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An atom will dissociate from a compound if the atom receives a recoil momentum greater than some 
average value (fl. Considering a polyatomic molecule as composed of point-mass atoms, there is derived an 
equation which relates (!' to the bond energy, bond angles and distances, and masses of the atoms in the 
molecule. The minimum net recoil energy required for bond rupture, the kinetic energy of the recoiling radi­
cals, and the internal energy of the radical originally bonded to the activated atom are calculated for a series 
of simple alkyl halides. 

INTRODUCTION 

MOMENTUM transfer to an isolated atom is a 
simple problem in classical mechanics. However, 

if the atom which receives the impulse is bound chem­
ically, it is not immediately obvious how the recoil 
energy becomes distributed among the various internal 
energy modes of the molecule. 

For a diatomic molecule, Suess! calculated that the 
internal energy Ei will be increased by 

11Ei= ETCLm;-mN) /Lmi, (1) 

where mN is the atomic weight of the atom receiving 
the impulse, Lmi is the molecular weight of the 
diatomic molecule, and ET is the recoil energy acquired 
by the atom. For gamma-ray recoil,2 ET = (537 Ey2) /mN, 
where ET is in units of ev, mN in amu, and the gamma­
ray energy Ey in Mev. 

Steinwedel and Jensen3 calculated the fractional dis­
tribution of the internal energy between the vibrational 
and rotational modes of a diatomic molecule. In addi­
tion, they considered a quantum-mechanical approach 
to the problem. 

Recently, Svoboda4 discussed the relationship be­
tween rotational excitation and the bond dissociation 
energy. Wolfsberg5 also included such an effect in his 
quantum-mechanical evaluation of the beta-decay re­
coil-excitation of 14C labeled ethane. 

To calculate the recoil energy required for chemical 
bond rupture in a polyatomic molecule it is possible to 
utilize a quantum-mechanical approach. However, 
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because of the uncertainties and assumptions associated 
with such derivations, the calculated value would be 
considered as only a very rough approximation. 

We have considered the problem of recoil momentum 
activation of polyatomic molecules in terms of a me­
chanical model. The model which we propose involves 
only a small number of well-defined assumptions, and 
these assumptions, at least for the simpler molecules, 
may not invalidate the results. 

THE MODEL 

Consider a molecule as consisting of a group of point 
masses, the atoms linked together by springs. The mole­
cule, therefore, is not rigid and the atoms in the mole­
cule may undergo independent constrained motions in 
addition to the translational and rotational motions of 
the molecule. For a molecule composed of N atoms, 
3N coordinates will be required to describe the mole­
cule in detail. This can be achieved by first defining a 
set of coordinates rex, y, z) with the center of gravity 
of the molecule G as the origin. The coordinates of the 
center of gravity of the molecule are R(X, Y, Z) and 
the translational motion of the center of gravity of the 
molecule is R(X, Y, Z). The orientation of the molecule 
in space is usually represented by 0(0, <P, x) and, thus 
e or (,) is the angular motion of the molecule about its 
center of gravity. In addition, the relative positions of 
the atoms in the molecule can be described as ri(xi, Yi, 
Zi) (i= 1 to N) thus resulting in 3N-6 independent co­
ordinates. Although the positions r i describe 3N co­
ordinates, not all are independent since (1) the choice 
of the origin as the center of gravity results in 

(2) 

and (2) the translation and rotation of the molecule 
has been described by the translation and rotation of 
the (x, y, z) coordinates, i.e., Rand (,). Thus, there 
should be no net angular momentum with respect to 
the (x, y, z) coordinates. As a result, 

(3) 

where ai is the equilibrium position of the ith atom and 
V i is the vibrational velocity of the ith atom with 
respect to the molecule. 
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J' 

FIG. 1. Centrifugal force ef­
fecting the C-j bond. 
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When the framework (X, Y, Z) moves at a velocity 
R and rotates at an angular velocity wand the atoms 
simultaneously vibrate around their equilibrium posi­
tions a i at velocities Vi then, the space velocity of the 
ith atom Si is 

S;=R+WXri+Vi. 

Hence, the total energy of the molecule is 

ET=!Lmi(R+wXri+Vi)2+V(ri). (4) 

Since ti=WXri+vi and Lmir;=O, it can be shown 
that 

(5) 

Using Eqs. (2), (3), and (5), the total energy of the 
system, Eq. (4), is 

ET=!LmiR2+!Lmi(wxr;). (wXr;) 

+!Lm;v;2+w· Lm;(~iXvi) + Veri), (6) 

where ~i= r i- ai is the displacement of the ith atom 
and Veri) is the potential energy of the molecule. 

The first term on the right-hand side of Eq. (6) is 
the translational energy of the molecule, the second 
term is the rotational energy, the third term is the 
vibrational energy, the fourth term is the rotational 
and vibrational coupling, and the last term is the po­
tential energy of the molecule. 

On the average, ~i approaches zero; hence, the inter­
nal energy may be approximated by 

Eint=!Lmi(WXai)' (WXai) +!Lm;vi2+ V(ai). 

(7) 

If an atom in the molecule suddenly experiences a 
mechanical recoil and if the recoil energy is very large 
compared to the thermal motion of the molecule, then 
the total energy increase is 

.1ET=!R2Lmi+!Lmi(wxri)· (WXri) 

+!Lm,-vl+ Veri) - V(a;). (8) 

The total internal-energy increase is 

.1Eint=!Lmi(wxr;). (WXri) +!LmiVi2 

+V(ri)- yea;). (9) 

Vibrational and Rotational Energy Separation 

Let us now examine the potential-energy change 
[Veri) - V(ai)]. This change can result from both the 
vibrational and rotational motions. The vibrational 

effect on the potential energy is obvious. The rotational 
effect on the potential energy can be described as 
follows. When a molecule is rotating about its center 
of gravity, centrifugal forces develop stresses in the 
chemical bonds and, consequently, the bonds are 
stretched inelastically from their original equilibrium 
positions ai to new equilibrium positions bi. This 
results in a rotational potential-energy change of 
[V(b;) - V(ai)]. The total potential energy change 
may be rewritten as 

where [V (r i) - V (b i ) ] is, therefore, the vibrational 
potential-energy change. The total internal-energy 
change .1Eint can be divided into two parts: that re­
sulting from the rotational-energy change .1Er and 
that resulting from the vibrational-energy change 
.1E., where 

and 

Assuming that the atoms vibrate as simple harmonic 
oscillators around their equilibrium positions b i the 
vibrational-energy change becomes 

.1E. =! LmivO?, (12) 

where VOi is the vibrational velocity of the ith atom at 
its equilibrium location bi. 

Momentum Excitation in Each Bond 

Equations (10) and (12) represent the total vibra­
tional- and rotational-energy changes due to an impulse 
Q received by an atom N. Although this sudden im­
pulse Q will excite principally those bonds which link 
atom N to the remainder of the molecule; it will also 
cause some excitation in the other bonds in the mole­
cule. In order to be able to calculate the impulse re­
quired to rupture a particular bond, it is necessary to 
express .1Er and .1E. as sums of the energy changes in 
each bond. The resulting expressions will depend upon 
the molecular configurations. 

Let us consider a molecule which consists of a center 
atom C and (i-l) remaining atoms [1, 2, "', j, 
... (i-1) ] which are joined only to atom C. (Typical 
examples of such compounds are: CHaBr, where the 
Br receives the impulse; PCb, where the CI receives the 
impulse; CHaCH2Br, where the Br receives the impulse, 
and the CRa is considered as a point mass. If the carbon 
in· a compound such as CHaBr receives the impulse, a 
slight modification of the final result is needed.) We 
define the bond which connects atoms C andj asj, and 
we define the vibrational and rotational-induced 
energy changes associated with this bond as .1Evi and 
.1Er;, respectively. 
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Vibrational-Energy Contribution 

'Using Eqs. (5) and (12), the vibrational-energy 
contribution is found to be 

i-I i-I 

AE.= LAE.j=! LmjVor (vo;-Voe). (13) 
;=1 ;=1 

Hence, the vibrational-energy change in bond j is 

AEvj=!mjvOj' (Vo;-Voe). (14) 

Rotational-Energy Contribution 

The rotational-energy change is separated on the 
basis that the rotational excitation of the chemical 
bonds is due to the centrifugal stresses developed in 
the bonds. 

The centrifugal forces associated with atoms j and C 
are F j=mjw2rj and Fe=mew2re; however, Fe= - LjFj. 
Hence, the centrifugal force can be resolved into - F j 
components (j=l to j=i-1). The stress in bond j 
will be due to the centrifugal force F j on the jth atom 
and a portion of the centrifugal force of the atom C, 
- F j. Depicted in Fig. 1 are the forces acting on the 
bond j, where G is the center of gravity and aj is the 
angle between Gj and Cj. 

The vector F j is next resolved into two components: 
FBi is in the direction of the bond j and will cause a 
stretching vibration of the bond; Fbj is perpendicular 
to the bond j and will cause a bending vibration in the 
bond. Using a simple valence-force approximation for 
the potential, we have 

(15) 

and 

the excitation of the bond j is 

AErj= J;AEr= J;i Lmi( wX r.) . (wX r.) 

+J;[V(bi) - V(aj)]. (20) 

Potential-Energy Change Due to Inelastic Stretching 

The potential-energy change of the bond j due to the 
rotation of the molecule can be approximated by 
[V(dej)-V(doj)J, where dOi and dej are thejth bond 
distances before and after inelastic stretching. Using a . 
quadratic potential function, 

V(dj) = V (doi ) -!k.j(dj-doY- Vrj, (21) 

where Vrj is the potential-energy change due to rota­
tion of the molecule. As a result of conservation of 
angular momentum, 

Vrj= !mj(waj) 2 (cos2aj) (a;/rj) 2. (22) 

For a small change, (r;/aj) may be approximated by 
(d;/doj), Hence, from Eq. (21), the potential energy of 
the bond is 

V(dj) = V (doj) -!k.j(dj-doj)2 

-!mj(waj) 2 (cos2aj) (doj/dj)2. (23) 

The new equilibrium distance dej is determined by 
[aV(dj)/ad,]d;=d,;=O, which results in 

k.j(dej-doj) -mj(waj) 2 (cos2aj) (dol/d.}) =0. (24) 

Combining Eqs. (20), (23), and (24), 

AErj=!f;Lmi(wXri)' (WXri) 

-!k.jdo/[ (dej/dOj) -lJ[ (2d,j/doj) -lJ, (25) 

and the total energy increase in bond j is AEj= AEvi+ 
(16) AEr;, which is obtained from Eqs. (14) and (25). 

where kBj is the stretching-force constant, kbj the bend­
ing-force constant, ~Bj is the elongation of the bond j 
due to the stretching force FBi> and ~bj= I b j - be I OJ, 
where OJ is the angle through which the bond is de­
flected due to Fbj. 

The energy deposited in the bond due to stretching is 

(17) 

The energy deposited in the bond as a result of bending 
can be obtained in a similar manner. Thus, the total 
energy deposited in the bond due to rotation is 

ErJ= 2m/r/w4
[ (sin2aj/kbJ) + (cos2a;/kBj )]. (18) 

The energies deposited in other bonds can be calculated 
in a similar manner. The fraction of the rotational 
energy J; deposited in bond j is 

i-I 

J;= Erj ( LErj)-I. (19) 
j=i 

The rotational-energy change which is effective in 

Rotational and Vibrational Excitation in a Molecule 

If a momentum impulse Q were acquired by an atom 
N in a time period so short that during that period it 
was not transmitted to the remainder of the molecule, 
then SN= (Q/mN) +OSN, where OSN is the velocity of 
the atom N before acquiring the impulse and SN the 
velocity following the impulse. Thus, oS."", Si for i~N. 
If the impulse Q is large compared to the momentum 
associated with the atoms of a thermal-energy mole­
cule then, SN=Q/mN and Si""'O for i~N. From con­
servation of momentum and the definition of the space 
velocity, 

wX rN+vN=Q/mN-Q/Lmi 

= [(Lmi-mN)/(mN Lm;) JQ. (26) 

The first term on the left-hand side of Eq. (26) describes 
the rotational effect and VN the vibrational effect of Q 
on the Nth atom. 

We may resolve Q into a component QR which is 
perpendicular to rN and results in a rotation of the 
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x 
Qt= 0lr + 0t. 

e -+_~ttnr-Ji---,-,,_sin a N 

FIG. 2. Resolution of the mo­
mentum vector Qt. 
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molecule and into a component Qv which will be in a 
random direction and will result in a vibration in the 
molecule which is dependent on the strength of the 
bonds and the moments of inertia. 

Equation (26) can be separated into 

(,) X rN = [( .L:mi-mN) / mN .L:miJQR (27) 
and 

VN = [( .L:mi-mN) / mN .L:miJQv. (28) 

Realizing that there exists the relationships rN -1 (,) and 
rN -1 OR, it follows that 

(,)=(.L:mi-mN)(QRX~rN). (29) 
mN .L:mi rN" 

For krEN, 

Qv QR .L:mi-mN (QRXrN) Xrk 
Vk= - -- - -",- - =---;;==:;---

.L:mi £....,mi mN .L:m. rN2 
• 

(30) 

Consequently, the vibrational-energy increase in bond 
Nis 

(31) 

In order to resolve Q into QR and Qv we define the 
molecular-coordinate system (x, y, z) choosing the 
center of mass G as the origin, and placing the bond N 
parallel to the z axis. The vector Q is resolved into 
Qy, Qt, and QT, where Qy is parallel to y axis, Qt is on 
the plane xz and is perpendicular to rN, and Qr is in 
the direction of rN. Since Qr passes through the center 
of mass G, it will not effect the rotation of the molecule. 
Qy will cause both a bending vibration of bond N and a 
rotation of the molecule, particularly in x and z direc­
tions, i.e., Wx and w •. Qt will also cause both a bending 
and a stretching vibration of bond N as well as a rota­
tion in y direction Wy • Let us write 

Qy=Qyv+Qyr 
and 

Qt=Qtv+Qtr, 

where QyV and Qt. are momenta effective in the vibra­
tion of the bond Nand QYT and QtT are momenta effec-

tive in the rotation of the molecule. We define the con­
stants as given 

Fyv = Qyv 2 
/ Qy 2, 

FtV =Qtv2/Ql, 

Upon averaging we obtain 

(QV2)Av=!(1+Fyv+Ftv)Q2 (32) 
and 

(QV'QR)AV=![ (FyvFyr)t+ (FtvFtr )!JQ2 (33) 

based on the fact that (Qr2)Av= (Qy2)AV= (Q?)Av=!Q2. 
Defining as')' the angle between ra and rN, the vibra­
tional-energy increase in bond N is 

(/lEoN )AV=~ ~:(.L:;::~N){ l+Fy.+Ftv 

+[ (FyvFyr )!+ (FI.FtT)lJ 

[mN- (.L:mi-mN) (ra/rN) cos')'J} 
X .L:mi . (34) 

(35) 

(36) 

(37) 

and 
(38) 

Also, 

(39) 

The total energy change in bond N will therefore be 

(/lEiN )Av =Y(.L:;:-mN)2{.L:.L:mi [1+Fyv+Ftv 
6mN mi mi-mN 

+[ (Fy.Fyr ) t+ (FtoFtr)!J 

XmN- C.L:mi-mN) (ao!aN) cos')'] 

.L:mi 

Estimation of Constants 

Consider Qt acting on the atom N as depicted in 
Fig. 2. As a result of Qtr, the molecule will rotate and 



MOMENTUM TRANSFER TO AN ATOM IN A MOLECULE 951 

the inertia opposing rotation will be Iyy. As a result of 
Qtv the molecule will vibrate. The bond N will stretch 
and bend as a result of Qtv sinaw and Qtv C05aN, respec­
tively. If OaN is the maximum elongation of bond N 
due to Qtv sinaw, by energy balance we have 

Qtv2 sin2a/mN= ksNOsN2. 
Similarly, 

Qtv2 cos2a/mN= kbNObN2. 

The degree of difficulty in deforming a bond increases 
as mN, OsN, and ObN increase. Let us assume that the 
deformation inertia opposing Qtv is 

(
COS2a N Sin2aN) Qtv2 

mN (ObN2+0s.V2) = Qtv2 --+-- =-, 
kbN ksN ktN 

where 

be the fraction of Qt that is associated with Qtv. Thus, 

Iyy Qtv 

lyy+(Qt.z/ktN) Qt' 

Solving Eq. (42) for Qtv, it is found that 

Ftv!= Qtv/Qt=! (Ut)l( [1 + (1 +Ut)!Jl 

(42) 

+[1- (1+Ut)!Jll, (43) 

where Ut=4ktNlyy/9Q2. In a similar manner, 

Fyvb Qy,,jQy= !{uy)l( [1 + (1 +uy)lJi 

+[1- (1+uy)iJil, (44) 
where 

FAILURE TO BOND RUPTURE 

(41) When (AEiN )Av attains the value ofthe dissociation 

The total inertia opposing Qt is therefore 

[Iyy+ (Qtv2
/ ktN)]. 

The fraction of inertia that is opposing Qtr should also 

TABLE 1. Minimum energy required and energy distribution for 
carbon-halogen bond rupture.' 

EN" ER" ERi" E v" Er" 

E T" ET" ET" ET" ET" 
ET" 

Compoundb (ev) % % % % % 

CHaI 27.29 80.12 9.39 1.91 6.63 1.94 
CDaI 23.86 76.87 10.81 2.52 8.00 1.80 
CFaI 8.34 42.22 22.76 9.84 23.61 1.57 
CH2I2 5.52 22.48 24.92 15.79 36.79 0.02 
C2H.I 20.41 66.47 15.06 7.40 9.47 1.60 
i-CaH7I 12.97 56.03 18.83 8.41 13.92 2.81 
n-CaH7I 12.76 56.03 18.83 9.47 13.39 2.28 

CHaBr 20.74 70.91 13.30 1.66 11.12 3.01 
CDaBr 18.54 66.64 15.00 2.56 13.19 2.61 
CFaBr 7.38 28.83 24.86 8.38 37.29 0.64 
CCbBr 4.06 16.25 24.06 7.49 52.18 0.02 
CH"Br2 6.14 21.14 24.84 12.17 41.83 0.02 
CF2Br2 4.900 14.52 23.58 8.82 53.06 0.02 
CChBr2 3.640 10.84 22.09 8.84 58.23 0.00 
CHClBr2 4.93c 14.72 23.65 9.91 51. 70 0.02 
CHBra 4.76 9.99 21.63 12.29 56.09 0.00 
CBr4 2.98 5.82 18.28 4.86 71.04 0.00 
C2H.Br 15.14 53.87 19.52 7.98 16.00 2.63 
1,1-C2H4Br2 5.78c 18.10 24.44 10.75 46.69 0.02 

CHaCl 14.68 51.40 20.29 4.53 20.72 3.06 
CDaCI 13.26 46.05 21.81 5.83 23.93 2.38 
CFaCI 6.14 12.61 22.90 8.27 56.05 0.17 
CHF2Cl 7.13c 18.23 24.47 11.28 45.76 0.26 
CH2Ch 7.45 18.86 24.56 13.76 42.80 0.00 
CF2Cl2 5.63 9.47 21.30 9.57 59.66 0.00 
CHCla 5.16 9.71 21.44 12.81 56.04 0.00 
CFCla 5.21 7.36 19.78 9.87 62.99 0.00 
CCl, 4.46 5.89 18.39 9.61 66.11 0.00 

a The bond-dissociation energy, EBN=Er"+Evo, 
b The dissociating halogen is the last element listed in the formula. 
e Based on estimated EBN. 

energy of bond N EBN, bond rupture results. Rearrang­
ing Eq. (40), the momentum required for bond rupture 
will be 

where 
(46) 

and 

B= 1 [:E :Em; (1+Fyv+Ftv 
(Fyr+F tr ) cos2aN mi-mN 

+[ (FyvFyr)!+ (FtvFtr)!J 

XmN- (:Emi-mN) (ae/aN) cos'Y) 

:Emi 
+fN Fyr(Ixx cos2aN+lzz sin2

aN) + FtrlyyJ. (47) 
mNaN2 

From Eqs. (24) and (45), B can also be evaluated in 
terms of the expression 

B= 2EBN(dN *)
4 

+d *2(2-d *) 
ksNd

O
N2 (1-dN*) N N. (48) 

In the particular case where the atom receives a 
gamma-ray momentum impulse, the energy of the 
gamma ray required for bond rupture is E,{o=(!c, 
where c is the velocity of light. 

CALCULATION OF QO 

To calculate the recoil momentum required for bond 
rupture, we used a method of successive approxima­
tions. The steps were: (1) calculating lxx, I yy, I zz , C05aN, 
and cos'y for each molecule using bond-distance and 
bond-angle data; (2) assuming a value of QO; (3) calcu-
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FIG. 3. Energy of 
radicals as a func­
tion of the total 
energy imparted to 
the Br atom in 
CH3Br. 

lating ~, u" and consequently, FliT' Fllv , Ftr, Ft., and 
B using the assumed value of (t and Eqs. (43), (44), 
and (47); (4) solving for dN· in Eq. (48), using the 
value of B obtained in step 3, (5) calculating (t by 
substituting the calculated values of Fllr, Ftr, B, and 
dN· into Eq. (45) and then comparing with the as­
sumed value of (t. 

The minimum net recoil energies, &0= «(t)2/2mN, 
required for bond rupture were calculated for a series 
of halomethanes and are listed in Table I. It is noted 
that, in general, the heavier the mass of the radical 
attached to the activated atom, the smaller the net 
recoil energy required for bond rupture. 

Also presented in Table I, as a percent of ETo, are 
the rotational- and vibrational-excitation energies re­
ceived by the bond (EBN=E.o+ErO), the recoil kinetic 
energies of the activated atom and the radical to which 
it was bonded, and the internal energy of the radical. 
For a diatomic molecule, Steinwedel and Jensena have 
shown that E./ (E.+ Er) = i. Typical values of this 
quantity for the compounds in Table I are: CHaBr-
0.79, CDaBr-Q.84, CFaBr-Q.98, CCIaBr-1.00, CBr4-
1.00. It is seen that the heavier the radical attached to 
the activated atom, the more unlikely is rotational 
excitation. This is to be expected since (1) an increase 
in molecular weight is accompanied by an increase in 
the moments of inertia, and (2) the bending-force con­
stants for similar carbon-halogen bonds do not change 
appreciably. The net result is, that with increased 
molecular weight, rotation of the molecule becomes 
more difficult in comparison to the vibration of the 
molecule. 

ENERGY OF RADICALS 

Of the net recoil energy &0 imparted to an atom, 
only a fraction of this energy is consumed in the bond 
rupture. Because the chemical reactivity of the radicals 
frequently depends upon their kinetic energy, it is of 
interest to determine the energies associated with the 
radicals. 

If the net momentum Q exceeds that required for 
bond rupture (t the total energy available to the newly 
formed radicals following bond rupture is the difference 
between the net-recoil energy acquired by the molecule 
&=Q2/2mN and the bond dissociation energy EBN. 
The total kinetic energy acquired by the two radicals is 

equal to the kinetic energy of the parent molecule, 
Q2/2 Lm;, plus the bond-excitation energy which is in 
excess of the bond-dissociation energy, tlE;N- EBN. 

The internal energy ERi associated with the radical, 
originally bonded to the activated atom, will therefore 
be equal to the total energy minus the bond-dissocia­
tion energy minus the kinetic energy of the radicals. 
Thus, 

ERi=-- -EBN- --+.:lE;N-EBN Q2 [Q2 ] 
2mN 2Lmi 

[
Lmi-mN EBN] 

= 2mN Lmi - «(t)2 Q2, (49) 

where tlE;N=EBNQ2/«(t)2. 
The velocity of the activated atom is SN= R+VN 

and that of the radical SR= R+VR. Because of con­
servation of momentum, VN= - (Lmi-mN)vR/mN. 
As a result of the conservation of energy, the energy 
associated with the activated atom is 

(EN)AV=i:J2im/L::mN[(~2)2 -l]EBN} 

(SO) 

and that of the radical originally bonded to the ac­
tivated atom is 

. Lmi-mN{ Q2 mN 
(ER)AV= Lmi 2Lmi+Lmi-mN 

XL~2)2-1]EBN}' (51) 

The energy of the radicals as a function of the net 
recoil energy received by 80Br in CHaBr is presented in 
Fig. 3. It is noted that the energies of the radicals are 
approximately a linear function of the net recoil energy 
&. Thus, once the energy distribution between the 
radicals at the minimum recoil energy ETo is known, 
the general trend of the energy distribution as a func­
tion of the net recoil energy & can be predicted. For 
a series of halomethanes, there are presented in Table I 
the energy distribution between the radicals evaluated 
at ETo; these values, therefore, represent the minimum 
kinetic energies (ENO and ERO) of the radicals. 

BETA-RAY RECOIL 

The emission of a beta particle in nuclear decay will 
result in a recoil momentum being imparted to the 
isotope. For example, the maximum I4C beta-ray energy 
is 0.155 Mev; a beta ray of this energy will result in 
&= (1.S5X1()6)/(14.01) (1836) =6.02 ev. The meth­
ods outlined above can be used to calculate the mini­
mum recoil energy ETo required for I4N dissociation. If 
the beta spectrum is known, it is possible to determine 
the fraction of the nuclear disintegrations which will 
result in bond rupture. 
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Such calculations are being performed for 14C02, 
14C2H 6, and various tritiated compounds. The results 
will be reported in a separate communication. 

SUMMARY 

A molecule is visualized as being composed of a group 
of point-mass atoms joined together by springs. When 
one of the atoms in the molecule receives a momentum 
impulse Q the atom will dissociate from the molecule 
if Q~QO. An equation is derived relating QO to the bond 
energy, bond angles and distances, and the masses of 
the atoms in the molecule. 

In deriving this expression, two major assumptions 
are made. They are: 

(1) The rotational and vibrational motions of the 
molecule are independent and can therefore be 
separated. 

(2) The momentum impulse is acquired by the atom 
in a time period which is short compared to the time 

required for dissociation of the atom. This dissociation 
time is probably of the order of 10-14 sec, the time re­
quired for one vibration. This is, perhaps, the most 
crucial assumption, leading to the approximation that 
atoms, other than the recoiling atom, do not experience 
an increase in space velocity. It is not obvious how to 
correct for this effect since the time sequence of mo­
mentum transfer through the molecule is not known. 
Since some intramolecular momentum transfer un­
doubtedly does occur, our calculated values of QO must, 
of necessity, be low. The extent of correction needed to 
correct for this effect would probably depend upon the 
complexity of the molecule. Thus, for recoiling Br, QO 
for CH3Br could be closer to the correct value than 
would QO for C2H5Br. Similarly, QO for i-C3H7I could be 
more correct than QO for n-C3H7I since, in the latter 
compound, the atoms, on the average, are separated 
from the recoiling iodine by a larger number of chemi­
cal bonds. 


