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The use of Kubo formula to examine low temperature transport limited
by interface roughness and phonons in metal–oxide–semiconductor
field effect transistors
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An approach to study transport in semiconductors using the Kubo formula is developed and applied
to Si metal–oxide–semiconductor field effect transistors~MOSFETs!. It is known that interface
roughness is an important source of scattering in a MOSFET device operating at high sheet charge
concentration (;1012 cm22). However, in spite of its importance, due to the complexity of the
problem very simple models based on the Born approximation are used to study transport. The Born
approximation breaks down when the interface quality is poor and transport occurs in lower energy
localized states~for example, at low temperature!. In this article we present results of a numerical
method based on a three-dimensional approach to examine the interface roughness effects on
electronic spectrum as well as on transport. Using the approach suggested by the Kubo formula we
solve for the electronic states in thepresence of interface roughness.Kubo formula is then used to
study the transport properties as a function of sheet charge density, interface roughness level, and
temperature. The model can easily be applied to other problems where scattering effects are very
strong, e.g., in amorphous semiconductor devices. ©1999 American Institute of Physics.
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I. INTRODUCTION

Much of our understanding of transport in semicondu
tor devices depends upon the use of Born approximation
the independence of various scattering mechanisms. Sca
ing mechanisms such as ionized impurity scattering, in
face roughness scattering, alloy scattering, etc. are han
within the Born approximation and are assumed to act in
pendently. In many problems of interest it is known th
Born approximation is not valid but it is still used because
the complexity of the problem. Examples include transpor
metal–oxide–semiconductor field effect transistors~MOS-
FETs! at low temperature when a significant fraction of ca
riers are in the localized bandtail states, transport in cluste
alloys, etc. The availability of powerful computers no
makes it possible to address the transport problem u
more accurate formalisms. The successful implementatio
these more accurate formalisms can then allow us to add
transport in materials like amorphous silicon, conduct
polymers, clustered alloys, etc. In this article we present
sults on the use of Kubo formula in Si MOSFETs. We e
amine how interface roughness influences transport as
interface quality degrades.

In a MOSFET because of the lattice mismatch betwe
Si and SiO2, the interface region has an amorphous nat
with small but important distortions in the bond angles a
bond lengths of the interfacial atoms which results in a rou
Si/SiO2 interface.1–4 It has been shown that the interfac
roughness is the major scattering source for a MOSFET
vice operating at high sheet charge concentrat
2210021-8979/99/85(4)/2213/8/$15.00
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(;1012 cm22) resulting in the reduction of the electron mo
bility in the inversion layer of a MOSFET device.5–8 There-
fore the quality of this Si/SiO2 interface plays a critical role
in the performance of MOSFETs. This role will become i
creasingly important as device dimensions shrink to be
0.1mm level. The reasons for this increasing importance a
~i! the random nature of the interface roughness will ca
transport properties to fluctuate from device to device. F
long devices the fluctuation effects are averaged out;~ii ! the
importance of localized states caused by interface rough
will increase as only tens of electrons are needed to sw
the device;~iii ! Born approximation which is the basis o
current models to evaluate how interface roughness sca
ing influences transport will become invalid as the impo
tance of localized states becomes more important.

In general when the disorder in a system is very sm
electronic states deviate only slightly from Bloch states. F
small disorder the effect of the disorder can be accounted
fairly accurately within Born approximation. It has bee
shown9–11 that when disorder in a system increases low
ergy states can become localized while as the kinetic ene
of the carriers increases the states become extended.
mobility edge separates the localized and extended sta
We also know12 that localization due to disorder becom
more significant as the dimensionality of the system
creases. This is intuitively evident since with increasing
mension, the number of nearest neighbors in the solid
creases and hence the pathways to move also increase.
3 © 1999 American Institute of Physics
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In the MOSFET it is known that the density of the tw
dimensional electron~hole! gas is described by bandta
states that arise from the disorder created by interface ro
ness. Transport in the MOSFET can be viewed as trans
in the bandtail states and transport in the extended st
where Born approximation is expected to hold. Transpor
localized states is known to be described by phonon ass
variable range hopping where mobility increases with te
perature. On the other hand in the extended states mob
decreases with temperature since both interface rough
and phonons reduce the coherence of the electronic state
general in a MOSFET, transport occurs partially in the loc
ized states and partially in extended states.

It is important to develop a formalism that can acc
rately describe transport regardless of the nature of the e
tronic state. Kubo formula is one such approach which in o
limit is equivalent to the use of Born approximation and
the other limit can describe variable range hopping transp
The difficulty in using the Kubo formula is that the ele
tronic problems~i.e., the wave functions and energy leve!
have to be known in thepresence of the disorder. While this
has been very difficult to accomplish except in simple mo
systems, advances in computational resources have
made it possible to address realistic device structures. In
article we develop a three-dimensional formalism to addr
the MOSFET problem and use Kubo formula to find t
conductivity ~mobility! as a function of interface roughnes
and temperature.

The outline of the remainder of this article is as follow
in Sec. II, the modeling formalism is described in detail.
Sec. III, results of the formalism are discussed. The fo
will be on the electronic spectrum, density of states, and
mobility in the inversion layer of Si MOSFET device an
conclusions are made in Sec. IV.

II. FORMALISM

There are a number of important semiconductor devi
where the nature of scattering is such that Born approxi
tion becomes invalid. Examples are disordered semicond
tor devices, devices in which alloy clustering is significa
and silicon MOSFETs at low temperatures. New devic
based on structures that have not yet been perfected~e.g.,
GaN/AlGaN transistors, oxide–GaAs heterostructures! also
present situations where Born approximation becomes
valid. In general whenever wave function localization is s
nificant ~i.e., bandtail states are present! Born approximation
becomes invalid.

In the case of Si MOSFET, perhaps the most import
electronic device, interface roughness scattering is one o
most important scattering mechanisms. Models based on
Born approximation to study the interface roughness sca
ing have been used to study mobility in the two-dimensio
channel. Using island height and lateral extent as fitting
rameters, reasonably good agreement with experiment
room temperature13 has been demonstrated in high qual
MOSFETs. However, at low temperatures it is known th
localization effects due to interface roughness are quite
portant. Thus mobility increases with temperature instead
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decreasing, a sign of hopping conduction.14–18 A formalism
that can address transport in localized and extended stat
the Kubo formula. However, to find the conductivity it
necessary to solve for a three-dimensional Hamiltonian
cluding the interface roughness. The fast development of
modern computer allows us to do that now in a fairly sm
amount of time.

To calculate the electronic spectrum of a tw
dimensional electron gas in a MOSFET, two steps have b
taken in this article. First, the potential profile along the
rection perpendicular to the Si/SiO2 interface in a MOS
structure is obtained by solving the Schro¨dinger equation and
Poisson equation self-consistently~one-dimensional prob-
lem!. Then, the potential profile obtained in the on
dimensional problem is used in a three-dimensional Sch¨-
dinger equation to yield the electron spectrum. In order to
consistent with the results obtained in the first step, the Fe
level of the MOSFET device is adjusted so that it gives
same occupation number.

Our model first gives the potential profile in a MO
structure by solving the Schro¨dinger equation and Poisso
equation self-consistently. The Schro¨dinger equation yields
the confined charge terms in the Poisson equation which
turn, determines the potential profile. This potential profile
fed back into the Schro¨dinger equation until the solution o
the Poisson equation goes to convergence. The o
dimensional Poisson equation can be written as

d2

dz2
Ec~z!52

r~z!

e~z!
, ~1!

whereEc is the conduction band profile in the device,r is
the total charge density, ande is the dielectric constant which
can be changed in different regions of the device to acco
for different material parameters across interfaces. The t
charge densityr is the sum of the doping charge, the fre
charge including the hole and electron, and the quantu
confined charge. This can be written as

r~z!5qS Nd* ~z!2Na* ~z!2nfree~z!1pfree~z!

2(
i

nic i* ~z!c i~z! D , ~2!

whereNa* and Nd* are the effective doping concentration
nfree andpfree are the free carrier concentrations, and the s
is overi two-dimensionally confined subbands of which no
malized envelope functions arec i and in which the occupa
tion is ni ~pi for the hole case!. The effective doping con-
centrations,Nd* andNa* can be written as

Nd* 5NdS 1

112e~Ef2Ed!/kBTD , ~3!

Na* 5NaS 1

114e~Ea2Ef !/kBTD , ~4!

whereNd andNa are the concentrations of donor and acce
tor dopants, andEd andEa are the impurity ionization ener
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gies, respectively. The solution of the Poisson equation
performed by a vectorized Newton’s method.

In the calculation of the charge density, one must de
mine the quantized two-dimensional charge and the free
rier charge. The quantized two-dimensional charge can
calculated from the eigenenergy levels obtained by solv
the Schro¨dinger equation. The free carrier charge density c
be written as

nfree~z!5NcF1/2S Ef2Ec~z!

kBT D , ~5!

whereNc is the material effective density of states andF1/2

is a half-order Fermi integral. The reason we use Ferm
Dirac statistics instead of Boltzmann statistics, which ha
been used by many authors in the past, to determine the
carrier concentrations is that in heavily doped cases,
bands are near degenerate or degenerate, and Boltzman
tistics will overestimate the free carrier concentrations.
calculate the Fermi integral fast and accurately, a look
table is used. Note that in Eq.~5!, we use a three-
dimensional effective density of states to obtain the free c
rier charge. However, to distinguish two-dimensional ca
ers with three-dimensional ones in the quantum well regi
a cutoff value, which usually is set to be the lower bound
value, is used. For those carriers whose energy is below
cutoff value, they are treated as two-dimensional gas.
those whose energy is above this cutoff value, they are
treated as free carriers.

In order to determine the two dimensionally confin
charge profile, one must solve the Schro¨dinger equation for
the subband envelope functions and their occupations.
then-type MOSFET, the one-band Schro¨dinger equation can
be used. The Schro¨dinger equation must, in general, be wr
ten in three dimensions, and the effective mass will be
general, a tensor. In the electron case thez-dependent part o
the Schro¨dinger equation is strictly separable from the i
plane part of the equation which gives us extended Blo
like states. The one-dimensional~z dependent! Schrödinger
equation can be written using the perpendicular part of
effective mass tensor as follows:

d2

dz2
cn~z!1

2mw

\2
@En2V~z!#cn~z!50, ~6!

wheremw represents electron effective mass along the qu
tum confinement direction. This method is also referred to
the effective mass approximation method. For bulk silic
the band edge of the conduction band is nearX point. Cor-
responding to this point there are six equivalent valleys. U
der quantum confinement or strain effect, this sixfold deg
eracy is decomposed into a twofold and a fourfo
degeneracy. For electrons in the longitudinal valleys~along
kz direction!, mw is equal toml , electron longitudinal effec-
tive mass. Whereas for electrons in the transverse val
~in-plane directions!, mw is equal tomt , electron transverse
effective mass. Under the quantum confinement, the two
gitudinal valleys will move down with respect to the fou
transverse valleys. This splitting is related to the differen
of longitudinal and transverse effective mass. Since the
is
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gitudinal effective mass for silicon is much larger than t
transverse effective mass, the electron in the longitud
valleys will occupy the lowest subband. In contrast, und
the strain effect, the two longitudinal valleys will move u
with respect to the four transverse valleys.

Once the Schro¨dinger equation has been solved for t
envelope functions and the subband energy levels, i
straightforward to calculate the subband occupations. S
the subband density of states is constant with energy,
occupation comes from the first-order Fermi integral wh
is analytically integrable. In the electron case, we can w
the occupation as:

ni5
gimikBT

p\2
lnF11expS ~Ei2Ef !

kBt D G , ~7!

where mi and gi are the in-plane effective mass and t
degeneracy of theith subband, respectively. In our case, f
electrons in the longitudinal valleys, we have

mi5mt ,
~8!

gi52.

Whereas for those in the transverse valleys, we have

mi5~mtml !
1/2,

~9!
gi54.

The reason we do not useml as in-plane effective mass fo
electrons in the transverse valleys is because the in-p
mass tensor in this case has different values alongx and y
direction, which suggests an ellipsoidal shape for the c
stant energy surface.

After the one-dimensional potential is obtained from t
first step, it is fed into the three-dimensional Schro¨dinger
equation to yield the electronic spectrum with or without t
presence of the interface roughness. The three-dimensi
Schrödinger equation for the envelope functions, is given

S 2
\2

2mi*
¹21V~x,y,z! Dc~x,y,z!5Ec~x,y,z!, ~10!

whereV(x,y,z) is a three-dimensional potential incorporat
with the interface roughness andmi* ( i 5x,y,z) is the effec-
tive mass which is dependent on the direction. Like the o
dimensional problem, the electrons in longitudinal and tra
verse valleys move with different effective masses theref
two sets of effective masses for electrons in longitudinal a
transverse valleys are needed to calculate the electronic s
trum by solving the Schro¨dinger equation.

The rough interface is composed of islands of either
oxide region~SiO2! or the channel region~Si!. These islands
are randomly placed on the interface by a Monte Ca
method. If the island is SiO2, the potential is set to be th
potential value of SiO2 at the rough interface whereas if th
island is Si, the potential is set to be the potential value o
at the rough interface. The three-dimensional Schro¨dinger
equation is solved by the finite-different technique. T
boundary conditions along thexy plane ~parallel to the in-
terface! are chosen to be periodic in order to calculate
transport quantities. The typical size of the matrix involv
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in our calculation is in the order of 1043104. Since we solve
for the electronic levels in the presence of the interfa
roughnessin the MOS channel the effect of this roughne
on the microscopic and macroscopic properties of the st
ture can be calculated directly from the electronic spectru
We can thus answer the issues raised in Sec. I. To calcu
the electron transport properties, such as conductivity
mobility, the Kubo formula19 has been used. The Kubo fo
mula for the conductivity of electron under a small dc field
given by

s5
2pe2\3V

m* 2 E 2
] f

]E
uD~E!u2N2~E!dE, ~11!

where V is the interface area and the reduced momen
matrix elementD(E,E8) is expressed as

D~E,E8!5E
E5E8

cE

]

]x
cE8dr . ~12!

For a MOSFET device under the strong inversion, the e
trons are confined in a narrow region~100 Å! of the channel
near the interface. Equation~11! will render a conductance
rather than conductivity. Once the conductance is deriv
the mobility is readily calculated by the relation

m5
s

ne
, ~13!

wheren is the sheet charge density in the channel ande is the
electron charge.

To achieve reasonable results numerically calcula
from a discrete electron spectrum due to the finite sam
size chosen for study, a Gaussian broadening functio
used for both the density of states,N(E) and the reduced
momentum matrix,D(E). The reduced momentum matrix
evaluated by

uDuav
2 5

( i u*cEi
~]/]x!cEd3xu2wG~Ei ,E!

( iwG~Ei ,E!
, ~14!

wherewG(Ei ,E) is an integral over the overlapping regio
between two Gaussian broadening functions centering on
ergy levels,Ei andE, respectively. The quantityG is the half
width of the broadening functions and represents the lifet
of the corresponding state due to the effects of scatter
~phonons!. Several groups have used the Kubo formula20–22

for studying transport at 0 K. In these studies the conduc
ity is calculated at the limit ofG going to zero. To extend the
Kubo formalism to finite temperature we use a phenome
logical relation between scattering processes arising du
finite temperature andG. This is similar in spirit to the ap-
proach taken in deriving Mott variable range conductivi
This approach allows us to examine how phonon scatte
and interface roughness scattering influence transport w
out treating them as independent scattering mechanism
this approach we view the total Hamiltonian as

H5H interface1Hphonon8 , ~15!

where H interface is the Hamiltonian for the problem wher
interface roughness effects are included and results in lo
ized eigenstates. The effect ofHphonon8 is to cause a width to
c-
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these eigenstates due to the vibration of the lattice.
evaluate this width by calculating the acoustic phonon sc
tering rates.23

In our model as temperature increases, two effects oc
~i! the carrier distribution spreads out due to the broaden
of the Fermi function;~ii ! the broadening of the individua
eigenvalues occurs due to the increased phonon scatte
The outcome is that just as in the Mott variable range c
ductivity, mobility initially increases with temperature. Th
is because electrons localized at some region in space
now couple with more states. As the temperature increase
high values we expect that phonon scattering will eventua
suppress mobility. It is important to note that in the Kub
formula, the electronic spectrum is obtained by solving
full Hamiltonian with the presence of interface roughness
that any correlation caused by the interface roughness is
tomatically included in the electronic spectrum.

III. RESULTS AND DISCUSSION

In order to solve the three-dimensional MOSFET pro
lem it is important to choose a sample size that gives c
vergent results for density of states and mobility. The s
depends on the interface quality, a more perfect interf
requiring a larger size since the phase coherence leng
larger. For the results reported here we have seen that in
channel plane~thexy plane! a sample size of 1000 Å31000
Å gives convergent results. In thez direction since we are
primarily interested in strong inversion cases, a sample
of 100 Å is found to be adequate.

Along thez direction the device structure is assumed
be made up of three regions:~i! a region which has perfec
silicon–dioxide;~ii ! a region that has a random distributio
of Si and SiO2 islands; and~iii ! a region that has perfect S
Interface roughness is introduced by randomly placing
lands on the intermixed region of the MOS structure w
island size given by

DLx525 Å, DLy525 Å, DLz55,10 Å. ~16!

Typical fluctuations generated by a random sequence
the interface region~xy plane! are shown in Fig. 1. The white
regions represent material composed of SiO2 while the black
regions represent material composed of Si. We can see f
Fig. 1 that large clusters of Si scatter on the interface and
expect that the localization if that occurs will be stronger
those cluster regions. We will focus on an energy region
about 30–40 meV away from the band edge of Si conduc
band since this is the region of interest for many devices

The results shown in this section are for a MOSFE
structure with 100 Å oxide thickness and a backgrou
p-type doping of 131014 cm23.

Figures 2 and 3 show the electron probability distrib
tion functions P(x,y) on xy plane in a MOSFET device
operating at low and high sheet charge density~low and high
voltage!. The corresponding sheet charge densities are
31011 and 6.731012 cm22. The operating temperature i
assumed to be 77 K. From Fig. 2, one can see that the e
tron wave functions for the device at low sheet charge d
sity extend over the entire device as the case with a per
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interface24 and have a peak amplitude between 0.0015
0.004 corresponding to the normalization in the 10
Å31000 Å xy plane. However, for the device working a
high sheet charge density the eigenstates are quite diffe
We see from Fig. 3~a! that the low-lying states are strong
localized~e.g., the peak amplitude of the first state is 0.0
one order of magnitude larger than the case at low sh
charge density!. The lateral spread of these states is 200–2
Å. The position of these low-lying states will change if w
change the random sequence of the disorder but the loca
tion length is in the same range. This suggests that as
goes to the high sheet charge, the effect of interface rou
ness becomes stronger on the electronic states and thu
charge transport. To study transport in such a system the
of the Born approximation is invalid. We also see from F

FIG. 1. Interface roughness generated by a random sequence. The
block represents Si material and the white block represents SiO2 material.

FIG. 2. Electron probability distribution functionsP(x,y) for a MOSFET
device operating at low sheet charge density (1.531011 cm22) with an
interface roughness~height: 5 Å, lateral extension: 25 Å!. The wave func-
tions extend to the device~chosen to be 0.1mm30.1 mm!. The MOSFET
studied has 100-Å-thick SiO2 with the p-type substrate doped a
131014 cm23. The operating temperature is assumed to be 77 K.
d
0

nt.

,
et
0

a-
ne
h-
the
se
.3~b! that as we go to higher energy states, the states bec
extended and spread over the entire structure.

We also find that interface roughness effects are str
under strong inversion conditions when the electrons
pushed close to the interface. When the device is biased
flatband conditions, the nature of the electronic wave fu
tions shows that the wave functions are not localized and
use of Born approximation to address transport of carrier
quite valid.

The results for the density of states are shown in Fig
We focus on the density of states near the band edges s
these states are most influenced by interface roughness
height of random islands at the interface,DLz , are chosen to
be 5 and 10 Å. The density of states is calculated by usin
2.4 meV Gaussian broadening function. As one can see f
Fig. 4~a!; interface roughness does not significantly alter
density of states in the system under flatband conditio
This is as expected intuitively since the electron wave fu
tions are peaked away from the interfacial region. In co
trast, as can be seen from Fig. 4~b!, under the strong inver-
sion the density of states is significantly affected by t
interface roughness and bandtails are seen to develop a
interface roughness increases. This strong localization in

ack

FIG. 3. Electron probability distribution functionsP(x,y) for the same in-
terface roughness as Fig. 2 but operating at high sheet charge density
31012 cm22). the low-lying states are clearly localized but the excit
states are extended.
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low-lying states can be attributed to the strong quantum c
finement along thez direction. This strongz confinement
leads to a large fraction of electrons occupying the interfa
region.

The bandtail width is shown in Fig. 5 as a function
interface roughness. The interface roughness goes from
10 Å. The bandtail width is obtained by measuring the wid
between the value of density of states at mobility edge
e21 of this value. The lower curve shows the bandtail wid
for the device under flatband condition. As one can see,
bandtail is almost independent of interface roughness. H
ever, for the device under strong inversion, the band
width increases with interface roughness as shown in

FIG. 4. Density of states functions under~a! flatband and~b! inversion
conditions. Under strong inversion, the interface roughness causes si
cant bandtail states, especially forDLz51.0 nm.

FIG. 5. Bandtail width vs interface roughness. Upper curve is for dev
under strong inversion and lower curve is for device under flatband co
tion. The bandtail width is independent of interface roughness for de
under flatband condition and increases with interface roughness for de
under strong inversion.
n-

l

to

d

e
-

il
e

upper curve. At zero interface roughness, the bandtail w
is not zero. This is caused by the finite sample size and
broadening effect.

Next we report results for the mobility in the chann
using the Kubo formula. From our discussion of localizati
we can see that the imperfect interface mobility will be ve
small unless electrons can couple from one state to ano
by other scattering processes such as phonons. Thus fo
imperfect interface case we expect that as the broade
parameterG increases, mobility will initially increase. Fo
the case of the perfect interface, on the other hand, aG
increases the mobility should decrease.

Figure 6 shows results for channel mobility as a functi
of G for MOSFET device. Results for the perfect interfa
are given by solid curves and while the dashed curves
resent the results for the rough interface. The device is
sumed to be under inversion~sheet charge density of 6.
31012 cm22! operating at 77 K. As one can see from th
figure, the mobilities~solid curves! for the MOSFET device
with a perfect interface decrease withG as expected. How-
ever for the case with interface roughness, the dependen
mobility on G is totally different. Initially the mobility in-
creases but whenG becomes large mobility decreases.

For the MOSFET at 77 K acoustic phonon scattering
expected to be the dominant scattering mechanism. As
be seen from Fig. 6, the phonon scattering actually assists
conduction in the inversion layer for the device with inte
face roughness at lowG value which results in an increase
the mobility at smallG. This is observed in the experimen
and becomes a signature of the variable range hopp
conductivity.15–18Using the acoustic phonon scattering rat
for the Si inversion layer we find thatG is expected to be
0.34 meV.

In Fig. 7 we show the mobility for the perfect interfac
and for the rough interface withDLz55 Å as a function of
the sample size along the interface. The MOSFET un
study is under strong inversion with the sheet charge den

ifi-

e
i-
e

ice

FIG. 6. Electron mobility as a function ofG. Solid curves and dotted curve
represent mobilities for the device with a perfect interface and roughn
interface:DLz55 Å, respectively. The corresponding sheet charge dens
in the channel from the bottom dotted curve to the top dotted curve are~6.7,
5.6, 4.6, 3.6, and 2.6!31012 cm22. The device under study has a dimensio
of 500 Å3500 Å3100 Å.
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of 4.631012 cm22. The mobility for the perfect interface i
almost independent of the sample size due to the exten
nature of the electronic wave functions. In contrast, the m
bility for the rough interface increases with the sample si
This is because the spatial extent of the localized wave fu
tion is comparable with the sample size. However, we fou
the sample size of 500 Å3500 Å along thexy-plane was
adequate to yield convergent results as shown in Fig. 7.
in the following studies, we will use the sample size of 5
Å3500 Å for all the mobility calculations.

In Fig. 8 we show the calculated relationship betwe
the mobility and sheet charge density in the channel. Res
are shown for the perfect interface and for imperfect int
faces withDLz55 Å andDLz510 Å. From the figure, one
can see that the mobility for the device with perfect interfa
is almost independent of sheet charge density. This va
agrees quite well with mobility calculated using Born a

FIG. 7. Electron mobility as a function of the sample size,Lx,y along the
interface for~a! DLz50 nm and~b! DLz50.5 nm. The MOSFET under
study is under strong inversion with the sheet charge density of
31012 cm22. The half width of Gaussian broadening function,G50.34
meV corresponding to the phonon scattering rate at 77 K.

FIG. 8. Electron mobility as a function of sheet charge density,ninv for ~a!
DLz50 nm, ~b! DLz50.5 nm, and~c! DLz51.0 nm. The half width of
Gaussian broadening function,G50.34 meV corresponding to the phono
scattering rate at 77 K.
ed
-
.

c-
d

o,
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-

e
e

proximation and acoustic phonon scattering. For the dev
with the interface roughness, mobility is found to have
strong dependence on sheet charge density. This is to
expected since as the sheet charge density is increase
electron charge is pushed closer to the interface. Use of
Born approximation shows that mobility should be inverse
proportional to the square of the sheet charge. For the c
with DLz55 Å, we find that the mobility is proportional to
ninv

22.2, a slight deviation from the model based on the Bo
approximation. For the case ofDLz510 Å where localiza-
tion effects are very strong, there is no simple relation
tween the mobility and the sheet charge density.

In Fig. 9 we show the mobility as a function of temper
ture from 30 to 110 K forDLz55 Å. The corresponding
sheet charge density is 2.431012 cm22. Figure 9 shows that
the mobility increases as temperature increases at low t
perature. As discussed earlier this is attributed to the imp
tance of phonon-assisted hopping in this regime. It is
possible to understand this regime using Born approxima
and the standard transport theory where scattering me
nisms are independent. However, as the temperature
creases to high enough, the mobility starts to decreas
shown in Fig. 9. This is primarily due to the increasing ph
non scattering as the temperature increases. This chara
ization of electron mobility has been verified in th
experiment.25

IV. CONCLUSION

In this article we have developed a formalism that allo
us to study transport without relying on Born approximati
and independent scattering approximation. The approac
based on three-dimensional solutions of the Schro¨dinger
equation in the presence of the disorder potential. The fe
bility of the method based on the Kubo formula has be
demonstrated by applying it to a Si MOSFET under a ran
of biasing conditions. Mobility has been evaluated und
conditions where a significant fraction of states are localiz
The model allows us to examine transport in the varia
range hopping regime where mobility increases with te
perature. We have also seen that the exact dependenc

.6

FIG. 9. Electron mobility as a function of temperature,T. The correspond-
ing sheet charge density is 2.431012 cm22.
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mobility in a MOSFET on sheet charge deviates from
m}ninv

22 relation. The generality of the model present
makes it a useful method to study transport in devices wh
disorder is severe, e.g., in amorphous Si transistors—dev
where Born approximation completely breaks down.
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