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Abstract

Consider an undirected network consisting of a finite nonempty set
< = >
N of n nodes partitioned as N UN UN UN® (where some of these
subsets may be empty), a set E of m edges, and a vector of edge

costs c., A l-matching/covering is a subset of edges satisfying the

properties: i) every node of NS is incident with at most one edge of
the subset; ii) every node of N= is incident with exactly one edge of
the subset; iii) every node of ﬁz is incident with at least one edge of
the subset. There'are no constraints associated with a node of N°.

The minimum cost l-matching/covering problem is to find a l-matching/

covering which minimizes the total cost of the edges in the subset,

This paper discusses an algorithm for: solving this problem, which

. . . . 3
can be implemented with a. worst case time complexity 0(n”).






1 - Introduction

In the late 60's, Edmonds [1,2] introduced the blossom algorithms
for solving l-matching problems which are defined on undirected networks
with n nodes and m edges. The minimum cost l-matching and the minimum
cost l-perfect matching problems have algorithms whose worst case time
complexity is O(nzm). This maximum effort can be further reduced to

O(n3) as shown in [6].

White and Gillenson [11] developed a blossom algorithm for the
. 2
minimum cost l-edge covering problem “with time complexity O(nm ).
Murty and Perin [9] designed another algorithm for the same problem

which can run in 0(n3).

All the above problems constitute special cases of the minimum cost
1-matching/covering problem which is the subject of this paper. We

2 . . . 3
present an 0(n"m) algorithm which can run in 0(n”).

Edmonds, Johnson, and Lockhart [3,4] developed another blossom
algorithm for solving a more general problem - the general matching.
However, the time complexity of the algorithm is greater than O(nzm)
and the data structure needed for the implementation is much more
complex than the one needed for implementing the algorithm presented in

this paper.



2 - Formulation of the Problem

Consider an undirected network G = (N,E,c) consisting of a finite

nonempty set of n nodes N = { ii 1 ton }, a set of m edges

E={(;j) :1i#3j€ENT], and an edge cost vector c = [Cij]' It is
s = >

given a partition N UN UN UN® of the set of nodes where some of the

subsets may be empty. Let x = [Xij] be a 0-1 vector defined over the

set of edges. The minimum cost l-matching/covering problem is formulated

as follows:
Problem I
minimize .. [ c.. X.j : (i33) €E ]

ij ij i

subject to the node constraints

r

<

< 1 for i € N~

. = 1 for i €N
x(1) <~ ° .
> 1 for i € N

L unconstrained for i € NO

and restricted to

x.. = Oorl for (i;j) € E
1]

where

i = 2. ..t (i;j) € E for i € N.
x(i) 5 [ X3 5 (i33) ] or i

Note that Xij’ in are two representations of the same variable.



Figure 1 - Example of a l-matching/covering for a network with 12 nodes.
Tge sgmbo;s <, =, 2, 0o identify the nodes of the subsets
N, N, N, N, respectively.
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Given a 0-1 edge vector x = [Xij], define the set of solution edges

E(x) = {(i;j)GE:Xij=1}

= <
E(x) 1is said to be a l-matching/covering if every node of N (N, NZ)

is incident with exactly (at most, at least) one solution edge (i.e., X

satisfies the node constraints).

Define
< = >
S = { scN UN UN: s has odd cardinality |s| = 3 }

<XN(S) = Zij [ Xij : (i;j) joins a node inside to a node outside s ]
>
Zi [ x(i) : i €N 1inside s ] +
<
Z; [ x(i) : i € N inside s ]

> <
a, = 1 + IN"ns| - N Nns]

Theorem 1

Every 0-1 edge vector x which is a feasible solution of problem I

satisfies the blossom constraints

xw(s) = a for s € S

+



Proof

Each blossom constraint s can be written as follows:

Zij [ Xij : (i;j). joins a node inside to a node outside s ] +
> <
Zi [ x(i) -1 :1i €N inside s ] + Zi [ 1 -x(i) : i € N inside s ]

= 1

It is easily seen that the left hand side must be a nonnegative
integer because x 1is an integer feasible solution. Therefore, the left
hand side equal to zero is the only remaining possibility for violating

a blossom constraint.

Since every s € .S contains only nodes of NSLJN=LJN2, it follows
that every node inside s must be incident with exactly one solution
edge, and there must be no solution edge joining a node inside with a
node outside s, However, this situation cannot occur because every
edge joins exactly two nodes and s has odd cardinality. Therefore,

every feasible solution of problém I must satisfy the blossom constraints.

The optimality conditions of problem I are obtained by relaxing
the integrality restrictions and introducing the blossom constraints.
The algorithm presented in this paper constitutes a proof that the
extreme points of the set of feasible solutions of this modified

problem are the feasible solutions of the original problem.



Problem II: Primal
minimize Zij [ cij Xij : (133) € E ]
<
subject to <1 for 1 € N
x(1) =1 for i €N
=1 for i € ﬁz
xw(s) = a for s €S
0 < Xij < 1 for (ij;j) € E

The dual problem is obtained by associating to the node and blossom

constraints, node prices

respectively.

Problem II: Dual

imi + +
maximize Zi [ y. ] Zs [ a_ z ] Zij [ u.lj
<
subject to <= 0 for for i € N™
unrestricted for i € N=
Y3 >
= 0 for i € N~
= 0 for i € N°
z = 0 for s €S
< < 13
u.lj < 0 < Vij for (i;j) € E
S,.S . C e .
+ + + : +u, . +v.
v, yj Zs [ (bi bj) z  :1orj inside s ] u1J v

where -1 for i
b? 0 for i

t 1 for i

1 for i

y = [yi] and pseudonode prices z = [zs],

< . .
€ N” inside s
€ N= inside s
>
€ N inside s

€ N . outside s

ij

]

= c,
1]

for (i;j) € E
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Defining for each (i;j) € E a relative cost

S,. S
= + + + N . . s .
d.1j ¥y yj ZS [ (bi bj) z, ¢+ 1or jinside s €5S]

the complementary slackness conditions can be written as follows:

Problem II: Complementary Slackness Conditions

yi(x(i)-1)=o for 1 € N

Z ( x (s) - a ) = 0 for s € 8
d.. > c; s implies Xx.. =1

1) J 1 for (i3j) € E
d,. < c,. implies Xx..=0

1) 1] 1]

Hence, a solution (x,y,z) 1is an optimum solution of problem II if:
i) x 1is a 0~1 vector satisfiying the node constraints; ii) (y,z) is
dual feasible; iii) (x,y,z) satisfies the complementary slackness

conditions.



3 - Description of the Algorithm

Let E- = { (i33) €E: i, €N UN°, ¢;5=0)
Suppose problem I has an optimum solution which does not include all
edges of E_; it is possible to construct an alternate optimum solution
by introducing the edges of E  which are not present because feasibility
is maintained and the objective value does not increase when nonpositive
values are added to it. The algorithm maintains all edges of E  in

the solution set.

During the execution of the algorithm, the set of solution edges is

partitioned into matching and covering edges. Edges of E are always

covering edges; solution edges which are adjacent to other solution
edges are covering edges, too. The remaining solution edges are matching
edges. So, components of the solution set consisting of a single edge
which is not an edge of E. constitute the set of matching edges. Note
that such a classification leads to a partition of the set of nodes:
those covered by matching edges; those covered by covering edges; and
those which are not covered by the solution edges. This leads:to:rthe

following classification of nodes (see figure 2):

matched - nodes incident with a matching edge

type 2 - nodes incident with two or more covering edges

type 1 - nodes incident with exactly one covering edge
<
type 0 - nodes of N-UN® with null node price incident with no
solution edge
< . . . Z =L
exposed - nodes of N with negative price and nodes of N UN, incident

with no solution edge



[1] [M]

ME 2106

e mE

null price

©

[E] [M]

Figure 2 - Example of edge and node classification. Symbols inside the
nodes define the node partition. Wavy edges are matching and
straight edges are covering. Symbols in brackets identify the
node classification: M - matched, 2 - type 2, 1 - type 1,

0 - type 0, E - exposed.
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The algorithm works with all solution edges as a subset of E UE

where the set of equality edges E= is defined by

E- = { (i3j) €E : dij = cij }

Alternating trees are rooted at exposed nodes and grown by

incorporating equality edges in such a way that every path in a
alternating tree connecting a node with the root is an alternating

path of matching/nonsolution equality edges.

Labels with three indices are assigned to the nodes in the alternating
trees identifying: i) the tree a node belongs to; ii) the predecessor node
in the alternating path to the root; iii) the even (outer "+") or

odd (inner "-") length of the alternating path. The roots of the

alternating trees receive outer labels with no predecessors.

During the tree growing process, an odd alternating cycle of
equality edges may be detected. The set of nodes in such a cycle

define a partial network called simple blossom which ‘is shrunken

into a pseudonode. To shrink a simple blossom into a pseudonode is to
introduce a pseudonode containing inside all nodes of the simple
blossom; each node of the simple blossom is said to be inside

the pseudonode; and every edge joining a node inside with a node

outside the pseudonode is said to be incident with the pseudonode.

The solution/nonsolution role of the edges in a simple blossom
may change during the execution of the algorithm, but the following
properties are always satistied: i) thére is an odd alternating

cycle of solution/nonsolution
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equality edgés connecting all nodes of the simple blossom; ii) there is
an unique node called the base of the simple blossom which is incident
with either two solution edges or two nonsolution edges of the odd
cycle; iii) every node of the simple blossom but the base is incident

with a pair of solution-nonsolution edges of the odd cycle.

The shrinking operation is carried out over simple blossoms which
may contain pseudonodes. shrunken before. So, it is possible to find a
pseudonode inside other pseudonode. At this point, we introducé the

terms original node (i:e., a node of N) and current node (i.e.,

original node or pseudonode which is not inside any pseudonode) .

Pseudonodes are classified as matched, type 1, type 0, or exposed.

A matched (type 1) pseudonode is incident with a matching (covering)

edge. An exposed (type 0) pseudonode is incident with no solution edge

and contains inside it an exposed (type 0 or type 2) original node. Note

that there are no "type 2" pseudonodes. See figure 2.

The base and the apex of an original node are defined as the original

node itself. The base of a pseudonode is the base of its simple blossom.
The apex of a pseudonode is the apex of its base., Therefore, exposed,
matched, type 1, and type O pseudonodes have bases which are exposed,
matched, type 1, and (type 0 or type 2), in the same way that they have
apices which are exposed, matched, type 1, and (type O or type 2),

respectively.
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Figure 3 - Simple blossom classification. Wavy edges are matching. Straight
edges are covering. Dashed edges are equality. Symbols in
brackets identify the node classification of the base of the
simple blossom. Simple blossom classification is given in terms
of the corresponding pseudonode.
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During the execution of the algorithm, nonexposed nodes (i.e.,
matched, type 2, type 1, type 0) remain nonexposed and at least one
exposed node becomes nonexposed when an augmentation is performed, and

this occurs when an augmenting path is detected. An augmenting path is

an alternating path of solution/nonsolution equality edges connecting

an exposed node to either another exposed node, a type 0 node, a type 1
node, a type 2 node, a matched node that can become type 2, or a matched
node that can become type 0; every augmenting path has odd length except
the one connecting an exposed node to a matched node that can become
type 0 which has even length. An augmentation consists of reversing the
solution/nonsolution role of the edges in an augmenting path. Note that
all edges in such a path are equality edges and that every nonextreme
node of an augmenting path remains incident with one [but not the same]
solution edge. Extreme nodes of an augmenting path either become

incident with a solution edge or become type 0.

After an augmentation, the apex of a pseudonode incident with a
solution edge is the original node inside the pseudonode incident with
this solution edge, and the apex of a type 0 pseudonode is a node of
NSUNZ with null node price. The base of & pseudonode is always the
node of the simple blossom associated with the pseudonode which
either is the apex or contains inside it the apex. The two edges of the
odd cycle of equality edges of the simple blossom must be solution edges,
if the pseudonode is type 0 and the base is a node of NZ; otherwise,
these two edges must be nonsolution edges. Once the role of these two
edges have been determined, the solution/nonsolution role of the
remaining edges of the simple blossom is uniquely specified by the

property that every node of the simple blossom but the base is incident

with a pair of solution-nonsolution edges of the odd cycle.
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6..----()\/\/\/\/‘6----0 double

[E] [E]

+ - +
O.---O\/\/\/\/\O_——-O type 0
[E] [o]

O---- OO -=-0—  ue

[E] [1]

+ - +
O----OWW\O---O< type 2
[E] (2]

6.__.—0\/\/\/\/\6—---0'\/\/\/\/0 type 3

- +
[E] [M]

G__vavxé----dxvvvvo type 4

+
[E] (]

Figure 4 - Examples of augmenting paths. Wavy edges are matching. Straight
edges are covering. Dashed edges are equality. Extreme nodes of
augmenting paths have their node classification identified by
the symbols in brackets. Classification of augmenting path is
made in terms of the corresponding augmentation.
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Properties I

The following properties are satisfied throughout the execution of

the algorithm,

X,. =1 implies d,.z¢..
i] 1] 1]
X..=0 implies d,. <ec..
1] 1] 1]
x(i) >1  implies i € N UN® with y, =0
x(1) <1 implies either
. < ) A0 .
i € N UN with v, = 0

i 1is exposed

<
for i € N°

IA
o

= i €
yiﬁ 0 for 1 €N

for i € N2

v
o

z = 0 for s € S

z > 0 implies either

Xu‘ s =
(s) a

s 1is exposed
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Conditions I

The following conditions are required before a dual solution change

step be executed:

1) each current node which is exposed must be outer labelled.
2) every inner labelled node must be joined by a matching edge to an
outer node.
3) no current equality edge joins an outer node to a noninner (outer or
unlabelled) node.
. 0, = .
4) no inner node of N UN  has null price.
5) no inner pseudonode has null price.
6) no outer node of NUN has null price.
. . . < NZ .
7) no outer pseudonode contains inside it a node of N U with null

price.

In order to compute the relative cost dij of an edge joining two

current nodes, define for every original node

. < 0
Ys i €E NUN
L = + :~. . 3S .€N=
i Y, D [ z ¢ 1 inside s €5s ] i
>
y; * 2 Z [ z ¢ i inside s €S ] i €N

so that d.1j = y{ + y3 for every edge (ij;j) € E joining two

1

current nodes which may be the original nodes i, j or pseudonodes

containing i, j inside them. Therefore, an edge with d.lj = y{ + y3 =0

joining two current nodes is an equality edge.
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4 - Algorithm

Step 1: Initialization

Set

0 for i € N UN°
LT ' SK) €EE}  for i € NUNT
mlnjk { o, cjk : (j3k) or i UN

z = 0 for s € S

The set of solution edges is initialized with the edges of

E = { (i;j)EE:cijS 0, i,jENEUNO}.

Identify all exposed nodes. Assign outer labels to these nodes. They are
the roots of the alternating trees. Push all such nodes into the list of

unscanned nodes. Go to step 2: checking the list.

Step 2: Checking the List

If there are no exposed nodes, then terminate.

If the list of unscanned nodes contains no current outer nodes, then

empty the list and go to step 3: dual solution change.

Select a current outer node from the 1list of unscanned nodes. For

every equality edge incident with this node, perform procedure 1: edge

scanning, while this node remains outer labelled.

Go back to the beginning of step 2.
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Step 3: Dual Solution Change
Compute:
<
61 = min.l { Yo i € N with outer label }
P
5, = min, { y, + 1 €N with inner label }
<
by = min.1 { Yo i € N inside s € S with outer label }
>
64 = mini { Vi i € N inside s € S with outer label }
8. = min_ { z i s €S with inner label }
66 = mi.n.lj [(cij-yi—yj)/Z:edge (i33j) joins two distinct outer nodes }
67 = minij {cij—y{-ygz edge (ijj) joins an outer node to a current
' unlabelled node }
& =min { 61, 62, 63, 64, 65, 66, 67 }
If & =0, then stop because the problem is infeasible. Otherwise,

update the dual solution.

r' y; * § for i € N with outer label
<
or i € N inside s € S with outer 1label
>
or i € N inside s € S with inner label
yi -~ § for i € N with inner label
<
= < or i € N” inside s € S with inner label
>
or i € N inside s € S with outer label
yi for i € N current and unlabelled
or i € N= noncurrent

< >
or i €E NUN inside s € S current and unlabelled
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z + 0 for s € S with outer label
zg = z - ) for s € S with inner label
zS for s € S noncurrent or unlabelled
e y{ + 6 for i € N with outer label
or i € N inside s € S with outer label
< y{ -6 for i € N with inner label
' =
yi or i € N inside s € S with inner label
y{ for 1 € N current and unlabelled
\. or i € N inside s € S current and unlabelled

Go to step 4: Inspection.

Step 4: Inspection

<
If 6 = 61, then check whether there is an outer node of N~ with
null node price. While there is such a node, perform procedure 7: type 4

augmentation.

>
If 6 = 62, then check whether there is an inner node of N~ with
null node price. While there is such'a node, perform procedure 6: type 3
augmentation.

If 6 = 63 or § =6 then check whether there is an outer

4’

< >
pseudonode containing inside it a node of NTUN~ with null node price.

While there is such a node, perform procedure 7: type 4 augmentation.
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If & = 65, then check whether there is an inner pseudonode with
null pseudonode price. While there is such a pseudonode, perform

procedure 9: pseudonode unshrinking.

If 6 = 66’ then check whether there is an equality edge joining
two outer nodes. While there is such an edge, perform procedure 2:
double augmentation if the outer nodes are in different alternating
trees, otherwise perform procedure 8: simple blossom shrinking.

If 6 = 66 or 6 =98 then check whether there is an equality

7’

edge joining an outer node with an unlabelled node. While there is

such an edge, perform procedure 1l: edge scanning.

Go back to step 2: checking the list.,

Procedure 1: Edge Scanning

This procedure is performed when there is an outer node i joined

by an equality edge to a current node j.

If node j 1is outer labelled and nodes i, j are in the same
alternating tree, then perform procedure 8: simple blossom shrinking,

and return.

If node j 1is outer labelled and nodes i, j are in different

‘o
alternating trees, then perform procedure 2: double augmentation, and

return.
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Tf node j is a type O node, then perform procedure 3: type 0

augmentation, and return.

If node j 1is a type 1 node, then perform procedure 4: type 1

augmentation, and return.

If node j 1is a type 2 node, then perform procedure 5: type 2

augmentation, .and return.

If node j 1is a matched node, then let node k be the current node
joined to j by a matching edge. Assign to nodes j, k inner and outer
labels of the alternating tree of node i whose predecessors are nodes
i, jy respectively. Push node k into the list of unscanned nodes. If
j € NZU N° with yj = 0, then perform procedure 6: type 3 augmentation
‘and return. If j € S with zj = 0, then perform procedure 9: pseudonode
unshrinking. If k € NSUNo with Vi 2 0, then perfornm procedure 7: type
4 augmentation and return. If k € S and contaihs inside it a node of
NSLJNZ with null node price, then perform procedure 7: type 4 augmentation

and return.

Return.

Procedure 2: Double Augmentation

This procedure is performed when two outer nodes i, j of
different alternating trees are joined by an equality edge. Let

P(i), P(j) denote the alternating paths connecting nodes 1i, j to
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with the roots of their alternating trees; such paths are obtained by
backtracking the predecessor indices. The augmenting path determined
by P(i) U {(i33)} U P(j) connects two exposed nodes. Reverse the .
solution/nonsolution role of the equality edges in this path. Every
matched node remains matched, and the two exposed nodes become matched.
Erase the label of all nodes in the alternating trees of nodes i, j.

Push the remaining outer nodes into the 1list of uns$canned nodes. Return.

Procedure 3: Type 0 Augmentation

This procedure is performed when an outer node i 1is joined by
an equality edge to a current type 0 node j. Let P(i) be the
alternating path connecting node i with the root of its alternating
tree, The augmenting path determined by P(i) U {(i;j)} connects an
exposed node with a type 0 node. Reverse the solution/nonsolution role
of the edges in this path. Every matched node remains matched, and the
exposed as well as the type 0 node become matched. Erase the label of all
nodes in the alternating tree of node :i. Push the remaining outer

nodes into the 1list of unscanned nodes. Return.

Procedure 4: Type 1 Augmentation

This procedure is performed when an outer node i  1is joined by an
equality edge to a current type 1 node j. Let P(i) be the
alternating path connecting node i with the root of its alternating

tree,
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If j € NZUNo with yj = 0, then the augmenting path determined by
P(i) U {(i;j)} connects an exposed node with a type 1 node. Reverse the
solution/nonsolution role of the édges.in this path. Every matched node
but node i remains matched. Node j becomes type 2. Node i becomes

type 1. The exposed node, if other than node i, becomes matched.

Otherwise, let node k be the type 2 node joined to node j by
a covering edge. The augmenting path determined by P(i) U {(i;j), (j;k)}
connects an exposed node with a type 2 node and goes through a type 1
node. Reverse the solution/nonsolution role of the edges in this path.
Every matched node remains matched. The exposed node bécomes matched.
Node j becomes matched. Node k becomes matched, type 1, or remains

type 2 depending on the solution edges incident with it.
Erase the label of all nodes in the alternating tree of node i.
Pushing the remaining outer nodes into the 1list of unscanned nodes.

Return.

Procedure 5: Type 2 Augmentation

This procedure is performed when an outer node i 1is joined by an
equality edge to a current type 2 node j. Let P(i) be the
alternating path connecting node i with the root of the alternating
tree. The augmenting path P(i) U {(i;j)] connects an exposed node
with a type 2 node and does not goes through a type 1 node. Reverse the
solutioh/nonsolution role of the edges in this path. Every matched node
but node i remains matched. Node j remains type 2. Node i becomes

type 1. The exposed node, if other than node i becomes matched,
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Erase the label of all nodes in the alternating tree of node 1i. ‘Push

the remaining outer nodes into the list of unscanned nodes. Return.

Procedure 6: Type 3 Augmentation

This procedure is performed when there is an inner matched node
j € ﬁzu N° with yj = 0., Let P(j) denote the alternating path connecting
node j with the root of the alternating tree. The augmenting path P(j)
connects an exposed node with a matched node. Reverse the solution/
nonsolution role of the edges in this path. Node j becomes type 2.
The node which was joined by a matching edge to node j and the node
which was the predecessor of node j in the alternating path, both
become type 1. The remaining matched nodes remain matched. The exposed
node, if other than the predecessor of node j, becomes matched. Erase
the label of all nodes in the alternating tree of node j. Push the

remaining outer nodes into the list of unscanned nodes. Return.

Procedure 7: Type 4 Augmentation

This procedure is performed when there is an outer node 1i € NSEUNo
with ys = 0 or there is an outer pseudonode i € S containing inside
it a node k € NSEUNzﬁith Vi = 0, Let P(i) be the alternating path
-connecting node 1 with the root of the alternating tree. The augmenting
path P(i) connects an exposed node with a matched node. Reverse the
solution/nonsolution role of the edges in this path. Node i becomes
type 0;|if node i is a pseudonode, then node k becomes the new

apex of node 1i. Every other matched node remains matched. The exposed
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node, it other than node i, becomes matched. Erase the label of all
nodes in the alternating tree of node 1i. Push the remaining outer nodes

into the 1ist of unscanned nodes. Return.

Procedure 8: 3imple Blossom Shrinking

This procedure is performed when two outer nodes i, j of the same
alternating tree are joined by an equality edge. Let P(i), P(j) be the
alternating paths connecting nodes i, j with the root of the alternating
tree, respectively. The odd altérnating cycle of equality edges determined
by [ P(L) U {GsDIUPG) INL PA) NP(j) ] defines a simple blossom.
Introduce a pseudonode containing inside all nodes and edges of thié
simple blossom. The base of this pseudonode is the only node incident
with two distinct edges of P(i), P(j). The apex of this pseudonode is the
apex of its base. The pseudonode receives an outer label of the same
alternating tree and with the same predecessor of its base. The label of

every node in the simple blossom is erased.

> <
Check whether there is a node of N UN  with null node price

inside the pseudonode. Perform procedure 7: type 4 augmentation.
Return.

Procedure 9: Pseudonode Unshrinking

This procedure is performed when an inner pseudonode s has null
pséudonode price. The pseudonode is eliminated from the network, so

that the nodes in its simple blossom become current. Let node 1
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be the base of pseudonode s and let node j be the node in the simple
blossom s which is incident with an equality edge joining it with the
predecessor of pseudonode s. Let P(ij;j) be the even length path on
the edges of the simple blossom s connecting the nodes i, j. Assign
inner/outer labels to the nodes in P(ij;j) starting with an inner label
for node j and finishing with another inner label for node 1i. Push
all the newly labelled nodes into the list of unscanned nodes. Check
whether any newly outer labelled node is a node of NS with null price
or is a pseudonode containing a node of NSUN:Z with null price; perform
procedure 7: type 4 augmentation and return. Check whether any newly
inner labelled node is a node of ﬁz with null price; perform procedure
6: type 3 augmentation and return. Check whether any newly inner
labelled node is a pseudonode with null node price; perform this
procedure 9., Check whether there was any equality edge joining a
pseudonode s with an outer node other than its predecessor; for every

such an edge perform procedure 1l: edge scanning. Return.
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5. PROOF OF THE ALGORTTHM

Theorem 2. If there is no exposed node at the end of the algorithm, the
final solution is optimal.

Proof. It can be easily verified that properties I are satisfied
throughout the algorithm; since there is no exposed nodes at the end

of the algorithm, the final solution is primal feasible, dual feasible,
and satisfies the complementary slackness conditions. Therefore, it is

an optimal solution for the problem.

Theorem 3. At each execution of the dual solution change step, the dual
objective value strictly increases.

EEQQE; It can be easily verified that conditions I are satisfied before
each execution of the dual solution step. It follows that the variable h
is always strictly positive or some condition would be violated. By the
way the dual solution change is performed, the dual objective value
increases by the positive amount

(# exposed nodes) . 6

Theorem 4. If there is an exposed node at the end of the algorithm, then
the problem is infeasible.

Proof. The algorithm stops with exposed nodes only if § =oo, This implies

that the dual probléem. is unbounded. and therefore the primal problem is

infeasible.
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Theorem 5. The time complexity of the algorithm is at most O(nzm).
At each augmentation at least one original node becomes nonexposed
and all nonexposed nodes remain nonexposed. Since there are at most n
original nodes which are exposed at the beginning of the algorithm, it
is possible to occur at most n augmentations during the execution of

the algorithm.
Based on the facts that between two consecutive augmentations:

1) there are at most n/2 pseudonodes at any time

2) a simple blossom shrinking produces an outer labelled pseudonode

3) a pseudonode unshrinking is performed on an inner labelled
pseudonode and produces at least one inner labelled node

4) a node labelling produces an outer-inner pair of labelled nodes

5) labelled nodes remain labelled while they are current

it follows that there are at most n/2 node labellings, at most n/2
simple blossom shrinkings, and at most n/2 pseudonode unshrinkings

between two consecutive augmentations.

Finally, between two operations of labelling, shrinking, or
unshrinking, there is at most one execution of the dual solution change

step, which requires an effort O0(ntm) to be performed.

In short, there are O0(n) augmentations, O0(n) dual solution
changes per augmentation, and an effort 0(n+m) at each execution of
the dual solution change step. So, the overall time complexity is at

most O(nzm) [assuming m > n ].
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Comment

It is possible to have an implementation with timevcomplexity
O(n3). Such an implementation for the minimum cost 1l-perfect matching
is presented by Lawler [6] and the same approach can be applied for the
minimum cost l-matching/covering problem. Essentially, it consists of
spending an effort O0(n) at each dual solution change; this means that
only the nodes are examined during the dual solution change step at the
moment the variable 6 is computed. This implies that the examination
of the edges should be done before, at the same time that the edges are
being scanned_during the tree growing process. Essential edge information
must be transformed and stored as node informatidn. In addition, the
simple' blossom shrinking and the pseudonode unshrinking operations
become more complex because more information associated with the nodes
need to be updated. Finally, after each augmentation, all alternating
treeé must be erased and new alternating trees should be rooted and

grown again.
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