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The stability of a viscous, incompressible, electrically conducting fluid with a free
surface in a transverse magnetic field is investigated. A horizontal layer of fluid is set
in motion by the combined action of the horizontal electric current and a vertically
imposed magnetic field. An eigenvalue problem is formulated for infinitesimal disturb-
ances and is solved by the regular perturbation method. It is found that if the
electromagnetic effects are sufficient to overcome the stabilizing effect of gravity, the
flow is unstable. The instability is due to the stratification of electric conductivity and
to the longitudinal Lorentz force. Topological features of the (c); curves for various
cases are depicted. The roles played by the electric current as well as the magnetic field
on the stability of the flow system are discussed briefly.

I. INTRODUCTION

In previous papers by Yih'? and by Benjamin,® the flow
of a layer of viscous fluid down an inclined plane was
found to be unstable when the Reynolds number is
sufficiently large. The instability is due to stratification in
specific weights pg when there is a longitudinal compo-
nent of gravity.

Since an electromagnetic field with an attendant elec-
tric current gives rise to a body force, there are flows in
which this body force, acting in the direction of flow, will
cause instability in the same way as the longitudinal
component of gravity in the problems studied by Yih and
Benjamin. In this paper, the instability of one such flow
is investigated. The unstable mode is due to the stratifi-
cation in electric conductivity in the presence of the
longitudinal Lorentz force.

To simplify the analysis, we shall consider the case of
single horizontal layer of conducting fluid with a free
surface. The air above the fluid is assumed nonconduc-
tive, so that the free surface is a surface of discontinuity
in current density. The fluid is assumed viscous, incom-
pressible, and its conductivity finite. A current of density
Jo is directed in the horizontal direction, in the direction
of decreasing Z (Fig. 1), and a magnetic field of strength
H, is superimposed in the direction of gravity along
which Y is measured. The combined action of j, and H,
caused the fluid to flow in the X direction. (Because in
this case the gravitational acceleration is always present,
the transverse component of the body force is never zero.
Hence, the results given here correspond to the instability
studied by Yih and Benjamin when their flow is not
vertical.) The fundamental equations and the primary
flow are described first. The investigation of its stability
then follows. Finally, the results obtained are discussed
in the concluding section.

Il. FUNDAMENTAL EQUATIONS AND THE
PRIMARY FLOW

In the current study, the motion generated by the
combined action of the horizontal electric current and
the vertical magnetic field is two dimensional (see Fig. 1).
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The velocity components in the directions of increasing
X and Y are denoted by u and v, and the components of
the magnetic field strength are denoted by H, and H,. The
equations of motion for two-dimensional flow are**

Du 0 i 3
P = W(P + §T|H| ) + prAu
B dH, 0 H,
+E(H*W+H’—ay ’ (1)

P = —ay(p + %IHIZ) + pg + priw

B3 OH, 2

+47r(H"8X+H’8Y ’ @
in which p is the density, ¢ is the time, p is the pressure, g
is the gravitational acceleration, pr is the viscosity, u is

the magnetic permeability, and
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FIG. 1. Definition sketch.
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The equations for the magnetic field are

DH, du du

Dr = HXTX + Hyé_? + nAH,, (3)
DH, v dv
B = Hyy + Hyy tnAH, (4)

in which 7 is the magnetic diffusivity (47pe)”', o being the
electric conductivity of the liquid.

The equation of continuity is

(0u/9X) + (dv/3Y) = 0. (5)

The equation of continuity of magnetic field strength is

(OH./3X) + (0H,/3Y) = 0, (6)

which is consistent with (3) and (4). The relationship
between the magnetic field strength H and the current
density j is
curl H = 47j. (7)
The magnetic field induced by the current is, according
to (7),

H, = 4mjo(Y — id), (8)

in which 4 is the depth of the fluid. The constant id has
been used to make the magnetic field antisymmetric with
respect to the plane Y = id, because the magnetic field
produced exclusively by the current must be antisymmet-
ric with respect to the middle plane of the layer. Thus, the
primary field is (H., Ho, 0).

The primary flow only has the component #, deter-
mined by (1), which assumes the simple form
pr(d*a/dY?) = —pjo . ©)

Equation (9) can be integrated with the boundary condi-
tions # = 0, at Y = d, and du/dY = 0, at Y = 0. The
result is

u = (pjoHo/20v)(d” — Y?). (10)
The average value of % over d is
U, = pjoHod?/3pv. (11)
If the dimensionless parameters
H, = H./Anjod, H, = Hy/Amjod, U = u/u,,
x = X/d, y=Y/d (12)
are introduced, then
U=31-)), H=y—1 H=vyv (13

To simplify the analysis in the next section, we use, in

addition to (12) and (13), the nondimensional quantities
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(ul’ul) = (u’u)/ﬁﬂ’ (H’Hz) = (HX’}I,V)/477j0d’

P = p/piit, T = tu,/d, (14)
and the nondimensional physical variables

F?* = w/gd, R = u.d/v, R, = w.d/n,

M = dmpjid*/pv*, (15)

N = (My's/n)"” = pHyd(a/pr)".

. THE DIFFERENTIAL SYSTEM GOVERNING
STABILITY

As is customary in magnetohydrodynamic problems,
an infinitesimal disturbance is applied to the primary
flow. The flow will be unstable if the disturbance grows
with time, and is stable if it attenuates with time, Lock®
has shown under certain restrictions, that Squire’s theo-
rem’ held in the problem of pressure flow between
parallel planes under a transverse magnetic field, and
therefore the motion is more unstable to a purely two-
dimensional type of disturbance than to a three-dimen-
sional one. Thus, it is possible to infer that Squire’s
theorem also holds in the present investigation. We shall
henceforth consider only two-dimensional disturbances.

Written in nondimensional form, we let
(ul,U1,P|,I'11,H2) = (U+ u',u’,P +p’,f71 + h,ﬁz -+ k),
(16)

where the capital letters are the primary flow, and the
lower case letters denote the disturbances. Equations (5)
and (6), permit, respectively, the use of a stream function
Y and a magnetic stream function X, in termsof which

- _ (3% _9y ox dx
(“’”’h’k)‘(ay’ 9x’dy’ Ox /)

We shall assume all perturbation quantities together
with the free-surface displacement { to have an exponen-
tial factor

W x.2.¢) = [6(»),9(»).f(¥), blexplia(x — cr)], (17)

in which { is the amplitude of the free-surface displace-
ment, « is the dimensionless wavenumber, and c¢ is the
complex phase velocity ¢, + ic.. In terms of ¢ and ¢,

W, v, hk)
= [(do/dy), —iad, (dg/dy), —iaglexplia(x — c7)]. (18)

If now Egs. (12)—(18) are substituted in Egs. (1) to (4),
the primary flow is separated out, and quadratic terms in
the perturbation quantities are neglected, the linearized
equations become, with accents indicating differentiation
with respect to y

ial(U — ¢)¢’' — U'9] = —iaf + R™(¢" — o’¢')
+ (M/R*)[¥(q" — o’q) — iag],
(U = c)p = —f" — (ia/R) (" — o*¢)
— (M/R)[(y — D(g" — o’q) + ¢'], (20)

(19)
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iaf(U—-c)qg — ¢~ (y —1)¢'] — y¢" + iaqU’
= (Ra)"'(g”" — o?q’),

ia(U = g = 14— ia(y = P = (R)"(g" ~ 9).
@)

It is clear that (21) can be obtained from (22) by
differentiation. This is because (3), (4), and (6) are not
independent. Elimination of f from (19) and (20) leads to

iof(U — ¢)(¢" — o?¢) — U"¢]
— (laM/R*)(y — D(g" — &’q)
— (MY/R*)(¢" — o?q")
= R (¢"” — 20%¢" + a*o).

1)

(23)

The electromagnetic field in regions outside the fluid
layer are governed by the equation of magnetic-field
diffusion. The magnetic stream functions of the air and

the bottom material are assumed to be
War ¥s) = [9a(¥), g5 (y)]explialx — c7)).

Thus, above the free surface, the magnetic diffusion
equation corresponding to (22) is
(24)

because the gas above is assumed to be nonconductive of
electricity. Similarly, below the bottom of the liquid layer

(25)

q/; - (XZ(Ia = 0:

qs— a*qy = 0.

To solve (22), (23), (24), and (25), ten boundary
conditions are needed to completely specify the mathe-
matical problem. The conditions of the continuity of the
magnetic flux at the iron surfaces demand that

g.(—a) = 0, q:(b) = 0. (26)

The transitions of the normal component of magnetic
induction and the tangential component of magnetic field
at the bottom of the fluid layer are continuous, i.e.,

rg(1) = was(1), q'(1) = gi(1), (27a)

where u, is the magnetic permeability of the bottom
material.

At the free surface, the condition of the continuity of the
tangential component of the magnetic field yields

g'(0) + & = q(0). (27b)

The kinematic boundary condition at the free surface is
(3g/07) + U(d¢/3x) = v, (27¢)

which, by virtue of (17) and (18), can be put in the form
Lt=¢0)/c, ¢ =c—-U@O0)=c—-3 (27d)

Thus, the boundary conditions of the magnetic field at
the free surface are
14(0) = paq.(0),

q'(0) + [$(0)/c'] = q2(0). (28)
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At the bottom of the fluid, the nonslip conditions imply
(1) =0, ¢(1)=0. (29)

The conditions corresponding to zero shear stress and
zero normal stress at the free surface are, respectively,®

$"(0) + [o* — (3/¢')]p(0) = O,
a(RF? + a®SR)[¢(0) /'] + a(Rc’ + 3ai )¢'(0)
=~ i¢"(0) ~ (aM/R){g(0) — [¢(0)/2¢']}
= (iMy/R)[q"(0) — a?q(0)] = O,
where S = T/putd, and T denotes the surface tension.

The differential equations (22), (23), (24), (25), and the
boundary conditions (26), (27a), (28), (29), and (30) consti-
tute the differential system governing the stability prob-
lem.

(30)

IV. THE SOLUTION OF THE STABILITY PROBLEM

Since one expects long waves (@ < 1) to be unstable,
the method of regular perturbation of Yih? will be used
to solve the stability problem. We assume

o= ad, qg=Xdq, c =3 d.

i=0 i= i=

- . ’ (31)
qa = go a'Gei Q= > o s

If (31) are substituted into the governing differential
system and the various powers in a are separated out, we
have the governing equations and the boundary condi-
tions for each order of approximation.

A. The zero-order approximation

The equations corresponding to a° are

8% + (My/R)a” = 0,

”
qa0 = U,

q’() + ‘YR’”(I)(,) = 0,

”
g0 =

(32)
The first two equations of (32) can be combined to

produce

¢o'— N2¢% =0,  with N> = My*R,/R = Myy/q.
The solutions of the zero-order approximation are
¢o = 1 + By + C cosh Ny + D sinh Ny,

2
—yR,,.(Ey— + ¢ sinh Ny + D cosh Ny)

9= 2 N N (33)
+ Ey+ G,
qa,O = Aa + Bay, qb,O = Ab + Bb_y

The boundary conditions (29) and (30) for terms
corresponding to «° are

do(1) =0, ¢5(1) =0, ¢%(0) — (3/ch)po(0) = O
$"5(0) + (My/R)q's(0) = 0.

From (34), we obtain

" (34)
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B=10, C= —coshN, D =sinhN,

co = 3(cosh N — 1)/N*cosh N.
Other coefficients E, G, A,, B,, A,, and B, can be deter-
mined by the magnetic boundary conditions (26), (27a)

(28), and are given in the appendix. The eigenvalue
co(= ¢b + }) is given by

(35a)

¢o = [3(cosh N — 1)/N?cosh N] + 3. (35b)

Since ¢, is real, no instability is manifested at this stage.

B. The first-order approximation

The governing equations obtained from the coefficients
of o are

¢+ (My/R)q" = iR[(U — )¢’ — U’ ¢
~ (M/R>)(y — H)q%],
| (M/R*)(y — 1)g%] (36)
= iRu[(U = co)qo — (y — H)¢o),
and q ,= 0.

g% + YR. ¢
qgar =0,

Eliminating ¢ from the first two equations of (36) and
using the zero-order solutions, we have
"1 — N*"=ilhy*+ by + &
+ cosh Ny(Ly* + Ly + k)
+ sinh Ny(ky* + by + k)], (37)
where h, b, ..., k, and [ are listed in the appendix.

The solution of (37) can be written as
& = Biy + Cycosh Ny + D,sinh Ny
+ [yt + Ty + )
+ cosh Ny(Joy* + Joy* + Jy)
(38)

in which J, J, ..., J, and J are given in the appendix.
For the first-order approximation, the boundary condi-
tions corresponding to (29) and (30) are

&(1) =0, ¢i(1) =0,
¢"1(0) — (3/¢t)[¢1(0) — (ci/co)o(0)] = O,
¢"1(0) + (My/R)q1(0)
= —i{(RF + SRa®)[$(0)/c] + Reca(0)
— (M/R)[6(0) — (1/2¢6)0(0)]}.

The constants B, Ci, D, and the eigenvalue ¢ can be
determined by the boundary conditions (39). Separating
ci(= c) into real and imaginary parts

+ sinh Ny(Jsy* + Jy? + Joy)l,

(39)

ci = (a), + ila),

and using (39), we obtain, after some lengthy mathemat-
ical manipulations,

(a) = (1), = 0,

, 3 tanh N
(C|),» = (Cl)i = ml}h(l - N

1180
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+ b,

tanh N]’ (40)

N

in which b, by, bs, and b, are also given in the appendix.

V. RESULTS AND DISCUSSION

The eigenvalues of the zeroth-order approximation and
first-order approximation are given, respectively, by (35b)
and (40). The flow system is stable, unstable, or neutrally
stable according to whether (¢); is negative, positive, or
zero. From (40), and the definition of bs, we can verify
that the coefficients associated with RF7* and SR are all
negative; this means that the effects of gravity and
surface tension are always stabilizing, as expected. For
long waves (a < 1), neglecting the effect of surface
tension, from (40) we know that (¢, ); will depend impli-
citly on all the physical variables as well as the geometri-
cal parameters, or

(Cl)i = (C;)i = K(RaRmsFyM or N,Y,ma,mb,a,b), (41)

where m, = w.,/p and m, = u,/p, our task is to evaluate
K numerically.

In order to examine the stability or instability of the
flow system, numerical calculations were carried out by
the IBM 360 computer. Contour lines corresponding to
different values of (c;); are shown in the graphs. All
curves were constructed by the method of linear interpo-
lation. Because of the limitation on available computing
time, the results obtained are restricted to fairly small
physical variables only. Of course, they can be extended
to any finite physical variables.

For the meaning of the geometric parameters ¢ and b,
we recall that ad is the depth of the air above and
(b — 1)d is the depth of the bottom plate. We have taken
a =b = 3. A calculation based on ¢ = b = 15 dis-
played very little difference in the results. It is reasonable
to assume m, = m, = 1 in the forthcoming calculations.

Since our chief purpose is to investigate the interac-
tions between the electromagnetic effect and the gravita-
tional field, we choose mercury to illustrate our analysis.
For mercury at room temperature p = 13.6 g/cn?, »
= 1.12 X 107* cm?/sec, n = 8000 cm?/sec.

Figure 2 corresponds to the case of a fixed value M. In
this case, R.., N, and v are all proportional to R. From the
definition of the various quantities, we find

M = 4mpjéd*/pv’, R = (Hyd/6v)(Mp/mp)",

and

F = (Hy/d"*)(Mp./mpg)"*.

To investigate the influence of the magnetic field on the
stability problem, we vary the field strength H, only. It is
apparent that as H; increases, R and F both increase.
From Fig. 2, we see that if one moves along a line of
constant slope F/R, in the direction of increasing R and
F, one will move from the stable region to the unstable
region. Thus, the destabilizing effect of the electromag-
netic field is clearly seen. This effect results from the fact
that as H, increases, the electromagnetic force acting on
the fluid also increases, much as a longitudinal gravita-
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FIG. 2. Curves of constant (¢;); for M = 0.015.

tional force. If the motivating effect of the electromag-
netic field is sufficient to overcome the stabilizing effects
of gravity and magnetic diffusion, as well as any other
stabilizing effect the magnetic field may have, the flow is
unstable.

For constant M, along a line of constant R, we see that
as F increases, the flow becomes increasingly unstable
(Fig. 2). (Note that as F increases while R and M are kept
constant, 4 decreases and H, and j, both increase.)

Similarly, if one moves along a line of constant F, in
the direction of increasing R, one moves from the stable
region to the unstable (or less stable, if F is small) region
and returns to the stable (or more stable for small F)
region as the destabilizing effect of the electromagnetic
force was suppressed by the combination of the effects of
viscosity, diffusivity, gravity, and possibly of the mag-
netic field itself. (Note that as R increases while F and M
are kept constant, H, and d increase and j, decreases.)

For a given fluid and a case of fixed value of N, we
again find that R, M, and y™' are all proportional to R.
From the definitions, we obtain

N = (Hod/2»)(uw/mpm)"*, R = (2Njod*/3v)(mun/pv)",

and

F = (2Njod"*/3)(mpm /pvg)".

General features of curves of constant (¢, ); are shown in
Fig. 3. To see the effect of the current density jo, we keep
H, and d equal to constant and change j, only. As j,
increases, both R and F increase, and from Fig. 3 it is
seen that (¢ ); increases, i.e., ji is destabilizing.

In the case of fixed value vy, the dimensionless param-
eters can be written as
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y = Ho/4mjod, N = (Hyod/2v)(uv/mpn)"?,
and

F = (uyHi d"*/12mpv)(1/g)"*.

From Fig. 4, it can be easily shown that if we keep 4
constant and increase the field H, and the current density
Jo, both N and F will increase and F increases as NZ;
hence, the flow will become unstable.

Curves of constant (¢); for case of fixed R are exhi-
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FIG. 4. Curves of constant (), for y = 5000.
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bited in Fig. 5. The dimensionless parameters have the [ = 3R — [(3 — o) E — 1](N/y),
following form
L = —3N* (R + R.)C, s = —3N*(R + R.)D, (A2)
R = pjoHyd’/3pv’,  NQ3vR/4jod?)(ov/mun)"*,

and

I

l

DN[(2N*/y) = 3R,], L = CN[(2N?/y) — 3R..].
Lk = C[N*(R+ R,)(3 — o) + 3R + (N*/y)] = (DN*/y),
L = DIN*(R + R,)(3 — co) + 3R + (N?*/y)] = (CN?*/y).

F = (Ry/d**)(1/g)".

By keeping j, equal to a constant, one can verify that
decreasing 4 will cause an increase in Hy, which will result
in an increase in N and F, with N increasing as F¥*. Thus,
as d decreases and H, increases at constant R, the flow
becomes increasingly unstable (Fig. 5) at small values of J = 1 (L K
N and F, but, in part of the F— N plane at least, 3T —N"Z(ﬁ + f)’
increasingly stable at larger values of N and F.

Jo=—h/12N*, J = ~L/6N?,

Jo = L/6N*, Js = LI6N?,
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APPENDIX
E = D'](B] —_ _62), b = ‘[J1 +hL+ S+ (.]4 + Jo + Jg)COSh N
G = D'{am.by + [1 — my(1 — b)|B,)}, + (Js + & + J)sinh N,
As = (ma)'[G — yR.(D/N)], (A1) by = —{4Ji + 3, + 245
Ay = —b(yR. + E),

+ [(3Js + 2/ + &) + N(Js + Js + &)]sinh N
Ba = a"A,,, and Bb = —bM]Ab,
+ [(3.]4 + 2-]6 + Jg) + N(Js + .]7 + Jg)]COSh N}

in which
_ (A4)
Mo = g/t My =y, b = YR.(1 — b)m,,
b3 = %C(’)(J} + J5 + NJg),
by = yRA[(D/N) — am.C] + (am, CN?/3), |
by = *—2{(6.12 + 6Js + 6NJ; + 2N2Js)
D =1+ am, — my(l = b). N
NT (3 D\ 1+C
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