on the relative magnitudes of the re-
duced matrix elements involved. In the case of ground state cesium
atoms the reduced matrix elements may be calculated from oscillator
strengths and the factor FTJ is seen to be quite large. Experimental

verification of this result seems to be indicated.
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Finally, it is probably true that many of the results obtained for
gases and plasma systems in this dissertation may have broader applica-
tion. In particular, the results of Chapter II appear to be applicable
in the presence of slow varying or constant external fields and in
solids or liquids. Conversely, the results of Chapter IV are not ob-
viously applicable under these conditions because it has been agsumed
that the scattering particles are freely oriented and to a large extent
coherent interference scattering has been ignored. It is not difficult
to modify the results of Chapter IV to take coherent interference
scattering into account. The effects of slowiy varying or constant

electric or magnetic fields are not so easily included.



APPENDIX A

CENTER-OF-MASS TRANSFORMATIONS

In Section 1.1 it is noted that the Hamiltonian for a single

particle

M (’@/; A%) :
Hay :é | _2@3 W (a.1)

may be broken up into three parts: one describing the motion of the
center of mass of the particle; one describing motions of electrons
and nuclei about the center of mass; and one describing the interac-
tions between the particles and radiation fields. For the purposes
of Hamiltonian classical mechanics and quantum mechanics it is often

86

convenient to require that the transformation be canonical. Here

we discuss one such transformation.

A center-of-mass transformation which is convenient for atoms is

defined by

R, = —'Mq[mmo ¥ Zm @,]

e

Py = Loy Lo (A.3)

where M, is the total mass of the particle, My, is the mass of the
nucleus, and m is the electronic mass. The nucleus is located at rpp

and the jth of Zg electrons at oy This transformation has the inverse
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Here subscripts p and v denote vector components. For j=0 one obtains

/Pe(oy. ' %B +Z Tl‘o(ﬂ./\ (A-7>

and for j#0,

m
K= ™ e+ Tope (4.8)
where the operators Po(kand nd’Lare defined by
3 o
= - d;\""‘ A.
- SRoye (8-9)
9
“—“%P—— --L)F\ éﬁx}p. (A.10)
Substituting Egs. (A.9) and (A.10) into Fa. (A.1) one obtains
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where
Myt
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M N MR
9@& = Ho:( +Hg 1 Ho( (8-22)
where
2
HMX — B‘_ (A.13)
A 2Mu
Zox YA Z“y
= (™. l \
HN*’:}.g'ﬂ“LZ_M" U«}W“K}Jr\/o( (A.14)
§ 4! 2P L=
Z 2 n
MR Swo = R Ge,
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To a good approximation HgR 1s given by
Zo 2 2
MR = : £
Ho( = Z [mc E\oq ﬂ:xy +2mcz Ao@J (A.16)
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A tedious but straighforward calculation reveals that the error intro-

duced into the cross section by this approximation is on the order of
y Zam

compared to one, or approximately 0.1%.
%O

Similar transformations may be defined for polyatomic molec.ules.87

Again it appears that H%B is well approximated by Egq. (A.16).



APPENDIX B

DEPENDENCE OF THE SCATTERING CROSS SECTION ON THE WIDTHS
AND SHIFTS OF INITTAL, INTERMEDIATE AND FINAL STATES

As mentioned in Chapter I, damping theory as developed by Akcasu56

suggests a second-order approximation for the transition rate per unit

time from state |i> to state |f> of the form

2
2T _S7 Veg Vo
Tiop = & ‘ 7 Eﬁt%éﬁt_mw@i EL (EFL'> (1)
We |
Fc (Ef{\) - E‘ I : (B.2)

z 7

m <E{;(+JBSF,‘) +% WF(

Here, for example, Wey = We-Wy where Wy is the energy half width at
P) y Npq 1 i

half maximum associated with the state |i>. We have from damping theory

%W Z l /u J(EQ[> \B-B)

Iikewige Syfi = S¢-S4, where Si is the energy shift assoilcated with the

state |1>, given by

IVACIL
R L —_— (B.4)
‘h SL - tL +ﬂ% Eﬂi + Sn.‘

Demping theory provides a strong argument for Eq. (B.l) for the
important special case in which only the widths and shifts of inter-

mediate states are significant. Then, noting that

1 el
L\YY\ ‘|T X?_+C?— =5(X>
£-O
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Equation (B.1) becomes

! Vg Vi
AN VS 9 Vot
Tise =5 l\/{:‘ 2 Ea +h Ser- LWy §(Eq)  (25)

9

The arguments presently available from damping theory for Egs.
(B.1) and (B.2) seem to be much wesker for cases in which the widths
of initial and final states are significant. Nevertheless, this result
is reasonable from at least two standpoints. First, in the limit in
which all widths and shifts vanish, Eq. (B.1) becomes equivalent to
the result of ordinary perturbation theory as given by Eq. (1.34),
Second, consider a system of N particles which do not interact with
each other but only with a radiation field. Then the state functions
for this system may be factored into individual particle functions.
Tt follows from Eq. (B.2) that in this case the widths, for example Wy,

are given by
() a N
Wi = Wi+ WL'()+"'+W1() (B.6)

Since each contribution is positive, if there are a large number of
particles in states with finite widths, Wi also becomes very large.
This quantity is extensive, i.e., it depends on the number of par-
ticles in the system. However, according to Eq. (B.1l), in a scatter-
ing transition only the differences of widths are involved. If only
one particle changes state in the scattering transition, then only

the widths of the states of this particle remain in the differences
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of system widths Wri and Wgi to affect the scattering. This result
is reasonable for a system of noninteracting particles and lends sup-
port to Eq. (B.2).

For the purposes of this appendix we will assume that Eq. (B.1)
provides a valid description of the effects of widths of initial and
final states. The exact form of Fri(Epi), which admittedly is con-
troversial, is not crucial to the arguments to follow.

We show here that it is possible to include the widths (and shifts)
of states in the development of the scattering cross section; at least
in a first approximation. The inclusion of widths of intermediate
states is, perhaps, of greatest interest, because of the importance
of these widths near resonance. However, we shall also include the
widths of initial and final states up to the point where it is possible
to evaluate their qualitative significance. The effects of these
widths on the scattering may be significant in high resolution experi-
ments,67 where natural widths are observable, or in stellar atmos-
pheres or some laboratory plasmas, when a considerable fraction of the
particles may be in initial states with large widths.

Starting from Eq. (B.1l) instead of Eq. (1.34) and following the
steps of Chapters I and II through Eq. (2.1), one obtains for the

scattering cross section
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(B.7)
2 — —
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T(EL Qi+ Q) = NGt mc’l>03,(B - l:d)% ANAY <w68+wb’b_w>
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X
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where

1 ’WQB'b' VZ';_ZBBZ ' : (B.8)
U (w+ 5@’5’9‘)@50 *(Wos'a'mb?)

_." | <w> =
®67,8b7

From the argument developed in Appendix C, it appears that one may sum
over intermediate external states(} " if the separation from resonance is
sufficient such that, for example, wj-wp"p is much greater than wyrp +

S for all intermediate external states for

@llb"n ll’(B'b,q_i W @"b"'l’]", @b'f]
o 1K°R

which the matrix elements <@ Ie = —ILB> are significant. However,

this condition appears to be too strong, for the following reason. The

intermediate external and radiation states are only slightly different

than the corresponding initial states, changing only through the emission

or absorption of one photon and subsequent, relatively slight recoil
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energy imparted to one or a few particles. Therefore to a good approxi-

metion one should have

——

503"5'7")(5%’( - S(Bb"*? )Bb‘?
and (5-9)

[ ) jumand /

Wery . 8b0 = Wesn, g0

Thus it appears that one need establish only the insignificance of
wgng in the denominators in order to sum directly over (3". DNote that
the argument leading to Eqs. (B.9) applies also to the final state with

the result that to a good approximation

| n (B.10)
Fﬁ;’ ’2')(8})'2<wﬁ% +Ck)\}3b"‘(/u‘> Fbyz)@b?( (B&%fﬁ) )

Substituting Egs. (B.9) and (B.1lQ) into Eq. (B.7) and ignoring

Wgng, the sum over " leads to
CU?_ C’L S ®)
(6,6\) Q,—>€7_CVLQ ) _C—: <—n")—'(1>ZZ[035 (B-ll)
BH bh
2
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Tt is convenient to introduce the Fourier transform of F@b'n,@bn(w)

defined by
_ S
@@B%@bﬁ @) _S’dw € F@b"?)@b? (CU') (B.13)
such that
(08
| y Wt (B.14)
w T .
aina ()= 27 J9Te T By gy ©

Substituting Eq. (B.14) into Eq. (B.11l), and multiplying out the absolute

square, one obtains

B (B.15)
T(60nQ »Elonh) = Z(Trk[ij&co, m(}> ZZ—O% (AA(B by BbY <A0</>@b7)(857

X) jdtet(ww%”)@“_w B arn g0 ©
)

0{8|e's R E " (phcael Bl gy

We assume for simplicity that P(Bb may be factored into P@Pb» Then

summing over B and ', the cross sections may be put into the form

O—‘(élwlgl”}’@zwzgl QTI'N(,Jl <\(Y\CZ> zPZAo(bls Ao(U

bh A’

X)fdf ei(wgb“w)f@gb(z)<é(_\@~80((o)€mo&,(ﬂ)

where < > denotes an average over external states. In order to obtain

(B.16)

Eq. (B.16), widths and shifts which depend on external states have been
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replaced by appropriate averages over external states. The average

shifts have been incorporated into Wy 1y ana w,m,. Thus for example

/L.\%'b = 6\'@”—20&5% (B.17)
§<\a\m )BTl <1855 Tea b
‘%m Wy wb”b +1 Wb”b Loz + C«)b//b—- t ng"b
and
_ N -wT Kl
@Bbm B W_LA ©& s (W )© (B.18)

Substituting from Eq. (2.15) for <éLk'Ro((0) éL'K'RD\’<‘C)> one obtains

(A *
€ Q€22 Q02) = et ' b Mol
Q’( 1172 e 7‘> Q_TI'NCA)| C2> %)Pb;f\o(bbp\dbb (B.19)

(X) 5&3(3 A’C e'\ DS,'P- +(wsl°‘w>t @Hh(t) Go(ou (# )-C>

The effect of widths of initial and final states may be examined

qualitatively from this equation From Eq. (B.18)

jdt Pyt = \V\/ W)

@%(U = @gb({) = @z’b@) (B.20)
@Bb (0) = |

These properties and the qualitative relationship between &, (7) and

Fp'p(w) are illustrated in Fig. B.l. It is apparent from this figure
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F'p(w)

Oy p(T) ()

(b)
|

Fig. B.1. Relationship between & 1p(T) and Fpip(@). The set (a)
corresponds to small Wiy, set (b), to intermediate Wy:y, and set

(c) to large Wiy .
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that as Fy (@) becomes broader, ®,'p,(7) drops off more sharply for
increasing (%). Noting that Ggyt(p_,T) is a correlation function be-
tween particles o and &', this behavior of @b,b(T) has the effect of
diminishing the importance of long time correlations as Fbrb(m) becomes
broader.

This effect may be regarded from another viewpoint by employing a

convolution theorem for PFourier transforms of the form

Q_Lﬂ .if\t ' “T AB() :_ijl (o) Bew-0) (B.21)

where, for example
D

a(w ) = 7:‘" 5 Lwr ACT> (B.22)
oo ;

Applying this theorem to Eq. (B.19), one obtains

T (€16 Q > Eato, Qo) = Nw‘(mz) 2100 Ko P (5.,
(X) \de' E;g () So(ou(ﬁ)@b'k‘w‘wg
where

S (Ki0) = %jdgﬁdreif@ﬁ-wd G, (eT) A

a [

From Eq. (B.23) it is apparent that in the convolution integral over w'
the function Fbxb(w') smears or broadens the details of the frequency

distribution of Syyr(k,w). Note that neglecting line widths and shifts
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the function Spy'(k,wyp-w) contains all of the dependence of the cross
section on external states.

The notation of Eq. (B.10) implies that Fyy 1p(w) will become &(w)
for coherent scattering (b'=b). In fact, if Eq. (B.2) for this func-
tion is valid, then this approximation is probably quite good in many
cases, since for coherent scattering the initial and final internal
states are the same and the slight change in external and radiation
gstates during a scattering transition may not affect the widths and

shifts significantly.



APPENDIX C

THE TRANSITION PROBABILITY

Multiplying out the various terms within the absolute square in

Eq. (1.47) one obtains

2 2
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The various terms within the absolute square have been grouped

into four sets. The first two sets, designated by (a) and (b), are
included in Eq. (1.48). We wish to show here that sets (c) and (d)

vanigh in the ideal gas approximation and display a strong resonance
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behavior in a real gas. Consider the set of terms (c):

(¢.2)
Lkl R " " th Rd " " \b)
| (@le® Brlary (@) et 518y By, 5 <8 T
%’ZZ%

G- Wy, g

—

. clet By 68 B gy B M | )< Tha b))
(g + LY, +CIR"B

Assuming that the Hamiltonian for the internal states is of the form

N "
= ZHM (c.3)
oK

and that the particles are separately distinguishable, as in Chapter I,
the internal state functions may be chosen to factor into individual

particle internal state functions so that for example

by = Vel o Loy [bgd> - Ty )
Tt follows then that in the first term in (C.2)
Oy = Wl
and in the second term
CA)%’&)z: CA)%F>b@

In the ideal gas approximation

< NM F)Z.
=27, ©
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and consequently the external state functions may also be factored

such that for example

<B’L> \8@& o \(Bp> ,(BNN> (C.6)

AW
18) = |B)
It follows that Eq. (C.2) may be written in the form

/ H . g LL . (7x -
(c) = Z<@élé®' 58 8oy <BLIE™ TIRY (e
xf o

' \
00K | Tz > bl Tt 17 § CO= 04 7 gt~ O+ bt e

From the energy-conserving delta function in Eq. (C.l), for all non-

vanishing contributions to Tﬁbnaﬂgb'n'

Cdy= Gy, b (gl B = (o + B@b@* OJ@E Be

in the ideal gas approximation. Substituting this result into Eq. (c.7)
it is apparent that the set of terms (c) vanishes in the ideal gas
approximation. The same result is obtained for the set of terms (a)
and the free electron cross terms (j#£) in (b) in Eq.‘(C.l).

In a real gas, the external Hamiltonian HX does not break up into
a sum of single particle Hamiltonians and consequently the external
state functions |®> do not factor. In order to examine the terms
(¢) in Eq. (C.1) for this situation it is cémfenient to substitute

Wy ROyt + W FOT @ + @y + O in the second term in Eg. (C.2).
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This substitution is valid for all nonvaenishing terms in Eq. (C.1)

because .of the energy-conserving d-function. As a result one obtains

/g@'\éi@zﬁ’ﬁ |(B‘7<(3"‘9Lk"50(l(B><1D/lﬂ(59_l15/><b"m_ou.|lo>

_L
(C)_'%MZ CJ\” wg'b‘w@;@

B8 «B "

calet®r g arle B Br gy B e |b}}

O)‘ + wa!b' + C\J(B”&B,

Noting that the internal state functions still factor, Eq. (C.8) becomes

(c.9)
_)ﬁl_}: {16 | Tz s> 6| Ty [0
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kb~ B .
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At this point it is convenlent to introduce the expansions

l o Z, We"®
Y c _ Oy D= Iy
(A)\"(JL)EI b;' (_L)(B//B (JUI (A)bo(bd n=o | ko(bo(
(c.10)
00 N
| . | 7 ( O 37 >
wl""\)b',( b oyl B oS wlo'.( Bo( n=c Qo= o bi.,z b

which converge, of course, only for Ia)@'@l and Iw@@nl less than
w10 ' by Restricting present consideration to separations from

resonance which are sufficient to satisfy this requirement for all
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significant matrix elements in the sum over (" in Eq. (C.9), one
obtains

Q=LY Bal Maa L be ) | Tt [ B

Hm XE o= (O, by

OQ Zf: <05|‘ -Lkz R@l@//>< /,l LH kKNJ/\)\b/ (c.11)

& h:c (o= Cdywbﬂn Ht

I I r<@>f
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Summing over intermediate external states, Eq. (C.1l) becomes

Z b | Tga [ bp)< b | T | b

CQ\‘"‘ CA)LM b

(c.12)

0 T4 etk Be, (17, elh-Be] |6

(GO =y y )"

The Hamiltonian HX introduced in Section 1.1 is of the form

N o2 :
X oK
H = 4 ZMx+\_\

where the sum over  runs over all particles (including any free elec-
trons). Assuming that HI commutes with R, for all o, the first non-
vanishing term in the sum over n occurs for n = 3, and one obtains for

this term
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(C)
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Thus the first nonvanishing term has a strong resonance behavior.
A quantitative estimate of the significance of this term has not been
worked out here. However, the strong resonance behavior suggests that

it should not be significant in a real gas away from resonance, if

glgnificant at all. The same argument can be advanced for the terms

(d) in Eq. (C.1).



APPENDIX D

ON THE SUM OVER INTERMEDIATE EXTERNAL STATES

In this appendix the approximation introduced in Section 2.2
to facilitate the sum over intermediate external states is evaluated
in the ideal gas approximation.
Consider the first of the second-order terms in Eq. (2.1). This
term involves
@let Bieneietbey
G|~ Logrg ~ g

&

It is convenient to introduce the expansion

which converges for

el < i,

Restricting consideration to separations from the resonance which are

sufficiently large so that this condition is satisfied for all signifi-
S 1 ik.-R . .

cant matrix elements <®"|e =L =0|B >, we may substitute Eq. (D.2) into

(D.1) to obtain
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In. the ideal gas approximation the Hamiltonian * becomes

Z H 2 2 M (D-5)

Consequennly, the external state functions may be written in the form
\®) = |®\>|@'L>"" (8« -+~ |BN (D.6)

where

|By) = _L—_, L’Q B (0.7)

Here we have utilized box normalization.53, The energy of the particle

 associated with the state |@ ;> 1s given by

p2 ks
HZ By = fp\'o(l(BD ~ oMy (D.8)

In the ideal gas the energy difference ht%.,(B between 1nitial and inter-

medlate external states is determined by the matrix element

<®" eikr& |3 (D.9)
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and the initial state |[B>. Thus we find

bk
Wgrg = Ux* k‘ + 2/\/\'0( (D.10)

The second term is usually very much smaller that the first. Neglecting

it for simplicity, one obtains

“oaré — M (D.11)

0‘)(— wb“b - C\)‘*wwb

A similar result obtains for the second of the second order terms

in Eqg. (2.1). For this term it is convenient to introduce the expansion

s @Ryl By o

(BN (/L)Z+w'g”la 'i'CA)@//oB
B ;gl.<281’691kl'fgu)03€><<dyw efikzof§uldﬁ> ]-" _fii&ﬁé_ ..
B K Cdg + (/&)Wo sz+wb"b

One finds
COge _ ~Va ke

Gy + WY Cup + (O 1),

The expresgsion Xa‘ﬁl in Eq. (D.11) gives the Doppler shift in
frequency (to first order) associated with the emission of a photon
in direction -kq with frequency ckj by a particle with velocity vy.
It follows that <Xa“§1)/(wl"“%”b) will be small for all particle

velocities of significant probability if the separation from resonance
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w1-Wp"p is large compared with the Doppler broadening (and shift, if
any) associated with emission lines in the scattering_éystem, The
same conclusion holds for the term (-Za~§2)/(w2+w5nb). In this case,
it appears that in the ideal gas approximatién the expansions in

Egs. (D.4) and (D.12) are dominated by the first terms and one may
ignore‘@ '@ to a good approximation.

As pointed out in Section 4.1, the first-order and second-order
terms in the scattering cross section often are of nearly the same
magnitude and opposite sign, so that the cross section ig associated
with the small difference between two large quantities. In such a
case approximation of the type discussed in this appendix must, of
course, be introduced with care, for a small error in the second-order
term may lead to a large error in the cross section. However, for
light scattering the difference in absolute magnitudes of first- and

second-order terms is usually about 10% of one term or greater* and at

least in such a case this problem does not appear to be serious.

*See Section L4.1.



APPENDIX E
VAN HOVE G-FUNCTIONS AND THEIR CIASSICAL LIMITS
IN THE IDEAL GAS APPROXIMATION
In thic appendix the Van Hove G-functions are calculated in the
ideal gas approximation and the resulting cross sections are compared
to those obtained using the classical limits of these functions ob-
tained through the Vineyard perscription.

From Eqs. (2.29), (2.27) and (2.28)

Clex) = G(e) + G (1) (5.1)

[

GS(-(E'T—> ZG«;«X (ﬁ)z) (E.2)

aGhay

From Eqs. (2.13) and (2.7)

[

Z/G&w (P7) (E.3)

ool

n=o
In the ideal gas approximation
R
Sk
H - M (E.5)

K
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and
N 2
0, KR /4y h k=N

[HTQLK R’(} =€ (-fJ\x“.B T ‘Z.f‘/\o(> (E.6)

Then
-3 LK-
G, (&0 =1 "N fcf’w S (5.7)
0 w (L BBy g g Y

Consider

;o ) 4
/ -M-U/\ ><R\,; "'”t.\.‘\> (fb\&\/ L'< + rzh:) > (£:8)

=) 58| B g v Y8

As noted previously, in the ideal gas approximation the external state

functions may be chosen to factor as follows

B) = [B)|B) |8y 1B

where, for example, the individual particle state functions may be

(E.9)

chosen to take the form

kR
|8 = l__3/z e = (£.10)

Here box normalization55 has been employed. Substituting from Egs.

(E.9) and (E.10) into Eg. (E.8) one obtains for o # o'
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\ Len\n
<Q“’<°(B°“-Ed) <7FM E'B‘ N /@_h‘jld > > (E.11)
U ‘ 15 (R Ry ) /7 5 “KE\
- LR ORI o)

In the limit as L » «~, the sums over Ea and Ea‘ may be replaced by

integrals; i.e.,
56, - o1 Pw
e

Then Eq. (E.11l) becomes

M
= | RS RLEIPRD [SPRERy @

The integrals over Ry and Ry may be carried out directly; yielding

(2nL)56(K)6n,o. Thus one obtains for a # Q'

Substituting this result into Eq. (E.7), one obtains

l
GO(O(’ <-€)t) — ‘N"E (E.15)
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for o # &'s Finally, substituting this result into Eq. (E.3),

(Q, )= — = N, (E.16)

where N, is the particle density.
The subscript IG is inserted to designate that this result is
obtained in the ideal gas approximation.

Now consider Goy(p_,T ). From Eq. (E.7)
Gu(0D)= [ 8 5 (' (£ s 22T
e BT .k ) (E.17)
Sd% e“'ﬂ<€W<K"“+W’L>>

For the average over external states one obtains

<e%—ﬁ;€(5'kd + KZ/Q>> = jc!sko( P('SQ 8%&"3“ tK7e) (E.18)

Assuming & system of like particles in a Maxwellian velocity distribu-

tion at a temperature @

32 \% _ﬁ,kw

P(k) = (75 € ™ =
- 2TM®

Substituting this distribution into Eq. (E.18), the integral over ky

may be performed directly, yielding
(o

. 5 _ };;; 2
<e§-{ﬁm—t'<5'}5°‘+"</7> = & 2/ “ (E.20)
where
Lf
F=0-7

(E.21)
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Substituting Eq. (E.20) into (E.17) and integrating over k one obtalne

‘ [\/\ ./ /\/'L—‘hz
Gw <£)"r) = N <2TrL }‘) 6: 2C¢ (E.22)
Then from Eg. (E.2)
3, MpAkt
M _Mp_R
S — 2T
G (eT) = (ﬁgrg) e F (£.25)

The cross sections developed in Section 2.1 are proportional to

Ss(ﬁjw), SP(ﬁ,w) or 8(k,») where for example

5(\5»w>: Q%rfdgfgtgt[ﬁﬁﬁ—wd G‘(fﬂ:) (E.2k4)

Substituting from Eq. (E.16) for GP(p_,T), one obtains for SP(E)w) in

the ideal gas approximation

of (s)= (2m) "5 E(€)8(W) _

Likewise, substituting from Eq. (E.23) for Gs(p_,T), one obtaing for

SS(E,w) in the ideal gas approximation
2
% MO
S [KE w'(:) M > 577 %
SIGO’S)U)) jd ch'CCZ <Wf e F (E.26)

The integrations over p_ and T may be performed directly, yielding

5 . mo b M w__%w
81@({1\)0&)} = <QTT®K2> e 2@\«’2( )

(E.27)
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Now consider the clasgical limits for GF(p ,T) and G°(p_,T)
obtained through the Vineyard perscription.* Using, for example,

38
the method of ILamb to evaluate the classical average

{5 [Ru(o) +£=Ra@)] )

one obtains from Eg. (2.3%6)

B

P

e (PT) = E (E.28)
(S M '375._.Jﬁ%ﬁz;
(ﬁ)T>:(""'2“) e =@

Thuskﬁ ?G(p_,T) is identical to G?G(p_,T). On the other hand,
%}iG(p_,T) differs from GEG(B,T) in that /; =@ - i#A/7 is replaced
by Jjust @.

Substituting from Egs. (E.28) and (E.29) into Eg. (E.24) for

G(p,T), one obtains in the classical limit

O (s,0) = (2m) S ()8 (w) (2.50)
and
s m o\ __M_@_i_
A?IG(VS,OJ) = <Wz> e 20% (B.31)

*See the discussion following Eg. (2.35) for a description of the
Vineyard perscription.
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As expected, JgiGKEJw) is identical to its guantum counterpart
SiG(ij). However, Ag%e(ﬁ,w) differs from S%G(E,m) in that
(w —/HEE/EM) in the latter is replaced by w in the former. The

extra termfﬁmg/EM in the quantum result arises from the term ¥A/T

S

in G?G(E,T) which is not present in %]IG

(p,T). Neglecting the small
variation in ng as w ranges over a typically sharp line, the term
hm2/2M contributes a constant frequency shift which is omitted in
the classical limit. For light scattering from atoms this shift is
on the order of ]_O7 sec'l, whereas for scattering from free electrons
L 10 -1 . . .

it 1s on the order of 10 sec . Comparing these shifts to typical

0 sec_l for atoms

Doppler broadening line widths, on the order of lOl
o 12 -1 o sy

at 300 K and 10  sec  for free electrons at 10,000 °K, it is

evident that in the ideal gas approximation the shifts neglected in

the Vineyard perscription clagsical limits are very small and probably

insignificant for most purposes.



APPENDIX F

THE RELATIONSHIP BETWEEN (Qé)TJ+TJ AND (Qi)TJMJ

From Eqs. (4.76), (4.70) and (4.69)

( |> _ 4 Z L T
QOTJ.—)T\T )ﬁ (23'\'\5 M -C/IJH CU_C,/J., C.J__'O-)?- (F.l)

72

(., /\2
- J-IJ-, | ’f
73 { o) -

From Egs. (4.77) and (L4.70)

l _— ‘ nTn
<Qi')[3-\_»t3 —;.T—(ZTH) Z_ Z,—,—,I <IT”D”Z J >I
ey (F.2)
SAYRRRK J1J37VT 1T
(x) {Gg éwl (—M‘-l M/ _ (—M ] /V\')(-M' oM/
Crgyry™ Wergr, Ty T,

Multiplying out the first absolute square in Egq.. (F.l), one obtains

4 Z T Corrgrey Corg» ey

1. = —
(®0>CI—9t T {12<2J'+l T CI"J“ ((’Ot/’:y” ) (JJIZ)( COC” 1T T I‘ C«\)I)

o |<ealiplzas| \Kerioleap = *

’ ' \2 e \
of GUEP (A2 (63 6 e

Summing over M. employing an orthogonality property of the 3-J symbols,

one obtains
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C‘( )l”JN vl (( //NJ"// s

(G )
o>tJ-th )ﬁ?- 2J+1) [”J'Z(,:TT"’(CO —_ |><(o[,,,T, 5 u\)

v (F.4)

0 [{urio | [etolees |

. - 2. VAR \
JIJ Jryms 1
(X)gzw -MoM ) -MoM ) 927+ I)?
M

H J‘lJ'I" 2
Congider j{j MOM _MOM . It is convenient to express the 3-J

symbols in terms of Clebsch-Gordan coefficients in order to obtain

notation similar to that of Ref. 77 . Thus
TITNTETMY o/ J I)(J l J"’)
(-Mo M)(—Mo N\) """" <—MoM Mo M

)T T A3
V@i )23 Mo Mo

-

Employing a general relationship between Clebsch-Gordan coefficients and

T

Racah coefficients, one obtains
(F.6)
JllsJ‘//I

] m N 1S M T
CJIJ CJ’J —_ \523‘1—[2 \,25*’“\ C@o C~MO W(‘T 'J—”II;J:S)
S

MO -MO

where W(abcd;ef) is a Racah coefficient. Sybstituting this result into

Eq. (F.5), one obtains
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%(i\lo%\) (i«fﬁi) = ZY”’H Z_ W({Tm 3" 3-3) (F.7)

Sy s’ SI"p IS T
0 W) O 0 ZCM o

Congilder
Z 7S J" CJ”S’J”’ 23" | Z CJ”J"'SCJ”J’”S'
- - = ' .8
o M MO T stiNesh) L Tmm MM (F.8)
Q_J-'"‘"‘ I

- ————Jss’

25 + |

The last step is a result of an orthogonality property of the Clebsch-
5k

Gordan coefficients. Substituting this result into Eq. (F.7), one obtains

S () (BT = ZwWhamanss)(els) e
M

7
From the orthogonality property of Racah coefficients

l
53'5) = m) (F.10)

S T
q%(%“) W3 T

Finally, substituting from Egs. (F.9) and (F.10) into Eg. (F.L), one

obtains

@ ) 4 N ey Wemgiiry (F.11)
2 -
OIty>TT - ’F)&(QTH) raTh <wc’/J”zJ I )(C()ZZ”’J’Z a7 w’d)
v T

) 1<ZJ”D”C”J"> ll I<CJ-ND“ PRI ,’Z-

(X)ZW(I”}I”' JS){(C“S %__:'_ij
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Now consider (Qi>TJ+¢J° Writing out the first absolute square

in Eg. (F.2) one obtains

@ esazs = 55, £ Kealpliea [*[<ealolzrad]

J lJ" T J’")(Tl?“’)(J’lJ"')
MZ{ -MoM MHM Mom /- m
MM' C(/UZWJ Ly O T O.)’ )(w—caua-ml-a- OJ|>
AEAY2AR J”)(J‘I I”’)(?;:rw
-mom/iem-I M/\-m ) M MOM’)
(Wpngn,r3™ ) (e T’ )
/Ji\T") J'IJ‘N><J‘IJIH)(J'J‘IH)
Wmam) mom J\emom /ima m
< w‘clr J.HJT;T + (AJO (wCMJﬂj Z-\r—w')
8N J‘”><J I J”)(J l C)‘"')( T
LMy M mom Jm [ M) emio M

(g, ort ) (Crugy o3 +09)

Employing the same procedure used to reduce

Ty

in Eq. (F.9), the prcducts of four 3-J symbols in Eq

» (F.11) can be ex-

pressed in terms of Racah coefficients such that one obtains finally

(F.12)
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L < Ketoleoyfoieos

- ) -
TI-TT )ﬁ (2 J‘H) TT" ( g CJ—C‘JZ)(AJZ”'J”')CJ w‘ )
‘Cm J’N

0 WHTITTS)
S

(F.13)

@)

() { Loz Ty Ceraner [C IS “3 COO C ]

_ w‘z[ llscus cus ]}

The sums over S in Egs. (F.1l) and (F.13) range from $=0 to S=2.

These two equations involve the quantities in Table F.l.

TABLE F.l

QUANTITIES INVOLVED IN EQS. (F.1l) AND (F.13)

S 1 2 5
Eé(l)sﬁ _ s+l 2 1 1
9 9 >

Ellsclls_cllscllﬂ 1 1 1
oL 10 00 “1- 3 > z
Ellsclls+cllsclls] o1 _1 5

oL '10 00 “1-1 3 2 g

From the table it is evident that

[ HSCI C“SCl ] Rc“s)z 250\“] (F.14)
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for all values of S of interest. Substituting this result into Eq. (F.13)

and comparing with Eq. (F.1ll), one obtains

_ 4
<Q:>)w-.r_.r ] (Qll)m_,m + C,o?l' F;J (F.15)
where
12
) [KeTioliTs|” [Korlplena»y J*
Frr = q_ — L (r.16)
HH2) T (v za= N Wpmguzir=H)
ZYHJ"

_ IS A IS
K) ) WE(TT15TS) | ClSCls +Coo Cyy ]
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