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A Hilbert space method, previously applied to the group SU(2), is employed to examine the repre-
sentations D* and the reduction of the direct-product representation of the group SU(3). The base
vectors [Auje >, an orthogonal Hilbert space of homogeneous polynomials, are transformed to the base
vectors [Au;a>., and are associated with the complex conjugate representation by an explicit B- con-
jugation operation. For the general direct-product representation DMm () D e, explicit expressions
are derived for the vector coupling coefficients and the number of times the irreducible representation
D ig contained in the direct product. Two methods of labeling the degenerate states are given, the
reduction of the direct product is shown to be complete, and the symmetry relations of the 3(Az)

coefficients are discussed.

INTRODUCTION

HE purpose of this paper is to examine the

representations D and the reduction of the
direct-product representation DM @ D*** in a
concise, transparent manner. The particular ap-
proach is a Hilbert space method devised by Barg-
mann' to study the representations of the rotation
group.

The essential ideas of the Bargmann method, the
use of homogeneous polynomials of complex varia-
bles as the base vectors associated with irreducible
representations, and the construction of an invariant
that yields the coefficients which reduce the direct
product, were employed by van der Waerden® in
1932, and known to Weyl® (1925). Bargmann’s es-
sential contribution was to combine these ideas, with
his function space §,.,* in a clear and simple treat-
ment of the many (seemingly diverse) properties
of SU(2). Moreover, the essential features of the
method are in a form which may be generalized to
SU(3). The Bargmann method may also be gen-
eralized to SU(n), and this problem is to be discussed
in a subsequent paper.

The essential properties of the function space
&» necessary to read the article have been included
in Sec. 1. For a comprehensive treatment, with
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proofs, consult Bargmann’s two papers.’'* The par-
ticular subspace Q,, of Fs, the space of base vectors
Am; @), is defined in Sec. 2. The invariant Hilbert
space L), is now associated with a 2-rowed Young
tableau, necessitating an antisymmetry operation
with respect to the columns of the tableau. The
row labels &« = (y, i, {,) of the representations
D™ are defined in the standard manner using the
two linear commuting operators Y, T, of the rank-
two group, and the Casimir operator T’ of the SU(2)
subgroup. The base vectors [A\g; a), associated with
the complex conjugate representation are obtained
from |A\u; «) by an explicit change of variables.
Section 3 is devoted to the reduction of the direct-
product representation and the 3(Au) symbols. Un-
like the SU(2) case, the condition that the invariant
ho(k;) lies in the triple-product space does not
uniquely determine the parameters k;. This is the
degeneracy (or multiplicity) problem; there exists g
direct-product vectors |Asus; as)ey k = 0, 1, <+,
g — 1, associated with the irreducible representation
©M* contained in the representation *** @ D',
and Sec. 3C discusses two methods of handling
this problem. The recoupling or 6(\u) coefficients
are discussed in an accompanying article.’®

The notation follows, as closely as possible, that
of Bargmann’s article. In particular, the Hermitian
adjoint of an operator, or matrix, B, is indicated by
B*, the transpose of a matrix B by ‘B, and the com-
plex conjugate of a by a.

1. THE HILBERT SPACE {,
A. Definition of &,

The elements of §, are entire analytic functions
of {(2), where z = (2,, 2, *-- , 2,) is a point of the

5 M. Resnikoff, following paper, J. Math. Phys. 8, 79
(1967).
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n-dimensional complex Euclidean space C,. For two
elements f, f’ of §,, the inner product (f, f') is defined

G 1) = [ T0re dum),

where f(z) is the complex conjugate of f(z) and the
measure du,(2) is

(1.1a)

dp,(2) = 7 " exp (—22) dz, (1.1b)

2 Z2=2% + - + 2,3, and

d”z = kI—I dxk dyk, 2 = T + iyk.
=1
The integral (1.1a) is taken over the whole space
C,. It may be shown that'
((zi)h‘y (zi)hi) = 8i; Sacns (RN (1.2)

The operators on §, may be constructed as func-
tions of 2z, and the differential operator, d, = 9/9z;.
The commutation relations

[zlu ZM] = [dky d.] =0, [dlc:zm] = Ok (13)

are obvious. For any elements f, g of §,, 2, and d,
are adjoint with respect to the inner product

(&, g) = (f: dkg)7 (14)

as may be shown by expanding f(2) in a power series
(see Bargmann').

B. Bargmann Operators M,;

On the Hilbert space s, define the differential
operators M ;;
3

M. i) = % Z fa(mii)aﬂ(a/afﬁ)f(f)y

a,f=1

(1.5)

where { = (&, 7, ) replaces z = (2, 2, 2;) as a point
in the space Cj, and the matrices m;; are linear com-
binations of the infinitesimal matrices b;,

ibi = (6/60,)T,,f Igbno all k, j = 1, crty, 8, (1.6)

0, k = 1, --- , 8, representing the eight parameters
of the group.’® The matrices m,; differ by factors
from the infinitesimal matrices of Behrends ef al.”:

Hmy) = 6'E,,  3(ma) = 6'E_,,

3(m) = 6'E,,  3(ma) = 6'E_,,

(my) = 6'E;,  ¥(my) = 6E_,,
3(t) = VgHu 3(y) = 6H,,

8 The matrices b; and m,; may, of course, be obtained
directly from the SU(3) matrix as parameterized by F. D.
Murnaghan, The Unitary and Rotation Groups (Spartan Books,
Washington, D. C., 1962), in analogy to the SU(2) case. See
M. Resnikoff, University of Michigan preprint (1965).

7 R. E. Behrends, J. Dreitlein, C. Fronsdal, and B. W. Lee,
Rev. Mod. Phys. 34, 1 (1962).

¥, t, being the two linear commuting matrices of
the rank-two group.
The Bargmann differential operators, Eq. (1.5), are

J 0 d
M12=£El-7 M21=7IEE; M13=£$’
d a3 J
M31=0'52.; M23="75;; M32=°"5;7'7
_1(1_ i) _;8. 0 5 9
To=g\E o) Y =8 T75, % %
1.7

If f(¢) is a homogeneous polynomial of degree m in
¢, then so is M, ;f(¢), according to the definition Eq.
(1.5). Since the invariant Hilbert space of base
vectors is given by the degree in the variables
¢, and since the function M ,;f has the same degree
m, the operators M;; are said to operate within
the Hilbert space, as raising and lowering operators.
Note that, using Eq. (1.4),

(M:‘:'fy g) = (f: Miig)-

In particular, ¥, T, are Hermitian with respect to
the inner product.

1.8)

2. THE REPRESENTATIONS DX
A. Hilbert Space .,

Let an element f of the function space &, be
written f(¢,, {.), where ¢, ¢, are points in a three-
dimensional complex Euclidean space Ci. Q,,, the
subspace of ., is the space of homogeneous poly-
nomials (¢, ¢,) of degree A + u in ¢, and g in §,.

To put this in operator form, define the operator®
T,

9.
0k;

An element f({;, {,) belongs to Q,, if and only if
the Euler equations

Tuf = ()\ + I‘)f;

are satisfied.’

The spaces Qy, and ., are obviously orthogonal
for N # N, or p # u/, by Eq. (1.2). The function
space s may then be decomposed into the sum of
mutually orthogonal subspaces

8:5 = )‘Z Q)‘,.

8 The operator T; was first considered by V. Bargmann
and M. Moshinsky, Nucl. Phys. 18, 697 (1960); 23, 177 (1961).

9 Ty and T, are analogous to Bargmann’s operator N,
N -vi, = j-vin (see Ref. 1).

a a
Ti=&t_+mn am + o, 30, 2.1)

Toof = uf 2.2)

2.3)
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The Euler equations (2.2) require that the homo-
geneous polynomials f(¢y, ¢») be of degree A + u
in §;, and degree u in ¢, the number of boxes in
the first and second rows, respectively, of the Young
tableau for SU(3). The additional condition from
the Young tableau is that {(,, {.) be antisymmetric
in the p columns. Sinee ¢, is of degree u, ¢» may occur
only in the antisymmetric forms
b = (012, 817, &7 @2.4)
fzm)-

That is, the homogeneous polynomials f must have
the functional form f(¢;, 6:2)."° The differential form
of this antisymmetry requirement is that

lef(fh §-2) = 05 (2*5)

where T;; is given by Eq. (2.1). T,, serves as the
Weyl alternation operator, 2§,-g, the operator
which antisymmetrizes an unsymmetrized tensor
with respect to the columns of a Young tableau.

The unitary transformations Ty on s may be
defined

= (7110'2 — 190y, 01§ — by, Ly —

va(g‘ly {2) = f(!Ug‘ly ‘Ufz); (2.6)

where ‘U is the transpose of U, an element of SU(3).
‘When the variables {,, £, in C; undergo a unitary
transformation U, Ty defines a transformation of
the elements f(¢y, ¢») in the Hermitian space §,. It
may be shown that the transformations 7'y form
a unitary representation.’ The spaces L, are ob-
viously invariant under a unitary transformation
Ty, since the right side of Eq. (2.6) may again be
expressed as a linear combination of polynomials
§(£1, ¢2) of the same degree in {4, §,.

For §s, the Bargmann differential operators [Eqgs.
(1.5) and (1.7)] become

M (¢, 5'2) =
from Eq. (2.6).

M) + M) @20

B. Row Labels

The row labels a of the representations D are
specified in the usual manner by the two linear
commuting operators Y, T, of the rank-two group,
and

=T + To + Maul,s, 238

the Casimir operator of the subgroup SU{(2). The
base vector is uniquely specified by the conditions

8 f(r,4e) and f({y,812) are used interchangeably in the
article.

1 H, Weyl, The Theory of Groups and Quantum Mechanics
(Dover Publications, Inc., New York, 1931), p. 359.

(2.2), (2.5), and
Y Pgja) =y ;a),
To s a) = & [Mu;a),
T s a) = it + 1) ;)

where @ = (y, t, £,). The numbers ¢ and ¢, are the
isospin and the z component of the isospin, whereas
y is 3 times the hypercharge quantum number.
Since the operators (2.2), and T, T,, Y are Hermi-
tian with respect to the inner product, the base
vectors are orthogonal,

(Mw; @), (Wu'507) =
using Eq. (1.2).

The base vector |\u; a), as an explicit function
of {1, &3, may be constructed with the appropriate
raising and lowering operators of SU(3) using the
operators M ;; and appropriate products. The method
has been used by Elliott,"” Elliott and Harvey,'
Hecht," and Gel'fand and Zeitlin,’® and the base
vectors appear in the literature (see Bargmann and
Moshinsky,® Moshinsky,'® Baird and Biedenharn,"”
and Mukunda and Pandit'®). Only the result is
quoted here.

Pp; a > = NQw; ) (—1)°
(& — @!p!

,
X Z"(k)(u—- g—k!'p— -l
X £ AR (= ST D), (2.108)

where N (\u; o) normalizes |Ay; o) to unity (derived
in Appendix A},

3)&» sm.u 6am (2'9)

NQw; o)
{p O+D! (utp—g+1)!
Vgl (=) \—p)! (w+p+D! \+p—g+1)!
% %ﬁ%l} (2.10b)
and
y=-2r +w+3p+9, 0p=)

0<g<un (2.10c)
r=0,1,-- 2L

ﬂJ) P. Elliott, Proc. Roy. Soc. (London) A245, 128, 562
1958
( 13 J, P. Elliott and M. Harvey, Proc. Roy. Soc. (London)
A272, 557 (1963).

WK, T. Hecht, Nuecl, Phys. 62, 1 (1965).

% T. M. Gel'fand and M. L. Zexthn, Doklady Akad. Nauk
SSSR 71, 825 (1950).

16 M, Moshmsky, Nuecl. Phys. 31, 384 (1962).

17 (3. Baird and L. Biedenharn, J Math. Phys. 4, 1449
1963),
¢ 18 N, Mukunda and L. K. Pandit, J. Math Phys. 6, 746
(1965).

t=4+3i0 -9,

t{):t““r,
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The second factor in Eq. (2.10b) may be recognized
as the Condon and Shortley'® normalization for
the lowering operator T. = M,,. A specific phase
convention has been assumed,

T_ | ytte> = Cy u; ytty — 1>, (2.11a)

where C, is a positive constant. In addition, the
requirements

(M43, ¢+ 1), (b + D), Mis ;) >0,
(2.11b)

(Pusy + 3, (¢ — 8, (b + B, Mys ;) >0
(2.11¢)

specify the phase of [Au; @) with respect to p and
¢. This phase convention agrees with Elliott and
Harvey,"” and Hecht' (though their hypercharge
is the negative of the above), but De Swart,*
Biedenharn,® Kuriyan, Lurie, and Macfarlane,*
and Mukunda and Pandit,'® assume the matrix
element [Eq. (2.11¢)] to be negative, since the SU(2)
factor of Eq. (2.12¢) is negative-definite.*

C. The Representations D*»

1. Irreducibility

Ty defines a transformation of the elements f(z)
in the Hermitian space §, [see Eq. (2.6)]. The unitary
representations ©*(U) aredefined by restricting Ty, to
act in the subspace Q,,:

Ty ey = 2 OY.(U) Pwsa),  (2.12)

D a(U) = (s @), Tor hat; @) (2.13)

using Eq. (2.9). The representations D are ir-
reducible.’* By Schur’s lemma, it is sufficient to
prove that every linear operator A defined on Q,,
(which commutes with all T';) is necessarily of the
form A = a-1. If A commutes with all T, then it
must also commute with all the generators M,;, by
Eq. (1.6). The operators T,,, T,,, which define the
invariant spaces Q,,, and the antisymmetry opera-
tor Ty, (or T,), commute with the generators of

19 E. U. Condon and G. H. Shortley, The Theory of Atomic
fgggt)ra (Cambridge University Press, Cambridge, England,

20 J, J. de Swart, Rev. Mod. Phys. 35, 916 (1963).

2 I, C. Biedenharn, Phys. Letters 3, 69 (1962),

2 J. G. Kuriyan, D. Lurie, and A. J. Macfarlane, J. Math.
Phys. 6, 722 (1965).

2 For the Biedenharn phase convention, the base vector
Eq. (2.10) must be multiplied by the factor (—1)e.

# A different proof of the irreducibility of the representa-
8%%% ;nay be found in M. Moshinsky, J. Math. Phys. 4, 1128

the group M,; and are of the form A = «-1. There
are no other linear commuting operators.

2. Inequivalence

The representations ©*(U) and "'*'(U) are in-
equivalent for X £ A or u # u’. The proof follows
from Schur’s lemma.?® If e,, -+ , e, and fi, -+ , fa
are two sets of vectors in the spaces L, Q, re-
spectively, and if V, is a set of unitary operators
defined on £, L, then

Vee: = ’Z_;eipi-‘(a)’ Vit = ; fioe(e),
where the matrices p,;(a), o,.(a) are unitary and
irreducible. Let 8;, = (e, f.) be the inner product
matrix. Then it may be shown', employing matrix
notation, that p(e)B8 = Bo(a). That is, 8 is a mapping
of the space © onto L’. Schur’s lemma implies
either

(1) 8 =0,ie., (e f,) =0, forall g, r, or
(2) the representations are equivalent and 8 is a
multiple of the unit matrix

(e, ) = Bir = (2.14)

Then, the dimensions of the representations are
equal, and for ¢; = f,,

€ 6.-,..

(2.15)

The representations are certainly inequivalent if
the dimensions

N=3+DO+ DA+ +2)

of Q,,, Q. are not the same. In the cases where
the dimension N is the same for different spaces
Oy Oweyr, the inner product is zero [see Eq. (2.9)]
and an equivalence transformation 8 cannot be
found.

(e;, e,-) =€ 6,’,‘.

D. Complex Conjugate Representation D>s (u)

Since the SU(3) transformation matrix is uni-
modular, the 3 X 3 determinant

L & &
N = fa'(g'l X §'2) = {3612

oy, 0Oz 03

m N2 (2-16)

is invariant under a unitary transformation. This
implies

% See the statement of Schur’s lemma given by Bargmann
in Ref. 1.

% The dimension is the same for Q,, and Q,,, but there
are other possibilities, e.g., for N = 15, the following parti-
tions D\:F’] exist: [2,1], [1:2]: [470]1 [0’4]'
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E ‘Uia gD:;(ko'l)(U) = 5””

a

since D" (U) = U. 9'***" is the irreducible unitary
representation associated with 6,,. From unitarity,

ONU) = TU.

2.17)

(2.18)

When the variables ¢, {, undergo unitary trans-
formations, the 2 X 2 antisymmetric forms &,
transform with respect to the complex conjugate
representation. Given a base vector of the functional
form f({,, 8:5), the base vector |A\u; «), associated
with the complex conjugate representation

Ty sa)e = 25 Do) Pusof)e  (2.19)
may be obtained by exchanging {, < 8,,, and this
is the explicit R-conjugation transformation.?”:*®
Define the transformation R as

Rf(fl: 312) = f(au: fl)- (2-20)
Then,
R [Mu;a) = C [ a), (2.21a)
where
_ o+
N

The operation R, Eq. (2.19), is not a unitary trans-
formation; the base vector |\p; «), must be nor-
malized to unity, Eq. (2.21).

If the following changes are made in the base
vector M a): @) A p,p—op — g, ¢\ — p,
r— 2t — rand (b) k >k — p -} r, then, upon
comparison with |Au; @)., one obtains

Pasa)e = (=177 |ux; —a),  (2.22a)

where

—a = (—y, t, —1).%° (2.22b)

The operation R is thus a one-to-one mapping of
Q)‘“ onto 0,,)‘.
Relation (2.22) is analogous to the SU(2) result'

wh = (=1)*™i,. (2.23)

27 D, Lurie and A. J. Macfarlane, J. Math. Phys. 5, 565
(1964) give an implicit derivation of R-conjugation. The
term “R-conjugation” is due to M. Gell-Mann, California
Institute of Technology Report CTSL-20 (1961).

28 See also G. E. Baird and L. C. Biedenharn, J. Math.
Phys. 5, 1723 (1964) for a discussion of the conjugation
operation for SU(n) in terms of operator mappings.

29 Since y = 3 X hypercharge (Y),

(—1)latto = (—1)wh—tot2isotm)

which agrees with de Swart (Ref. 20).

The important distinction between Eqs. (2.21) and
(2.22) is that w,! was a member of the same Hilbert
space as v,], but [Ag; @), is a member of Q) (not Q,,).

3. REDUCTION OF THE DIRECT-PRODUCT
REPRESENTATION#

A. Reduction of D 1m () Dra

Let §, §&¥ be the Hilbert spaces of analytic
functions f({1, §2), f(¢s, £4), respectively, where {; =
(&, n:, 0:) is a member of C3. Fe = F¥ @ F&2 is
a Hilbert space of analytic functions ({1, &2} &a) &4)-
The subspace

Q)‘xu;hua = ’Ohm ® ’th

of {1, is spanned by the N, N, direct-product vectors
|)\1#1; ) l Aatio; az), where N; = 3\, + 1)(u: + 1)
O + pe + 2),7 =1, 2, 3, the dimension of the
ith space. For any SU(3) transformation U, the
operators T{" and T are defined on ¥ and F¥
respectively, by Eq. (2.6). For a function f({y, {3
s $u), & member of §., TH'? forms a unitary
representation

(T 2N, &5 8, 80) = (UG, ‘Uts; 'Uts, 'UL).
Further, since for Q,,,....,
F(&1s E25 &3y §2) = f(S1, $2)1(Sas $0)s
(T3 2N, tos & £ = fCUS, ‘UL (Uss, 'UL)
= [(T;fl)f)(fn fz)][(Tl(rIz)f)(fa; £,
the result follows that
TG? =TYP QT . (3.1)

Thus, T?, restricted to the space Qy 2,4, Dro-
vides the direct-product representation

D(U) @ D™(0).

The infinitesimal transformations on §,, are

Mt’i(?l; g‘z; fs; ?4) = M-’i(g‘l’ ;2) + M"i(g‘3’ {4)' (3'2)

The extension to §,s is obvious. Define the trans-
formation

(Tg'z'a)f)(fn £23 $ay $4; $sy $o)
= f(‘Ufn ‘Ufz; ‘Ufs: 'Uﬁ; ‘Ug'm ‘Ug'e)-
Then,

(1,2,3) (1,2) @) __ mi1) (2) (3)
Ty =Ty ®TU =41y ®TU ®Tu .

% The discussion of Sec. 3A follows from that given by
Bargmann (Ref. 1) for the group SU(2). The functional
space is now §s and the proof of the theorem on the reduction
of the direct product must be altered to account for the
degeneracy in gi.rect product states.

3.3)
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The direct product representation may be reduced
according to the formula

[)\1#1] ® D\zﬂz] = Z g()\iM;)D\sﬂa]; (3.4)

where g(A\.p;) is the degeneracy, the number of
times the irreducible representation ®™** is con-
tained in DM** @ D'**. For each partition [Asus)
there exists gN; independent products \pu; «,)
\apts; o). Associate the index k with the space of
N; orthonormal base vectors®

Q{I:})h)\:lh7 k= 0’ 17 ;9 — L.

If the irreducible representation ©**** is contained
in the product representation D*** ®Q D***’, there
exists N; orthonormalized product base vectors

. . )
l)\3ﬂ3 ] as)k m Q)‘,mhu-

such that

TE® Naps; ashe = 25 Detiei(U) Natia; o). (3.5)

(Note that the irreducible representation ®**** has
no subindex % because the equivalence transforma-
tion B, [see Eq. (2.14)] equals 8., since the base
vectors [Asps; as), are also assumed orthogonal with
respect to k.) Consider the expression

a; = Zn- l)\sﬂa;a:«x)k [)\3#.3;0‘3)”

k=01, y 9 — 1 3.6

as a member of the space

Q(k)
Aigidgpaitada e

a;, being the sum of orthonormal functions, is not
equal to zero. If ©***(U) is contained in the product
representation D'** ® D™, then a, is invariant
in the triple-product space

foly :
Mipahanspsds *

Tg.z».a)ak “ B I)\a,us, 043)1:)(T

l)‘3"3 ; aB)c))

-z
from Eq. (3.3)

Z Z |)\3#37 0‘3)1:

as s

X-u:

D (V)

}: [Nans; ', :Dt:,“,'a.(U)}

Qg

using Egs. (3.5) and (2.19)

31 The method of labeling orthogonal spaces
g(k)xllh)\:llt
is discussed in Sec. 3C.

>

dzrcare

X X D) Oh,.. (D)

- x

A3y

|>\3M3; AN ()\3#3§ YR

|)\3M3§ ob)s P‘a#s? aél)c L P

since the representations are unitary. Hence,

1,2,3
T;; )ak = Q.

3.7

Conversely, let h, be an orthonormal function in
Q{’:L.x.p.p.x, such that

T;jl'z'a)h), = hk. (3.8)

Since the funetions |A;us; @s), span the space Q,,,,,
h, has an expansion

= 2 X

(3.9

; 0la)e

with x* uniquely determined in
Q)(t,:l)h)\nll: .
TG = Tw TG PXDTP Dot )

using Eq. (3.3).
Z Z (T(l +2) (k)
by definition, Eq. (2.19).
E Xa; " |)‘3#3; aa)

)z‘x’a":.aa(U) l)‘3“3 ) a3)

by assumption (3.8). Thus,
(k) Z (T(l .2)

Multiply (3.10) by D* .. (1)

Xar) Dl a(U).  (3.10)

and sum over «f’. From the unitarity of the rep-
resentations,

TY2xD = Tw 58 D
Consider the inner product of h,:
(s bx,) = Za. (Xa) |)‘al-¢3; @)e Xf:k.l')
3 6 X,

since the vectors |\;us; as). are orthonormal. The
representation D™ associated with x%’ is unitary

and irreducible, hence, according to Schur’s lemma,
[Eq. (2.15)]

Aaps

Daa(U). (311

[Nud; b))

(k) k')
aa } Xa- )
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is independent of the row label a;. Thus,

(hey be?) = d(k, k"5 Naps) Z'l

= Ny dk, k'; Nsuz) = 8,

(3.12)

since, by assumption, the invariants h, are ortho-
normal. Thus, if A, k = 0,1, --- , g — 1, is ortho-
normal with respect to the index k, then by Eq.
(3.12), so is x**). The base vectors \;us; a3): have
unit norm, so that

[Aapa; as)e = (V. 3)insz
are the orthonormal functions in
SRR
associated with the irreducible representation

:D)u#a ( U) .
The 3(Au) coefficients may be defined

Z {>\11~¢1 Nopta >\3M3}
ai
k

Q Qg

(3.13)

th

X Nipg; o) Napz; o) [Napiss as)e.  (3.14)

The 3(A\u) coefficients provide that linear combina~
tion of triple-product functions |Auij ou) | Aops; @s)
|Asus; o). which yield an invariant h; in the triple-
product space. From Eqgs. (3.9) and (3.13),

l)\a#a§013>k = (N 3)*

Mfts Aotz A
X 2 { o o Sya}k P en) Phapia; ). (3.15)

o Gy o3

The 3(A\x) coefficients, defined by Eq. (3.14), when
multiplied by (N,)}, yield the standard coupling
coefficients. If the invariants h, are given, the ex-
plicit evaluation of the 3(Au) symbol involves taking
the inner product of h, with the triple-product
vector

{)\1#1 Aotz ks#a}
@ Qz Qa3 /i

= (|>\1ﬂ1;051> |)\z#2;0‘2) P‘s#a?as>c; h,,). (3~16)

Thus, the evaluation of the 3(\u) coefficients is re-
duced to the construction of an invariant h; in the
triple-product space, and as we see in the next two
sections, this is not a difficult task.

h(k,-) — A(k.-) [3'1 : (fa X fs)]ko(fs : 553),“(;1 : 555)k’(§'1 : 534)’“(?5‘ 534)1“

B. 3(2y) symbol for the nondegenerate case®:
9)\10 ® D)\n‘s

Notation: Associate the variables (¢, £2), (&3 {4,
(ts, o), With the base vectors [Aus; ar)y [Aapts) a2),
IAstta; a3)., respectively. Label the 2 X 2 antisym-
metric forms:
by = (8 87, o @17
oty £y — 5:'71.')-

The most general invariant b, may be constructed
from a linear combination of products of 3 X 3
determinants. The following conditions must be
imposed on A,:

(i) Tl2hk = 0; T34hlc = 0, T,mh], = 0, (3.18)

= (77-'0'1‘ — 704, 0 —

since h, is of the form Eq. (3.14). By inspection of
Eq. (2.10a), one sees that |\0; a,) is independent
of 8,,. Hence h, must not contain 8,,, and 7',k = 0
is satisfied automatically. &, may then have the form

m=§mmmmxm?

X (57 850)* (£1- 80" (£5- 8™, (3.19)

(ii) From the requirement that 4, be in the
space

QMO)\:M!I‘:)\:)
the degree conditions follow

k1+kz=}\a; ko+k2+k5=)\1, ksZO;

(3.20)
ko + ke = psy, ko + ki = Ny, ks + ks = pa.
This may be rewritten in the form
Bo=P = Qatum), k=P~ (atm) 5908

k5=P_(>\3+#3); k1+k2=)\a; k5+k6= Hz,
where

P = kO + kl + kZ + k5 + kS (3.21b)

= 30\ + N + 2u + 20 + p).

From Eq. (3.21), the partition numbers Ay, A,
[Asps], uniquely specify the integers k,, g(hin;) = 1.
Redefine the coefficient B.(k;). Eq. (3.19) becomes

k!

k,!

(3.22)

k! k! kel 2

3 The general expression for [\,z] ® [k,0] has been derived by M. Moshinsky, Rev. Mod. Phys. 34, 813 (1962) in terms of

a finite series.
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A(k;) normalizes the inner product [A(k,), h(k.)] to unity, and is evaluated in Appendix B. The result is

P+ oo+ ky 4+ ko + D! (ko + Ky + ko + D(ko + ks + ks + D!

{h(k-'): h(k:)] = [A(k-')]2 Orirrs,

Since h(k;) is orthogonal, there exists N; orthonormal
base vectors

l>\3”'3 H a3) in QX;OX:“:)

corresponding to each set of values k,, provided
that k; satisfy conditions (3.21). To determine
whether the decomposition is complete, sum over
the number of reduced direct-product vectors consis-
tent with the constraints on k;:

;N3= 3 0s+ Dus + D + 5 + 2)

As Ai—ka

2 2 at 1+ —k)
X(l‘z_)\1+1+k2+2k3)

n =

2ko! byl Ea! K5 Kol (Bo 4+ Ky 4 1)) (ko + ks 4 1)!

(3.23)

X()\2+#2+2+2k2+k3)
= %()\1 + 1)0\1 +2)3(\ + 1)(#2+ 1)()‘2+#2+2)
= NlNz.

The number of base vectors [Azuz;az) in Oy oneus
is N,N,, and since this is the dimension of the space,
the reduction is complete.

The inner product of A(k;), Eq. (3.22), and the
triple-product vector yields the 3(Au) symbol for
the nondegenerate case. h(k;) must be expanded,
constraints from the integration [see Eq. (1.2)] must
be applied, and (using binomial identities) the sums
must be contracted. The details are quite tedious
and only the results are given here.*

(=D s+ 1+ko+b—0)!

{)\10 Azpdo xaﬂa}
2
3 a! (ks

a; O O3 —a)' (‘La Q3_b)! C! d! (p3""d)! ()\3_p3—k2+d)!
X ()\3+ﬂ3+1"k2+d)!
[—(s—ga) +M—p1—a+D]! (us+ps+1—ketpe— e —c—d)! [~ (us— ga) +hks— ko -+ —p1—a+c+d]!

[ﬂa“Qa+k2+k5_()\1—p1)_’ b—d]!

X G —o) Dt e

g +1+ko— (M —p)+a—c]! [ps—

gs+ks— M —p)+a—b—d]! (b—c—e)!

— Oa—b—)!
oI e e e e @29
where
r=ritr=k+tp—g—(m—g) from = () + () ol by = (t)s,

Prt D2 =2ko+ p2— @2+ ps — (us — ¢s) from Yo+ v = s,
and
- (=1)**"* AGk) r

N(MO; a)N(opz; )N (Nsus; Yatsts) ol 75!

(Ma + 0~ @+ D e+ pe— o+ D e+ 90 — @2 — ) (3.25)

(us + s + DI+ ps — gs + D! (u2 + p2 — Q2)'

N\ o) is given by Eq. (2.10b) and A(k.) by
Eq. (3.23). For u, = 0, Eq. (3.24) reduces to one
sum and for the two special cases where o; is mini-
mum or maximum,

() @ = Wominr tmin (E)s = —tani),
Ps, ¢ = 0, r; = 203,
(il) gy = [y3mu) tam-x? (to)s = t3m|x]’
Ps = As s = Ma, ry =0,

the above expression reduces to a single factor. Let
the phase convention for the 3(An) symbol be the

% Aside from the general expression for [\,u] @ [£,0] derived
by Moshinsky (Ref. 32), other special cases appear in the
literature, e.g., Hecht (Ref. 14) has coefficients for the
special cases [\u] [2,0], [0,2], [4,0], [2,1], [1,1] in terms of
single factors. N. Mukunda and L. K. Pandlt J. Math.
Phys. 6, 1547 (1965) have closed expressions for the product
A u] ® [3,0]. Coefficients of use to high-energy physicists
have been constructed by S. Sawada and M. Yonezawa,
Progr. Theoret. Phys. (Kyoto) 23, 662(1960),A R. Edmonds,
Proc. Roy. Soc. (London) A268, 567 (1962); M. A. Rashid,
Nuovo Cimento 26, 118 (1962); and J. J. de Swart (Ref 20),
among others.
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following®*:

{mo Nakta xsus} >0

O3 5

'4
Oy Q2

(3.26)

Case (ii) then allows us to determine the correct phase factor:

{)\10 Napta )\3H3} = (_1))‘1_’,‘”'”0 A(ki)
a; o N(AO; o )N(N\opta; aa) N (Napia; otz )

Q3

(I‘z +p2 — Q> + 1)!(M2 +pz — gz — 7‘2)'1"

X

If @i = ay,, it is clear the 3(A\u) symbol must be
multiplied by (—1)* to satisfy the convention,
Eq. (3.26).
C. 3(.y) symbol for the degenerate case:
DI ® D roug

To determine the 3(Mu) coefficients uniquely, it
is necessary to determine the invariants h,(k;)
uniquely. In Sec. (1) below, conditions are placed on
the invariant, but, unlike the previous case, the in-
variant is still not uniquely determined. Linear
combinations of the invariants are possible, and in
Sec. 2, two methods are employed to orthogonalize
and uniquely determine the invariants. The explicit
expression and completeness of reduction then fol-
low, as in Sec. 3B above.

1. Form of invariant

The following conditions must be imposed on the
invariant h.(k,):

(OD YHth = 0, 1}4hk = O,

since the invariant has the form Eq. (3.13). The
most general invariant &, must then have a summand
of the form

Bk )[E1 (5 X £ F(k) 812+ (a6 X 8:)]*, (3.28a)
where
F(ki) = (fa ° 856),“(;‘1 ¢ 556)“(5‘5‘ 512)’"
X (5'3' 512)’“(&'1 * 534)kl(§'5 * 534)’"-
(B) Since h,; is a member of the space

glw)
A1 dapapada?

Tsshk = 07

(3.28h)

# This phase convention, the choice of a1y, a3y, agrees
with most authors, but the definition of highest weight state
differs, e.g., since Hecht (Ref. 14), Elliott (Ref. 12), and
Elliott (Ref. 13) have —Y, they would be considering the
minimum Y state, compared to the notation of this paper.
de Swart (Ref. 20) and Kuriyan, et al. (Ref. 22) choose
I, = Imax (and associated Y') as the highest weight state.

(I-‘z - Q2)! (F-z + P2 — 92)! kol kol kgl O\l - px)! ()\2 b pz)! O\z + p2 — Q2 + 1)! [k1 -— ()\2 - pz)]!ﬁ!rz!'

(3.27)
ko + ks + ks = ps, k6+k1+kz=)\ay
ko+k1+k4=)\z, ko+ks+ke=ﬂ2; k.’ZO;
ko + ke + ky = A,y ko + ks + ky = My« (3-29)
From Eq. (3.29), it may be noted that

ko — ki =P — (uy + pa + o), (3.30a)
where
— > e 14
1) kD 4_ kl 4- 4- k& 4— Zko (3-30t»

= %O\l + 2Zu 4 N+ 2u + 27, 4 Ma)-

The requirement that the invariant &, lies in the
triple-product space

£3(H
Auihspspade)

[Egs. (3.29) and (3.30)] allows for a range of values.
of k, instead of a unique set, as in the previous case,.
and this gives rise to the multiplicity problem.

The terms of the summation, Eq. (3.28), are not.
independent because of the identity

[f1:(Fs X $0)1(812-(8ss X 8s)] = Hy + Ha, (3.31a)
where
Hy = ($a°0s0) ($5 012)($1° 834),
H; = ($1856)($3 812)(£5° 834).

To require that the invariant h, be a sum over
linearly independent terms, set

() k=0, for ko — ki =P — (u, + ps + )
20,
(i) ko =0, for ko — kj < O.

If the largest common term, F(p,), is then factored
from the sum, the invariant k,(p;) may be put in
the form

hi(pd) = [61 (5 X fs)]koF(Pi) E Bips s, ma) (H,)"H*,
n+n =N (3.33)

(3.31b)

(3.32)
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fork, — &} > 0. For k, — k} < 0, the invariant &,
becomes

hi(pd) = [812-(8se X 850)]""
X F(p) Z &(pi; my, )HY(H)™, 1y +np = N,
(3.34)
wherek = 0,1, -+ N =g — land k; = p; + n,,

1=1,8,5;k: = p; + ns, 7 = 2, 4, 6 and with the
conditions

ko+ os+ oo+ N =ps, ki + pr+ o+ N =,
ko+ oo+ pu+ N =X, B+ ps+ ps + N = ps,
Lo+ potps+N =N, ki+ 05+ ps + N = .

p: 2 0, (3.35)

According to Eq. (3.32), k, or k} equals zero in Eq.
(8.35), depending on the sign of the difference.
The exact expression for N + 1 = g¢,°° the number
of times the irreducible representation D“** is
contained in the direct-product representation
i ® DM, is quite complicated if simple in-
equalities are assumed on the partition numbers
[Ain;). Conversely, if complicated bounds are im-
posed on P, then the expression for N is simple.
Write the conditions (3.35) in the alternate form

po— ps =P — (2 + N + ),
ps = ps = P — (s + N + pa),
pr = ps =P — (g + N + ),
Ps“‘Pl"“P—(Az‘f‘Mz“P)\s);
pe — p2 =P — (M + p N9,
pp— ps =P — O\ + o).

Equations (8.36), (3.30), and one relation of Eq.
(8.35) constitute the alternate set to Egs. (3.35).
N = n, + n, is chosen such that there is one
unique seb of values p,. At least two p; equal zero,
one for 7 = 1, 3, 5, and one for ¢ = 2, 4, 6, respec-
tively, depending on the value of N. From Eq.

(3.36)

& B. Preziosi, A. Simoni, and B. Vitale, Nuovo Cimento
34, 1101 (1964), have calculated g from a straightforward
multiplication of Young tableaus. Other methods for deter-
mining the degeneracy g appear in the literature. Freudenthal’s
formula, an implicit formula in terms of a recursion relation,
sppears in N. Jacobson, Lie Algebras (Interscience Pub-
lishers, Inc., New York, 1962). The formula is derived by
relating the weight and multiplicity structure of SU(3) [also
SU(n)]. J. P. Antoine and D. Speiser, J. Math. Phys. 5, 1226
(1964); 5, 1560 (1964), describe graphical methods for general
gimple compsct Lie groups. 8. Gasiorowicz, “A Simple
Graphical Method in the Analysis of SU(3),” Argonne
Report ANL-6729, is a review article of the Speiser method
for SU(3).

(3.36) the expressions for g follow:
p: =0, P4=7\2+M2+H1_P, ko > 0, (3‘37)
pp=P—N+m+r) p20
and Case I:
p = 0, N =1,
ps = P — (N2 + 2 + No),
ps =M+ +p— P,
Case II:
N=P—0N+nm),
pr=2N 1 u+Nx—P,
ps =P — (u + X + ),
or Case III:

ps =0,

ps =0,
pr=P— (N + m+ m)),
N=p+M+m+r-—-2"~P
ps = py + A 4 ps — P

The other possible bounds on P, and expressions
for N, are obtained by exchanging (\ ) <« (Aaps)
and (Apy) < (ushs) along with the corresponding
changes of p; [see Sec. 3D]. Altogether there are nine
possibilities. When k) > 0, the correct degeneracy
expression, N, is obtained from Eq. (3.37) by ex-
changing \; <> p; and making the corresponding
changes in p; [see Eq. (3.66)].

I

2. Determination of B.(p:; 11, 1s)

Given the invariants Eqs. (3.33) and (3.34), the
problem still remains to uniquely specify the g°
coefficients B.(p.; n:, n,). Orthogonality of the in-
variants h(p;)} provides 3g(g — 1) conditions, nor-
malization g conditions, thus #g(¢ + 1) conditions
in all on the g° coefficients. Any set of coefficients
B.(p:; 1, ms) may be related to another set
BL(p:; My ny) through the transformation

N
Bilpi;nyy ng) = Z;)Bkmf’n’a(m;m,nz) (3.38)
or
N
h):(Pg) = ZoBthv(pi)} k = O’ 1) M
This implies, from Eq. (3.14), that

{)\1#1 Aophs ks#a}' - z BH{MNI Agphz )\3”3} . (3.39)

Q Oy Q3 o Qy O3
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If the new set of invariants h[(p;) are orthonor-
malized, and if the 3(\p) coefficients are chosen
real, then B,; is an orthogonal transformation.

Two methods are now discussed to uniquely
specify the eoefficients 8:(p;; 7, n,) and form orthog-
onal states h,(p,;).**

8. Moshinsky's operator X

Moshinsky hasconstructed an Hermitian operator®”
X

X = TarssTe:Tsoavay @, 8,p=1,2,
which commutes with the operators

sz: Ts&; Tse; Ts‘i; 1 = 1; Tty 63

(3.40)

and the generators M,;, and which combines the
variables of the separate spaces®

‘ka; ] th .

The invariant k. (p;) must then be diagonalized with
respect to X

Xhi(ps) = zlphi(ps).

The eigenvalues z.(p,) are, of course, real, and
Moshinsky® has shown that they are distinct.

The operator X, operating on the summand of
Eq. (3.33), yields

X{[6 (s X E)“Fp)H)"H?'}
= [£1:(8s X £)]°F (o)
X fpss 1, n)HY H" + g(p:i; 1, 12)
X (H)"TH™ + h(ps; ma, ma) HY VH '], (3.42)

where

(3.41)

f(pi; 11, M2}
= (u + D! sl + 2) + (s + D + 5]
+ O i+ Dol + 1) + Foll + Fo + g +2)]
+ kka(ke + 1) + kikelhs + ko + 1) (3.43a)

and

% The row and state labeling problem hag been discussed
by G. E. Baird and L. C. Biedenharn in a series of papers:
J. Math Phys. 4, 1449 (1963); 5, 1723 (1964); 5, 1730 (1964).
In particular, they show the interesting result that the
multiplicity structure of SU(n) operators may be put into
a one-to-one association with the multiplicity structure of
the corresponding states.

37 M., Moshinsky, J. Math. Phys. 4, 1128 (1963).

3 L. O'Raifeartaigh and A. J. Macfarlane (o be published)
have constructed an operator from the generators of SU(3).
Professor Moshinsky bhas pointed out in discussion that this
operator differs from the operator X only by Casimir
operators. Other operators satisfying the above conditions
may, of course, also be constructed.

g(pi; e, na) = —kiksks, hWpi;my, Mo) = kokkes.

(3.43b)

Similarly, X on a summand of Eq. (3.34) has the
same form as Eq. (3.42), but

fpi3m1, m5) = f(pi; 11, M) Jramo |
+ kolkiks + (ui + 2)(ua + 2) + ky(k. + 1)
+ WM+ o+ DA ke ks ks + 2) + 8K
+ 2ky + Kty + Fooks + Koks ++ Euks — 2k,] (3.44)

and g(p;; M, M), h(p:;; M, n,) are given by Eq.
(3.43b).

A secular determinant, obtained from Eq. (3.41),
must be solved for the eigenvalues z.(p;) to deter-
mine the coefficients 8.(p,; 11, n.). Given the coef-
ficients B.(p;; 11, 15}, the 3{(Au) coefficients are found
by taking the inner product of h.(p;) with the triple
product vector [see Eq. (3.16)]. The general 3(\u)
coefficient, in terms of the 8.(p,; n., n,) is then Eq.
(3.48).

The symmetry relations of the 3(\u) coefficients
are not obvious from the form of the operator X,
Eq. (3.40). If the simple case ¢ = 2 is considered,
e.g.,

Lux@i=21,134---,

the standard convention is to choose the 3(\u)
coefficients such that under the various symmetry
operations, one coefficient is symmetric, the other

antisymmetric. The 3(\u) coefficients determined
by X do not have this property.

4. Choice of Bi(p:; M, 1)

To require that the 3(\u) coefficients have simple

symmetry properties, let the 8,(p;; n., #,) be chosen
such that

Bilpss may ma) = (—1)*8x(p:; nay ;) (3.45)

fork =0,1, ---, N. The condition (3.45) separates
the invariants h,(p;) into states which are even or
odd under the various permutation operations on
the variables. The odd, even, states are then
mutually orthogonal. To finally determine the coef-
ficients Bi(p:; N4, n2) a Gram-Schmidt orthogonal-
ization procedure may be employed. Divide the coef-
ficients Bi(ps; 7, 7) by the normalization 8,(p;; N, 0),

Qy; = ﬁk(pi;iy j)/IBk(Pi;N7 0)1 k= 0,1, ... :N

(3.46)
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and choose the coefficients a,; so that the invariants
hi(p;) have the form

hlps) = [{1°(85 X fs)]ko

[k/2]
X F(pdB D Gua(HH)(HY ™ £ (Hy)*?), (3.47)

a=0

where a;, = 1 and == refer to k even, odd, respec-
tively, e.g.,

ho(ps) = [§1+(8: X fs)]hF(Pi)ﬁo(H?’ + szv),
ha(p).= [§1-(8s X fs)]hF(Pi)ﬂz *

necessary integrations being performed in Appendix
B.

5. Explicit expression

The inner product of the invariant h.(p;), Eq.
(3.33), with the triple product vector [see Eq. (3.16)]
yieldsthe3(\u) coefficient in terms of the coefficients®®
Bi(pi; 11, My):

{)\1111 Nolhz >\3ﬂ3}
o 05:; k
k,'! k0| (_1)mo-+mu+moc

) o IL
= (—1)¢ EBI:(PH Ny M) Hii N5l H. Mos:

Sup; a) = M(N\ps; @) Z

and

. o« 40
% [(H’;V + H’;’) + an(Htz)(Hiv_z + H;v—z)]. X .'Iil.z S(N#nai)s(ﬂa)\a; a’a); (3-48)
— 7 . —_
The factors 8, are normalizations and the coefficients ¢=umthk+ate, a i1y = 0,
a,; are uniquely determined by integration, the where
(_l)ui+ni+mimi! ni! (pl — ri + m,)!
ug (p. + m; +n, + ]_)'u" (p-‘ - n;)' (pi -7+ m; — n,)'
[ri = (ue = qi) +nd! .
3.49
X(—pi+ri+u’i)!(ﬂi+pi—q-'_ri_'ui)![ni_(#i—Qi) —pi + i + u! ( 2)
(ﬂs‘ + pi — q. + 1)! (N.' +p: — q — 7’.')!
i o) = . 3.49b
Mi; ) (i + 20 — ¢! NQupis ai) ( )
The following constraints must be applied to Eq. DL — T o= Mo + Moz + Nz + s — My,

(3.48):

Ny = Ngy + Ny, N2 = N5 + 7, i=1,3,5,
ng = Ny + Ba, ki = ps +my,
m, = Mgy + Naa, My = Mgy + Neg, i= 2’ 4, 6,
Mz = Nz + Nag, ki = pi + n,,
3 [
Z;’nu:kn t=1,---,86, .Z;mo'=k°’
< =

r=r 4=kt p—¢+m— a— ( — ),
Y 2% ol
=2k —ps+ P+ @Gt om— @t — @
P3+q:4=m01+mo4+n33+nas+m3+n3,
Mt — @+ 9)
= Mys + Mg + N2 N5y + My + 0y,
f3 — Gz = M2 + Mos 4 Maz -+ Moz — 74,
—m @t = Mey - Moy F Na - N2

—Ps = Moz + Mgs + Nz + ng, —

- T,

ms,

Nz -+ Mg + Moy + Moz + My + 1,
=7\2+#2—(pz+Q2),

Moy + Mos + Ny + Ny — My = py — 13,
Moy + Mg + Nyp + Ny — N2 = —pa + ¢ + 19,
(3.49¢)
N(\:p:; o) is given by Eq. (2.10b).
The phase convention is that of Eq. (3.26). The
necessary coefficient for this case is

{Nﬂx )\2llz )\3#3} =
k

’
Oy Oz Qzy

Bk(pi; N, n2)kll ks!
Xn,*;-h’ (2 + P2+ 1 — k)l [~(u2 — @) + ks]:’

(3.50a)

# Closed expressions for the coefficients for the direct
product [Mu] ® [1,1] have been given by Kuriyan et al. (Ref.
22) and Hecht (Ref. 14). T. A. Brody, M. Moshinsky, and
I. Renero, J. Math. Phys. 6, 1540 (1965), have recursion
relations to determine coefficients for general direct product
(A1) & [hops). X

4 The choice oy, rs = 0, is made because the 3(Au) coeffi-
cient, Eq. (3.48), may then be divided by the factor ((¢1),
(to)l; tz(to)z'tltgta(to)a = tt), the CG coefficient for SU(2), and
multiphed by (N3)1/2, to obtain the isoscalar factor, as defined
by Edmonds (Ref. 33).




COUPLING COEFFICIENTS FOR THE GROUP SU (3) 75

where

o = (=" + p» — ¢» + 1!
NQupy; @) NQopa; aé)N(ﬂa)\a; aza)(pe — g2)! (e + P2 — ¢2)!

a; is Y2 = N + 23 — ()\1 + 2#1), (ta)2 = %()\a - >\1);
with ¢, assuming, according to Biedenharn’s results,*®
¢ values for given e, ,, o5, To define a proper phase
convention, a nonvanishing 3(Au) coefficient must
be made positive. However, the phase of 8.(p,; 11, 1,)
is, in general, undetermined. For k¥ = 0, when
n, = N,n, = 0,and n, = N, n, = 0, it is clear from
Eq. (3.50) that the 3(Au) coefficient must be multi-
plied by (—1)* to satisfy Eq. (3.26). In general,
the 3(A\p) coefficient must be multiplied by (—1)°,
where ¢ is a function of the parameters k.

6. Completeness of the reduction

Equations (3.29) plus the restriction, Eq. (3.32),
give g independent terms, appropriate linear com-
binations of which yield g orthonormal invariants
he(ps), and, from Eq. (3.13), g orthonormal direct-
product base vectors associated with the irreducible
representations ®*. To determine completeness,
sum over the reduced direct-product states:

22 9N,
=32 g0+ Dlps + DO + s + 2)

n = n, + n,, where n, is the case k, > 0, and n, is
the case ky < 0, or

n= (3.51)

= n, + nf — n,, (3-52)

where n] are the terms k, < 0 and 7, are the terms
k, = 0. Instead of Eq. (3.51), the numbers k,;, Eq.
(3.29), may be substituted for A;us; the sum over
all possible k., using Eq. (3.32), then includes the
degeneracy g. Note that

[ —
Ny = N, ‘)q-—-u,. As—pus

The result of the summation is
n, = 0 + D + DO+ 2 + 12 + 2)
X (e — p2 + 1) + 200 + Dz + D], (3.53)
no =3 + DO+ DO + 2 + 2)
X A Mo = ) — M)
+ 20\ + D + D]

Putting Egs. (3.53) into Eq. (3.52), one can then
see that

n = ZgN;; = N“Nz.

(3.50b)

Thus, the reduction of the direct-product representa-~
tion is complete; the gN, product base vectors
Patta; ashey B = 0, 1, -+ , g — 1, associated with
the irreducible representation ®****, span the sum
of the spaces Q)

PRYIIR PYTI

D. Symmetry of the 3(A.y) coefficients4

Let the operator P,, exchange the coordinates
€1y £2) < ($a, &4). Then, from Eq. (3.33) (ko > 0),

Pphi(p) = (—=D"[51- (5 X £)17[P1F(p))]
X Z ﬁk(Pi;nzy n1)(H1)MH’2",

using the fact that P,,H, = H,. Let ®,, be the
operator which exchanges the parameters p, < ps,
ps <> pe, ps <> p;. Using Eq. (3.28b), it may be seen
that ®,P1.F(p;) = F(p,), and hence,

®uPiohi(pd) = (=) 51 (s X )17 F(p))
X Z Bilpt; my, n2)(H )V H3".
If it can be shown that

Bi(ph; nay n2) = Bilpi; Ny M), (3.54)
then the result follows
@12P12hk(pi) = (_1)k“+khk(Pi)- (3-55)

Using Eq. (3.14),
6’12P12hk(P¢‘)

Aotz Ajity A
= 2{ 2z Rik 3”3}" I)\lﬂl; al) l)\2#2;6¥2> l)\aﬂa; 013>c-

@ Q; O3

The relation

{)\2;.:,2 P STH )\ap,g} _ (_l)ko+k{)\1ﬁl1 Asbts >\3#3} (3.56)
& [24} 3 Jk '

o o o a o

then holds. A similar result follows for &} > 0.
Likewise, let P,; be the exchange (¢4, 2) <« (&5, Fo)-
It may be shown that

@13P13hk(P.') = (_1)k°+khk(P¢)

4 de Swart (Ref. 20) and Hecht (Ref. 14) have discussed
symmetries for the case ¢ = 2, J. R. Derome and W. T. Sharp,
J. Math. Phys. 6, 1584 (1965), have discussed symmetries
for 3-j and 6-j symbols of a general group without specifying
the phase or method of labeling degenerate states.

(3.57)



76 M. RESNIKOFF

assuming Eq. (3.54), where ®@,; is the interchange

of the labels
(3.58)

P1 > P4,

From Eq. (3.57),

{ﬂs)\a Aopts #1)\1} —_ (__ 1)k°+k{)\1ﬂ1 Nakhz )\3#3} . (3 59)
k k

Q3 Qy T a @y Qg

Pz < p3, Ps <> Pg.

Similarly, exchange of ({3, §s) < ({5, $a), P2s, and

U"Fe)HT + HY), [[“F(e)HY + HY)]

the interchange ®,3
(3.60)

P1 <> pe, Pz <> ps, P3 <> py

implies
{)\1#1 Hahs Mz)\z} = (_l)ko+k{)‘ll-‘1 Aotz 7\3#3} (3.61)
o Tay TQ)y o Oy O3

It is clear that Eq. (8.54) holds. The inner product
(ho(p"), hz(p,)) = O determines a21(p,-, ko)-

azl(Pi, ko) = —[[|’°°F(p,~)(H1§'

Exchange the coordinates, then, Eq. (3.62) remains
the same except F(p;) goes to F'(p;) = PF(p)),
where P stands for P,,, P,;, P;;. Next, exchange
the parameters p;, since

®PF(p;) = F(p)), ax(p;, ko) = an(pl, ko),

Eq. (3.54) then holds by induction. Assume that
the coefficients a,;(p;, ko) (for k, N even), for
j<3 = (@3N —1),---,1,0, have the property
that a;;(p;, ko) = ai;(p}, k). The inner product
(hn(ps); hilps)) = 0, for k = 0, 2, s N — 2
provides 3N inhomogeneous equations for ay,{p;, ko):

N/2
blcN(pi; ko) + z; bkaaNa(Pi; ko) =0,
k=0,2,..-, N -2,
Since, by assumption, b..(p:; ko) = bi(pl; ko),
ana(pi; ko) = ana(pl; ko).

A similar argument applies to k odd.
The conjugation result follows similarly. Note
first that
QR |)\1Il1; al) I)\zﬂz;Olz) Ixaﬂs;as>c
=4 |>\1F1;al> P\zm;az) 1)\3113;013>c; (3.63)

where R is the operation {; < 815, {5 <> 831, {5 < 850,
[see Eq. (2.20)] and ® changes the labels A; « u,,
a; — —a; [see Eq. (2.22b)], and

4o {@1 + D!+ DO + 1)!}*
&+ DT + D + D!

using Eqgs. (2.20) and (2.21). From Eq. (3.14) and
the fact that (hi(e.), hi(p:)) = Sus

[®RRhu(p:), RRIL(p)] = A® 8y
using also Eq. (3.63). From Eq. (3.65),

(3.64)

(3.65)

azl(pi, ky) = c21(pi; ko),

+ 5D, [PFeIEH)ET + HY )

(3.62)

where ¢,;(p;, k}) are the coeflicients of hl(p,), ko —
ky < 0, with the normalization factored out [similar
to Eq. (3.47)]. ® is the exchange of parameters,

PL<> ps, P2 py,  pat>ps. (3.66)

In general then, a:;(of, k) = cii(p:; k). Thus,
RRRi(p)) = (—=1)'hu(p,)’ A (3.67)

ko — K20 ke —Fk <0
The factor A [Eq. (3.64)] renormalizes the hi(p,).

(R.th(p) A E {llq)\x PV Ila)\s}k

a; —ay —Qg
X |>\1M1;a1> |)\2ﬂ2§az> I)\3F‘3}a3>c-
The result then follows:

{ﬂl)\l [T #3)\3} ( 1) {)‘1”’1 Noptz )\3#3} . (3.68)
3 k

0 —0 a3 o O
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APPENDIX A. ORTHONORMALITY OF
BASE VECTORS

Since Condon and Shortley'® have already given
the normalization for the SU(2) lowering operator,

— i
st = {Z D ey s
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it is only necessary to calculate the normalization

for the base vector |Ap; v, ¢, ). Equation (2.10a)
is, with r = 0,

[ yit)

= NQw; ytt)(— 1) () (o) 7 (— 812)°(8:)"

= NOw; @) (~1"

x 3 (9)(#= )1 o e, A1

where
WD=pt+tp—(a+d), @-=
@=x—pt+tgqg @D=a+t+hb,
G =q—-b O=p—g-—a

Take the inner produect (\g; ¥, ¢, &), [Nw'; ¥/, U, t')).
Using Eq. (1.2),

2 :b=10, ®:g=1¢,
®) :p =4, M:p=9p, @) A=V,

showing orthogonality. The inner product of Eq.
(Al) becomes

= NOw; vt (@)’ — 9T 2

4) :a=d,

p! bl N al g! u!
(a))*(d)*

and this may be summed (using binomial identities)
to be

= NQw; yt)*

s PLe! (b= 9! (\—p)! Atp—g+D! (wtp+ D!

N(Qu; yif), as given in Eq. (A2), times the factor
{(2t — )1/ @01}, is NQw; «), Eq. (2.10b).

APPENDIX B. EVALUATION OF INTEGRALS
A, Normalization of h(k;) for the nondegenerate case
0] & [Pl
hk) = Ak)

[§'1 (£ X Ea)*(§ - 830)" (£17 850) " (£s~ 830" (§1° 8a0)""
ko! k! k! k5! k!

Divide h(k,) by A(k.):

) = h(k:)/Ak,).
Multiply f(k;) by rieri i ri*ree and sum k;
; 1) H T
exp {rolt1-(§a X £ + 7a({s- dse)
+ 75($1-850) + 7a(Es0 8 T Te($10 850,

(B1)

d =

(B2)

[&(r), ()] = k{;‘ (k) §(kD] H 7 H COMR
(B3)

Integrate Eq. (B3) with respect to {4, &s:
(@, ) = f exp {(r, 835 + 72 615)

(] 855 + 73 81s) + T[E1 (8 X &)
+ (75 855 + 76 819) (7] 83 + 75 B15)
+ 7ol6a-(f2 X $91} dio,
where use has been made of Bargmann’s result'
le(2), f@)] = f(a),
Perform a change of variables
a6+ il TiG = Tl + T,

and a similar change for the complex-conjugate
variables. The exponential of Eq. (B4) has the
general form

exp [— & (bl — cA)Es + a5 + ax§3 + Cl.

By a translation of {5, Eq. (B6) may be put in the
form

(B4

e.(z) = exp (a-2). (B5)

T3 =

(B6)

exp [— 5+ (b1 — cA)S; + D],
1 + 7{7,/14%,, ¢ = 7}7s.

Ay = (5 8s)bis — (fs)i(g's)_i; suppressing primes,
and D is independent of {5, {5. Equation (B7) may
be integrated with respect to {} using Bargmann’s
result,

(B7)

where b = (B8)

[ exp (-A2) due) = et (1 — AT,

where Z-Az = Z,»,- Z:A,;;z;, and the matrix 1 — A
is assumed to have a positive-definite Hermitian
part. The integral of (B7) becomes

n o _ exp (D) due($y, &)
@, ) = f det (b1 = o)

b(b — (5 .55))2-

The denominator of (B10) is only a function of
{5+ s, so (B10) may be integrated with respect to
¢1; exp (D) may be put in the form

(B9)

(B10)

det (b1 — cA) =

exp [—{-(m1 — H)¢{ + E'], (B11)
where
m =14+ Tﬂ:B - TlTl [b - C(g.s g-s)]_l
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and

H;,- = —‘h(fa)'(fs)' + k[(fsfs) 5-’:‘ -
h=c¢/b 7t il 7 b — et £

(§a)s(Ea)il,

k= 372 T+ T07—'o[b - 0(5-5'5'5)]—1-
The result of integrating (B11) with respect to ¢, is

exp (B) dus(t)
b(b — c(¢5-§5)* det (m1 — H)’

(2, ®) =

If -
(8- fﬁ)[l + T b_| = -8,

then (®, ) may be put in the simple form

N dﬂa(g‘g)
(@, @) = f {1 — [(+"- D@ &) — (5812
(B12)

where
oTo + 7'17'1 + 7'27'2 + T57'5 + 7'6"'6:
d = 137775 + TiTeTéTe + TITiTET.

Expand the denominator of (B12):

(@ @) = 3 BEDLV T 16 4 m,
(B13)

I+ m) = [ duaet)es 8
(B14)

3+ m + 2)!
using (1.2). Thus,

(_:l" 2) ! (Tofo)k
E ol

where P = ko + k; + ke + ks + ke and

(@ 4)’) (7-'67'&)’“ S,

P+1—=—m! (="

§=1% Gy —m+ o+ y) ks — v — Y oo — y)! (s — m + y) il 9! (im0 — gy — y)!

S may be summed using binomial identities, and the result is

N o= = (7'07'0) (TeTe)k (P -+ 2)'
@, &) Z T bl bl kol

(ko+k t ke + DI (ko + ki + ko + D! oo + Ky + ke + 1)1

Comparison of (B15) and (B3) provides Eq. (3.23).
The expansion of the denominator of (B12), and

(o + ks 1)1 (o F ko + 1! B18)
In this integral, the limit may be taken,
In4+ m) =lim I(A,n + m) = 3(n + m + 2)!

similar expansions in this Appendix, may be justi-
fied in the following manner. In Eq. (B3), let
J(ki, k) = [f(k), (k)] be written J(A4; ki, k),
where the integration of {; is not taken over the
entire plane, but only over a finite portion.

J(ki, k7) = lim J(4; ks, k7).
A—®
The integral (B12) would be written

N d”3(§-5) .
(<I>, CI)) - -/;. {1 - [7','7-')(?5'?5) - d(fs'fs)z]}z
This integral may be expanded, since the 7’s may

be made sufficiently small. The coeflicient of
H (‘T’,‘)k‘ H T’::l iS J(A; k,’, k;), or

@ &) =Y. (n + D=1 )" d"

m! (n — m)!

X I(4,n + m),
4, m+ m) = [ du(Ee .

Ao

The integral (B12), and similar types, are well
defined if they are understood in the above sense.

B. Normalization for h.(p;)
In order to calculate the normalization for h.(p;),

o) = 22  Bilpismu, o) H(k),

where
H{k) = [§1-(5s X $)]"Flp) Hy (Ho)™
and F(p,) is given by Eq. (3.28b), with
ki = p; + ny, k! =
k: = p; + na, ki =

it is necessary to evaluate the inner product
(H(k:), H()). Multiply H(k) by JT (47K
and sum over k,:

pi + ni, 1=1,3,5,

pi+mni, 1=24,6,
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(@, o)

Il

20, [HEk, HED]
) ()

[ o 1, © + 20, 0] dun®). BID

(B16)

]

The integration may first be performed with respect
to ¢, ¢4, s, using Eq. (B5), and then {;, using Eq.

(B9). The result may then be expanded and inte-
grated with respect to the remaining variables. The
sums may be contracted by means of binomial
identities. The following result is obtained:

@, ®) = 2 (7or)“B™(—D) ™[4 + O] [B@)]"
X [@) + @I GO + G)1*-8,  (BI8)

where (7) = 7,7} (no summation) and S is the factor

S=(m1+ko+a2+1)!(2m1+2k0+2a2+¢13_a1+z4+ze+3)!

kg! 223!Z4!25!26!a1! (ml + ko + Oy — O + 1)! az!.asl

X(2m1+ko+2042—a1 +z4+ze+2)!('mf1+ko+a2—a1+z4+ze+1)!
(2m1+2]c0+2a2—a1 +Z4+23+3)! ’

m =23+ 2 + oy + a3,
d= DA + @G + 3)G)

= (71,7375 — ToTaTe)(TiTiT —

(B20)

Y
TITATE).

Expression (B18) must now be expanded out. The
terms may be collected in the form:

(B19)

O©F W)+ (6)*(r17578) " (rarara) " (Tirh ey (rhrlr )™,
where

Ttz =N=y + 9

with the appropriate coefficient giving the result
(H(k,), H(&))]-
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Recoupling Coeflicients for the Group SU(3)*

M. Resnikorrt
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The Hilbert space method, employed in the previous article to obtain the coupling coefficients of
SU(3), is used here to obtain the recoupling, or 6(A\u), coefficients of SU(3). The coefficients are
formulated in terms of a generating function involving an integral, and an explicit expression is
integrated out for the general nondegenerate case. The symmetries of the 6(\u) coefficients are dis-

cussed.

1. INTRODUCTION

HE 6(\u) coefficient of SU(3), which relates
the alternate ways three representations [A;, u.],
i=1,2,3, may be coupled, can be written in the form'

* Work supported in part by the National Science Foun-
dation (Grant No. GP-1536). This paper is based on a dis-
sertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy at the University of
Michigan, Ann Arbor, Michigan.

+ Present address: Department of Physics and Astronomy,
University of Marly;}and, College Park, Maryland.

1A form similar to this has been derived by J. J.
de Swart, Nuovo Cimento 31, 420 (1964). Equation (1.1)
is the recoupling coefficient multiplied by the factor
(—1)¥*+13(N1,N13)71/%, where Nz and s are the dimensions
of the spaces
(see Ref. 3 below).

ﬁxum a? ’D)‘u.ma

[N‘; k, k" Noug Aizthaz; km:l
Nar Aaiz Aispaa; Kus

— Z {)\1#1 Napiz )\12#:12} {)\12#12 Aspiz M
ai N0 Oz Oyp Jp,\ Oz Q3 Q)

X {#137\13 Hahg Fv)\}

T3 T A g

A A A
{il 1 M3Ag M3 13} , (1.1)
Q) —U3 —Q13) k,,

where use has been made of the orthogonal proper-
ties” and the symmetry properties of the 3(Ay)
coefficients derived in the previous paper.®

2 J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).
* M. Resnikoff, preceding paper, J. Math. Phys. 8, 63
(1967). This article is hereafter referred to as (I).



