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general, a gate will be placed in parallel with the load, which will
often consist of the grid of another element. Assume that a current
just less than I, flows through the superconducting gate. The grid
is then activated with a current 7; (much less than 7,) which
produces a resistance R(Z.,1) in the gate. Current will be deflected
to the superconducting load of inductance L and will reach a
magnitude [ in a time

T L/Rg @

where g'=1./11. In practice, the inductance of interconnections
can be made negligible by strip-line techniques so that to obtain a
figure for the time constant it is appropriate to put L as the
inductance of one grid. The calculated value of L is 4.107°H for a
grid 15 & wide and 0.33 c¢m long. Substituting from the data of
Fig. 2 in (4) gives the effective time constant of the experimental
device as 7=~ 20 usec for [, =40 ma. This figure has been confirmed
experimentally in circuits which involve elements driving each
other.

It is anticipated that the provision of a superconducting shield
plane close to the grid itself, reducing its inductance, will raise the
operating speed by an order of magnitude. This has been confirmed
by an experiment which yielded a time constant of less than
3 usec.

It has been established that the magnetic interaction between
transverse superconducting films is in agreement with the results
of a simple calculation. This result can be applied to the construc-
tion of complex electronic circuits where both the active and
connective elements can be laid down by a process consisting of a
small number of steps.

Furthermore, the crossed-strip superconductive element makes
practicable the construction of nondestructive readout ‘“‘catalog”
memory systems® which will vastly increase the performance
capabilities of digital computers.

* A portion of this research was supported in part by the U, 8. Atomic
Energy Commission, under a letter contract.
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Silvered Ruby Maser Cavity*
Liovp G. Cross
The U niversity of Michigan, Willow Run Laboratories, Ann Avbor, Michigan
{Received May 11, 1559)

HORTLY after ruby was proposed as a maser material,! it
occurred fo us that the metal bonding properties of ruby could

be utilized to prepare silver-coated ruby maser cavities. Since then
we have constructed several X-band cavity masers using rectangu-
lar parallelepipeds of ruby coated with a thin layer of metallic

F16, 1. X-Band silvered ruby cavities.
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FiG. 2. X-Band maser assembly using silvered ruby cavity.

silver as the maser cavity. Figure 1 is a photograph of 3 typical
cavities.

The silvering procedure is quite simple and requires little prepa-
ration. After the ruby is cut and ground to the desired cavity
dimensions, it is washed in acetone and a very thin coat of silver
paint (Hanovia No. 32-A) is applied to the surfaces. The sample is
then baked at 700°C for approximately 30 min, Two more coats
are applied as before and the treatment is completed. This pro-
cedure was suggested by the work done on lavite cavities in this
laboratory.?

To provide the microwave coupling to the cavity, slots are cut
in the silvering with a dust cutter. The dust cutter provides a thin
stream of forced air carrying Al:O; dust which removes the
silvering quickly and accurately without cutting the ruby. Using
this procedure the coupling slots may be cut to any desired geome-
try, and if a change is required, the slots can be resilvered and cut
again.

The resulting loss Q" for a silvered ruby cavity is very close to
the calculated maximum. In a particular case of a cavity of di-
mensions 0.68X0.5X0.45 in. the loss “Q” for the TM-112 mode
was observed to be approximately 4000. Since the loss tangent of
ruby is given as 0.0002, the limiting “Q" due to dielectric losses
alone is 5000. The silver coating will not flake or chip off and can be
scraped off only with difficulty. Repeated temperature cycling
from 300 to 4.2°K has shown no observable effect on any of the
cavities.

A practical advantage of the silvered ruby cavity over the
ordinary machined cavity is the considerable saving in machining
time and expense, especially when the cavity design is in the ex-
perimental stage. It is also inherently more stable and less lossy
than the ordinary metal cavity. These cavities may be soldered to
a wave-guide structure in the manner shown in Fig. 2, or, to allow
for more versatility, simply clamped to the coupling plate. In this
manner several cavities covering a range of frequencies can be used
interchangeably with a single wave-guide structure.

The author wishes to acknowledge the encouragement of R. W.
Terhune and J. Lambe during the progress of this work.

* This research was supported by Project Michigan (administered by the
U. 8. Army Signal Corps).

1 Makhov, Kikuchi, Lambe, and Terhune, Phys. Rev. 109, 1399 (1958).
2 J, Lambe and R. Ager, Rev, Sci. Instr. (submitted for publication).

Forced Magnetostriction of Nickel
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N a recent review of magnetostriction, Carr! noted discrep-
ancies in the published values of volume or isotropic forced
magnetostriction for nickel. Strain gauge measurements on poly-
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crystalline material by Azumi and Goldman? and Bitler? indicated
values of about —0.55X10710 oe™! for 6w/dH or the volume
magnetostriction. On the other hand, by other methods of meas-
urement on polycrystalline nickel, Snoek,* Kornetzki,5 Déring,®
Ebert and Kussmann,” Jones and Stacey,® and Klitzing and
Gielessen® have taken data generally indicating values of about
1X 1070 t0 2)X1071 0e™! for dw/dH, and in some cases greater.

Recent strain gauge measurements of the magnetostriction of a
single crystal of nickel® yielded data from which the volume
magnetostriction can be calculated. This note gives for the nickel
single crystal the values of isotropic and anisotropic forced mag-
netostriction derived as previously reported.!! Values of forced
magnetostriction (that strain resulting from the application of
high fields above “saturation’) were taken between field strengths
of 5000 and 10 000 oe. The forced magnetostriction was corrected
for the lack of true saturation in the single crystal and for the
magnetoresistance effect of the strain gauges. The corrected forced
magnetostriction was analyzed for isotropic and anisotropic com-
ponents as previously described.!!

For the isotropic forced or volume magnetostriction of nickel

dw/dH =3X 10710 ge™!

This value was estimated to be accurate within 30 or 409, and
would indicate that dw/dH for nickel is positive. The two
anisotropic forced magnetostriction constants were &'=—0.5
X107 ge™! and /'=0.6X10"10 oe~!. These values, the first
reported for nickel, are estimated to be accurate within about
50%. They indicate that the anisotropic component of the forced
magnetostriction is small.

The author appreciates the help of W. J. Carr for bringing this
problem to his attention and for discussions concerning it.
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Perturbation of Wave Guides and Cavities
by Spheres and Cylinders*
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E have utilized an integral equation technique in order to

obtain a first-order estimate of the effect of the presence

of a plane wall on the electromagnetic fields within a cylinder or

sphere a short distance d from a wall. This information is im-

portant as it yields an estimate of the best accuracy one can expect

to obtain from a free space calculation such as Hurd’s! in cavity
and wave-guide problems.

In the problem of the perturbation of a wave guide or cavity

by an obstacle, the quantity of interest is given by a formula of

the form?

quantity of interest= f E¢*-¢'-Edr+ f He*-w'-Hdr (1)

involving the unperturbed fields E,, Ho, and the actual fields E
and H within the obstacle.

For first-order results it is customary?® to neglect the effect of
the walls of the guide or cavity and to find the fields from a free
space calculation. The integral equations for the electromagnetic
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field in a free space calculation are
E(t) =Eo(r)+wup | TO(r|1)-¢'-E(r)dr
—jo [{OX D] )7 w - H®)dr (22)

and
H(r)=Hy(x') +ote [ To(| 1)y H(r)dr
o [TVX 0| 1) J7 -2 E(0)dr

where T0(r|r’) is the free space dyadic Green's function.*
If we include the wall, we obtain the integral equations

E(l")=Eo(r')+w2/‘ofF“’ (r'|r)-¢"-E(r)dr

—joo ['V'X T | 1)- W H(r)dr
and (3)

H(r) =Hy () +oteo [ T2(¢'| ) - - H()dr
+jo [ X TO |0 ¢ B(dr

where T'® and I'® are, respectively, the electric and magnetic
dyadic Green’s functions for the problem.* The difference between
Eqgs. (2) and (3),

T (v'|r)-¢ E(r)dr
—jo VX T (| 1)- o -H(r)dr
and @
AH(r') =w% | T (r'|0)- o' -H(r)dr
+io [ VX T_(¢|1) & E(dr,
thus represent the contribution of the wall to the fields.
I =T®W-T¢ and =T®-TO,

Utilizing the quasi-stationary approximation of uniform fields
within the obstacle, we have obtained a first-order estimate of
the contribution of the wall on the fields within the obstacle.

For the case of a thin cylinder a distance d~1/k from the wall
these contributions are of order (ka)? and higher, where a is the
radius of the cylinder, while for a sphere these contributions are
of order (ka)® and higher. It would be meaningless therefore to
carry the free space calculations to any higher order than the
above for each case.

Assuming a Taylor expansion of the fields within the obstacle
of the form

(2b)

AE(r) =wug

A+FBr+- -
where A is a constant vector and B a constant dyadic we find that
A=A¢+A,(ka)?4-0(k%a%) (5)

and

B=B,+}0(k%2).

For cylindrical obstacles, since the term %B-r contributes
terms of order (ka)? and higher when inserted into Eq. (1), we
need but consider the term Aq in the Taylor expansion of the
fields within the cylinder in a free space calculation,

For spherical obstacles we can include the terms A; (k¢)? and B,.

We have obtained a first-order estimate of the effect of a plane
wall and the effect of size on the apparent susceptibility of a
ferrite sphere. Qur result for the size effect agrees with the result
obtained by Hurd.!

For a ferrite sphere situated at a point of zero electric field
having the dc and rf magnetic fields parallel to the wall and per-

pendicular to each other,
14-(ax,./2) ]

(I‘eff [1 + %X+ +§t¥X+
—jHy) and a=(1/24) (a/d).

(©)

where x, =4rM/(Ho—H



