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The low Reynolds number flow past a sphere is studied for cases involving significant variation in
density and temperature. An order of magnitude analysis of the governing equations for a continuum
flow indicates the relative importance of compressibility, variable transport properties, and viscous
dissipation. The order of magnitude of the nondimensional impressed temperature difference r is
shown to be useful as a guide for distinguishing problems with different governing physical character-
istics. The cases 7 = 0(1) and r = O(Re), where Re is the Reynolds number, are analyzed in detail.
Inner and outer asymptotic expansions are derived for each of the flow variables in terms of the
parameters Re r and Mach number M... For r = O(Re) the solutions are developed up to and in-
cluding the first effect of nonzero M,,. For + = O(1) the velocity expansions are calculated to zeroth
order and the temperature expansions to order Re. Drag and heat transfer coefficients are calculated

for each case.

I. INTRODUCTION

HE solution for the flow of an incompressible

gas at low Reynolds number around a sphere
was developed by Stokes in 1851." It was predicated
on the assumption that the inertia forces in the
flow field are negligible in comparison with the
viscous and pressure forces. Subsequently, it was
found that under such an assumption the analogous
problem for the cylinder cannot be solved' (Stokes
paradox). Furthermore, a second approximation for
the three-dimensional case which would match with
the uniform stream at infinity cannot be obtained®
(Whitehead paradox). The difficulty, as shown by
Oseen,” arises because the Stokes approximation is
not correct far from the body. At large distances,
the inertia forces can no longer be considered small
compared to the viscous forces. Oseen suggested
the use of a linearized inertia term far from the
body. The resulting “Oseen’’ equation is found to
provide a uniformly valid representation for both
plane and three-dimensional flows. However, it has
not been possible to obtain a uniformly valid second
approximation by using the full Oseen result as
the first approximation.*

The meaning of the Stokes and Oseen approxi-
mations has been explained most clearly in recent
years through the work of Kaplun, Lagerstrom,
and Cole,>”” who have developed systematic pro-
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cedures for obtaining asymptotic expansions of
solutions to differential equations containing a small
parameter. Their method, now sometimes called the
method of matched asymptotic expansions, has
been applied in studies of flow at low Reynolds
number, as a means of finding uniformly valid
asymptotic expansions for the limit Re — 0.

Kaplun and Lagerstrom®® have studied both
the plane and three-dimensional cases and have
shown how to derive the first corrections to the
classical solutions for the cylinder and sphere.
Additional details were developed by Proudman
and Pearson.® These and other applications are
also discussed by Van Dyke.*

More recently there has been interest in calcu-
lating the drag and heat transfer for a spherical
particle in a variable density flow at low Reynolds
number. Acrivos and Taylor® calculated the average
Nusselt number when a small impressed temperature
difference is assumed between the particle and free
stream. The flow was considered incompressible,
with a Stokes velocity profile, to the order for which
the calculation was carried out (although the re-
sulting temperature gradients really will produce
a small density variation, and a subsequent effect
on the velocity profile). The Nusselt number was
derived to O(Re® In Re). In a later study, Chang'®
considered the effect of a dimensionless impressed
temperature difference ¢, small compared to one, but
large compared to Re. He correctly allowed the
density to vary and obtained the leading terms of
a two parameter (¢, Re) expansion for the drag
coeflicient valid to O(e).

8 1. Proudman and J. R. A. Pearson, J. Fluid Mech. 2, 237
1957).
¢ ¢ A) Acrivos and T. D. Taylor, Phys. Fluids 5, 387 (1962).
10 J.-D. Chang, Stanford University Aeronautical Engi-
neering Department Report 210 (1964).
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Actually a total of three nondimensional param-
eters are of special importance in formulating a
study of viscous compressible flow past a sphere.
These parameters are the Reynolds number Re,
the Mach number M., and a nondimensional
impressed temperature difference 7, defined below.
The basic simplification of the governing equations
comes from the assumption Re <« 1. Since the
Navier-Stokes equations are considered to be
the exact equations, the continuum condition
(M./Re) < 1 will also be imposed. The Prandtl
number Pr is assumed of order one and the specific
heats are considered constant. Finally, the temper-
ature difference r will be positive or zero, with
value at most of order one.

In terms of the limit process, the behavior of
the parameters Re, M., and 7 therefore is formu-
lated as follows:

Re = (u.a/v.) — 0, (M./Re) — 0, (1a, b)

(te)

Here a = sphere radius, » = kinematic viscosity,
T, = temperature of the sphere, and the subscript
“ ' refers to the free-stream conditions.

It is necessary to discuss the relative sizes of
the three parameters, i.e., the rates at which these
parameters tend to zero. A consequence of (la, b) is
that M2 <« Re; in order to study the largest possible
Mach number effect, it will be assumed that

1) r=[T,—T.)/T-]—0, (2) 7= const.

Re’ In Re < (M2%/Re) < Re.

The parameter = is ordered with respect to M.
and Re by considering the relative sizes of terms in
the governing differential equations. It is found
that several different cases might be investigated,
depending on the relative importance of different
physical effects. The following conclusions are
reached: (1) Thermal conduction is the dominant
mechanism of heat transfer when » >> M2 but at
most of order one. If + = O(M2) or less, then the
temperature variation is determined by a balance
between viscous dissipation and thermal conduction.
(2) When = > M2/Re, but at most of order one,
the density variation is determined primarily by
the conduction controlled temperature gradient. The
Mach number effect on the density also appears when
r = O(MZ/Re). If r < M2/Re, the density gradient
is primarily determined by the Mach number effect;
that is, the leading term in the density variation is
related to the pressure rather than to the temper-
ature. (3) The velocity is found to be strongly
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influenced by 7, through the effects of variable
density and viscosity, when = O(1). For Re <
r & 1, the leading term in the velocity profile is
given by the classical Stokes solution'; the first
perturbation is O(r). When r = O(Re) or less the
basic solution remains that of Stokes, and the
perturbation is O(Re), due to the inertia terms
in the momentum equation.

Actual caleulation of solutions to the equations
is necessary only for the distinguished cases r = 0(1),
ORe), O(M2/Re), and O(M 2). Each of the inter-
mediate ranges of - may be studied as an extension of
one of the distinguished cases, because no additional
physical features need to be represented in the
leading terms. Since it is of interest to determine
the effect of the largest values of 7, only the first
two cases are analyzed in detail. For = O(Re),
the expansions are carried out far enough to include
the first Mach number effect. To this order, loga-
rithmic terms need not be caleulated. In the case
r = 0(1), only the zeroth-order term is calculated
for the velocity, because of the complexity of the
equations. For the temperature expansion both the
zeroth- and first-order terms are derived.

The limit process for the case r = O(Re) is
defined by Re — 0, M., — 0, + — 0, such that
(M./Re) — 0 and 7/Re is fixed. An assumed form
of the asymptotic expansion for each flow variable
is substituted in the governing equations. The
equations for the perturbation quantities are found
by grouping terms of the same magnitude. At each
step the orders of magnitude of the perturbations
can be deduced from the equations or from a
boundary condition or matching condition. The
solutions that follow show that to O(Re) the im-
pressed temperature difference increases the drag
coefficient and decreases the average Nusselt num-
ber. A Mach number term appears in both the
velocity and temperature expansions. However, to
this order in Mach number only the Nusselt number
is affected. A similar effect does not appear in the
drag coefficient because the corresponding velocity
perturbation is symmetric in the 8 variable.

When » = O(1) the limit process is defined by
Re — 0 and (M, /Re) — 0, with 7 fixed. The develop-
ment of the equations for various terms in the
expansions is carried out in the manner described
for the previous case. The results show that the
drag coefficient increases almost linearly with 7.
At 7 =~ 1 the drag has increased about 709, over
the Stokes value. The Nusselt number is observed
to decrease with increasing 7.

Many of the details of the calculations which
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are not included in the following sections may be
found in Ref. 11.

II. GOVERNING EQUATIONS AND BOUNDARY
CONDITIONS

It is assumed that the flow is steady, the gas is
perfect, the bulk viscosity is zero, and the Prandtl
number and specific heats are constant. The coef-
ficient of viscosity and the thermal conductivity are
taken to be linear functions of temperature.

The governing equations may be made non-
dimensional in various ways (e.g., Ref. 12). Here,
variables r and s will be defined, respectively, as
the distance from the center of the sphere made
nondimensional either with the sphere radius a or
with the viscous length »./u.. Also of special
importance is the choice of a reference pressure.
Here p will denote the difference between the local
static pressure and the free-stream value, divided
by the viscous pressure p.u./a, and P will denote
the pressure difference divided by p.u2 Then
p = Re P. Throughout the following discussions
the quantities p, T, v, u, and A will denote, respec-
tively, the nondimensional density, temperature,
velocity, coefficient of viscosity, and thermal con-
ductivity, each having been referred to the free-
stream value.

The nondimensional equations appropriate near
the body are expressed in terms of the Stokes
variables (i.e.,, with the sphere radius chosen as
the characteristic length):

Continuity,
V:pv = 0; 2
Momentum,
Re pv:Vv = —Vp + u[3V(V+v) + V]
+ [~V -V + V(v-Vp)
= (v V)V + (Vu-V)v]; ®3)
Energy, ’
Re pv-VT = Pr™ ! VAVT
+ (v — DM@ + v-Vp]; (4

State,
p = (1/T) + &YM=/Re)(p/T); )
Transport properties, ‘
u=A=1T; (6)
1 D, R. Kassoy, Ph. D. dissertation, University of Michi-
gan (1965).

12 P, A. Lagerstrom, in Theory of Laminar Flows, edited by
F. K. Moore (Princeton University Press, Princeton, New
Jersey, 1964).
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where the vector differential operator ¥V implies
differentiation with respect to the Stokes variables,
and
& = Vivv) + 2V (0 xVv) — 2v-V(V V)

+ (@0) — V-V, o=Vxv. (O
The neglect of buoyant force in Eq. (3) implies that
the parameter ga/ul (reciprocal of the Froude
number) is at most of order one, where g = gravi-
tational acceleration (e.g., see Schlichting'®). Since
the flow is axially symmetric, each of the dependent
variables is a function of r and 4, where 6 is the
angle measured from the free-stream direction. The
velocity has components v,(r, 6) and v,(r, 6) in
the r and 6 directions,

vV = i,v, + ig?)o.

The boundary conditions for the system of
equations (2)-(6) are those at the particle surface,
v(l, 8) =0, 71,60 =1+ =, (8)
In the limit Re — 0 (with r, 6 fixed), the above
equations give an adequate description of the flow
only when r = O(1). Thus the asymptotic solutions
do not necessarily satisfy the boundary conditions
for r — o, These conditions are replaced by the
requirement that the asymptotic expansions of so-
lutions to Egs. (2)-(6) must match properly with
another set of asymptotic expansions which are
valid far from the body.

The nondimensional equations appropriate far
from the body are expressed in terms of Oseen
variables (i.e., with the viscous length chosen as
the characteristic length),

V:pv =0, ©
pv-Vv = —VP 4 u[3V(V-v) + V]
+ [-3(V-v)Vu + V(- V)

— (v-V)Vu + (Vu-V)v], (10)

pv-VT = Pr' VaVT
+ (v — DMZpe + v-VP],  (11)
p = (1/T) + yM(P/T), (12)
p=N=T,. (13)

- The same notation, v, p, T, u, A, has been used to

denote a given nondimensional quantity, whether
it is a function of r and @ as in (2)-(6), or as a
function of s and 6 as in (9)~(13). Also implied
above are the relations

s = Rer, p = Re P, ® = Reo. (14)

18 H, Schlichting, Boundary Layer Theory, (McGraw-Hill
Book Company, Inc., New York, 1955).
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TaeLE I. The effect of 7 on temperature and density.

(8) = 0(1) AT = O(r)
(b) Re K 7 < 1 AT = O(r)
(¢) 7 = O(Re) AT = O(r)
(d) (M2/Re) <7 «Re AT = O(r)
(e) = = O(M2/Re) AT = O(r)
(f) M2 &7 K MZ/Re AT = O(r)
(8) 7 = O(M3) AT = O(M2)
(h) 7 x M2 AT = O(M2)

Ap = O(7) Av = O(1)

Ap = O(r) Av = O(7)

Ap = O(7) Av = O(Re)
Ap = O(r) Av = O(Re)
Ap = O(MZ2/Re) Av = O(Re)
Ap = O(MZ2/Re) Av = O(Re)
Ap = O(M2/Re) Av = O(Re)
Ao = O(M2/Re) AV = O(Re)

In Eqgs. (9)-(13) the operator V¥V implies differ-
entiation with respect to the Oseen variables.
The boundary conditions for s — « are

v(w, ) = i, cos # — i, sin 6,

T(w, 6 =1, P(x,8) =0.

(15)

These will be supplemented by conditions for
matching with solutions valid when » = 0(1).

III. PHYSICAL CONSIDERATIONS

The sequence in which various physical features
become apparent in the asymptotic expansions will
depend on the relative sizes of the parameters Re,
M., and 7. To understand the significance of
different choices it is necessary to study the orders
of the terms in the equations. Equations (2)-(6)
are studied, since it is near the body that the
greatest changes occur in the flow variables.

Since the nondimensional wall temperature is
1 + 7, then for r = O(1) changes in the nondimen-
sional temperature T are measured by AT =
T — (1 4+ 7). In the energy equation (4) the con-
vection, conduction, and dissipation terms are, re-
spectively, O(Re AT), O(AT), O(M Z). For AT > M.,
the conduction term dominates the equation and
the temperature variation AT is of the same order
as the impressed temperature difference 7; this
result also implies + >> M2 If + = O(M2) the
dissipation and conduction terms are of the same
order, and AT = O(r) = OM2). If 1 K M,
temperature differences due to viscous heating are
greater than O(r), and the approximate equation
still describes a balance between dissipation and
thermal conduction.

The equation of state (5) shows that density
changes are primarily related to temperature changes
if + > M2/Re and are determined predominantly
by pressure changes if 7 <« MZ2/Re. Both effects
enter if 7 and M 2/Re are of the same order. From
the continuity equation it is seen that changes in

velocity are at least as large, in order of magnitude,
as changes in density. The momentum equation
shows that for r >> Re the variation O(r) in viscosity
has greater influence than the inertia terms, which
are O(Re). It follows that for » > Re the corrections
Av to the Stokes solution for velocity are O(7),
due to variable density and viscosity. But if r << Re
the corrections are O(Re), due to the effect of
inertia forces.

The results are summarized in Table I. For
7+ — 0 increasingly fast (i.e., passing from top to
bottom in the first column of Table I), it is seen
from the equations that some new physical feature
becomes important at each of cases a, ¢, e, and g.
These might be called distinguished cases. Each of
the intermediate cases b, d, f, h depends at most
on the same physical processes as appear in the
immediately preceding distinguished case. This
implies that an approximate solution for a particular
distinguished case can be extended to include the
succeeding intermediate case (or, for that matter,
to include the immediately preceding case). In this
sense it is only necessary to study the distinguished
cases.

Since it is of interest to examine the effect of
large values of 7, the present analysis is limited
to the cases r = O(1) and r = O(Re).

IV. CONSTRUCTION OF THE SOLUTIONS

The solutions of Egqs. (2)-(6) and (9)-(13),
subject to boundary conditions (8) and (15), are
assumed to possess asymptotic expansions of the
following form:

Inner Outer
Density,
P~ Z_:Oanpn(ra 0); p~ ZO aan(37 0);
Velocity,

v~ 2 bV, 6);

n=0

v~ 2 Bir, 6),
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Pressure,
P~ Z 5,,2),,(7', 0)) P = ~ E d,,P,,(S, 0);
n=0 Re n=0

Temperature,

T~ E entn(T, 0);

n=0

T~ 2 eT.s, 0);
n=0
(16)
where o, --- , ¢, and a,, --- , e, are, in general,
functions of M., Re, and r, and
ay =0 =8 =€ =0 =b, =d, =¢ = 1.

The “outer” variable s is related to the “inner”
variable » by s = Re r. Components of V, will be
denoted by V,,(s, 8), V,,(s, 6).

By definition each inner expansion, of the form

g~ Zo <p,,(Re, M., T)qn(r: 0) (17)
is an asymptotic expansion if, for each n,
q — Z Crqr
lim £ = 0,  lim—2*%— =10, (18)
bn Pn

for Re — 0, (M ./Re) — 0, and (in the cases chosen)
either 7 fixed or 7/Re fixed. Similar properties
hold for the outer expansions

q~ Z::O q’n(Re) Mw; T)Q,,(S, 0)'

The differential equations for the perturbation
quantities in Eqgs. (16) are found by substituting
in the inner and outer governing equations and
grouping terms of the same order of magnitude. It
is then required that the equations be satisfied to
each order of magnitude, in the limit for Re — 0,
(M./Re) — 0 and either 7/Re fixed or 7 fixed. The
boundary conditions to be satisfied by terms in
the Egs. (16) are found by substituting in Eqgs. (8)
and (15), again requiring that the equations be
satisfied to each order of magnitude. The matching
condition for each flow variable ¢ states that to
each order in Re, M., 7 there exists some overlap
domain for s — 0 sufficiently slowly, and + — o,
such that both inner and outer expansions are
valid (see Ref. 5). That is, to each order in the small
parameters,

QO+€91Q1+‘P292+
NQ0+‘I’1Q1+ d>2Q2—|~ Tty (20)

for Re — 0, (M,/Re) — 0, either 7 fixed or 7/Re
fixed, r — o, and s — 0 (sufficiently slowly).

V. SOLUTIONS FOR = = O(Re)

For + = O(Re) the zeroth- and first-order terms
can be found by appropriately combining results

(19)
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from Refs. 1, 3, 5, 8, 9, and 10, or can be rederived
using a single consistent approximation scheme, as
discussed in the preceding section. An outline of
the derivation of these terms is given below. Terms
beyond this group represent new results and are
discussed in greater detail.

The leading terms in the outer expansions describe
the free stream,

To=R,=1, Vo=1,c080 — igsing, P,=0. (21)

Since temperature variations are small, the leading
terms of the inner expansion are the same as the
Stokes solution,

tO = P = 1}
. 3 1
Vo = 1,<1 — 5 + 2r3> cos 0

. 3 1) .
+ 1,,(——1 + ym + Eg) sin 4, (22)
Do = —3(cos /7).
The solutions for #, and p, now also can be ob-
tained; the boundary condition suggests the choice
G = 7 or

¢, = Re 7/Re. (23a)

The temperature distribution is determined entirely
by conduction. That is, #, satisfies Laplace’s equation

Vi, = (23b)

subject to the boundary condition ¢,(1, ) = 0 and
the matching condition, for » — o

147t + - o~ 4 e

The solution, given by Acrivos and Taylor,® is
seen to be

& = r 1.

(24)
From the equation of state, it is found also that

a; = Re 7/Re, pp= —t = —r ", (25)

The orders of magnitude for the first-order outer
solutions V; and 7', are determined from the match-
ing conditions. For r — «, Egs. (21), (22), and (24)
show that v, — V, = ORe/s) and t;, = ORe/s).
Hence, the matching suggests b, = O(Re) and
e, = O(Re”). The equation of state and the mo-
mentum equation require, respectively, a;, = O(Re?)
and d, = O(Re). It is convenient to include certain
constant factors, as follows:

by =d, = Re, @, =e = Re’(r/Re) Pr. (26)

The first-order outer solutions satisfy the differential
equations
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vV.=0, V,.VV,=~VP, + VV,
Vo- VT, = Pt VT, R, = -T,
subject to boundary conditions
T, 6) = P, 8 = Vi(w, 8 =0  (28)

and matching conditions, for some overlap domain
where r — « and s — 0,

@)

”
~1+ReRet,+ see,

.~v0+.

1+ Re’-—él’ri’l—{%

Vo+ ReV, + - (29)

The solutions for V, and P, are the Oseen solutions,
and the solution for 7T, was given by Aecrivos and
Taylor,’

Vl, = _3____ [1 — e—is(h-cos 6)]

25
_% ~}e{1~cos §)
-5 (1 + cos )¢ )
B peices ) s = -3 30
Vi = 1t sin 6, Py = 25" 9% 6, G0

For the first-order inner solution, the momentum
"equation suggests that 8, and §; should be O(Re),
the same order as the inertia terms and the variations
in density and viscosity,

B8: = & = Re. 31
Therefore, v, and p, satisfy
Vv, = —(7/Re)ve: Vi,

Vzvx — Vp;: = v VvV, — IV(V v
— (+/Re)[u Vv, + V(v Vi)
— V)V + (Vi VIV, (32)

where p, = —t, = —r ' and p;, = & = r~". The
momentum equation includes a convective term
(first term on. the right-hand side), an effect of
variable density (second term), and an effect of
variable viscosity (third term). The boundary con-
ditions for r = 1 and the matching conditions
for r — o« are

V1(1,9)=0,
vo+ Rev, + - ~Vo+ReV, + ---, 33)
po+Repx+"NRer+“'-

The matching conditions imply that p, — 0 as
r — o and that the leading term in vy for r —
must agree with the term of order one in V; for
s— 0.
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The solution of this system of equations, found
by separation of variables and variation of param-
eters, is given by

, ={§_[g l?’_L:l.1.+_1..5._I_l.
b 8 16 ' 16 Relr ' 8 Rer

3 21 7|1 1 1
+[16“16Re]?§+4 ortf oS 8

3 3,1 1 1
--E{2—-;+;§—;§+;z}%(3czos’6—1), (34)

3 21 = | 1L .
+[§§—§§§;];§}sm3

3 9 3 3 1.
-+ {§ ~ 39 + 39, '1"67;}8111 8 cos 9,

3 3 1
P = {"16# LST R 1757}

27 103 » 1
+{["E“Z§§'&]P

+{§3;§‘“§"7;§+4_?;i'—1_61;6}%(300829—1).
The terms independent of » were given by Kaphun
and Lagerstrom® and by Proudman and Pearson,®
and the terms proportional to r/Re can be obtained
from Chang’s solutions.'® The results imply that
the first-order coefficient will differ from that given
by Proudman and Pearson.

The solution for ¢, can now also be obtained. In
the energy equation (4) the convection ferm and
the effect of variable conductivity lead to a pertur-
bation in temperature which is of order Re’. There
is no physical reason for suggesting a larger pertur-
bation. Furthermore, if it were assumed that the
term ef, were larger, such that Re® <« e <« Re,
then #, would have to satisfy Laplace’s equation,
and the boundary and matching conditions could
be satisfied only if ¢, = 0. Hence, &, = O(Re?).
On the other hand, it is found from the equation
of state that the changes In pressure lead to a
perturbation a,p, in density such that ¢, = M2/Re,
larger than Re’® according to the assumption fol-
lowing Eq. (1). It is found, however, that the
equations defining ¢, do not involve any terms
associated with the Mach number and, therefore,
can be solved without further study of such terms.

The result ¢, = O(Re®) is consistent with the
matching condition, since f, must match with a

(36)
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term in 7'; which is O(1) for s — 0. For convenience
a constant factor is included in e,

= Re’ 7/Re. (37)
The differential equation for , is
v2t2 = Prv, -Vt — (T/Re)%(vzti); (38)

which includes on the right-hand side a convection
term and a term showing the effect of variable
conductivity, The boundary condition is

(1,6 =0 (39)
and the matching condition, for r — « and s — 0, is

14+, +7Rety+ -+

~1<4+7RePrT,+ --+. (40)
The solution for ¢, is found to be
lepe oy (L L)]
b [ Pr ( 1> Re (2r 2%°
1 3 3 1
+ Pr [5 -~ % + & 8r§:| cos 4. (41)

The terms independent of r were given by Acrivos
and Taylor. In the present solution an additional
term, proportional to r/Re, appears because the
conductivity is allowed to vary.

At this point the usual procedure would be to
study the second-order outer solutions. However,
it is found that the next terms of the inner expansions
may be obtained without knowledge of additional
solutions from the outer equations. These are the
first terms involving the Mach number, and their
effect on the drag and heat transfer will be of special
interest.

For the inner expansion the energy equation
shows that the viscous dissipation leads to temper-
ature variation of order ¢, = O(M2). As already
noted, the equation of state requires the density
variation due to changes in pressure to be of order
a; = O(MZ2/Re). The continuity equation then
shows that the corresponding velocity changes are
measured by 8. = O(M2/Re). Since a pressure
force must appear in the momentum equation,

= O(MZ/Re). The choices will be

€3 = Mi, gy = Bg = 82 = Mi/Re. (4:2)
Thus it is convenient to study ¢, along with v,,
p27 a'nd P2+

For the second-order terms in the outer expansion,
it can be seen from the differential equations or
from the matching conditions that appropriate

choices for the orders of magnitude are
=Re’*rPr, b,=d:=Reé’ = Re’ r Pr.

(43)

677

But the inner solutions v;, p;, p;, and t; can only
match with terms which will be multiplied by M 2.
In the outer equations the dissipation leads to a
variation in temperature which is O(M? Re), of
smaller order than either e, or €. It will be sufficient
to replace the matching conditions for &, v,, p,,
and p, by the requirement that these functions
approach zero asr — .

These first terms involving Mach number are
found to satisfy the equations

Vi = —=Pr (v — D[® + v, VDol, pz = VDo, (44)
Vv, = —V,Vps,
0= —Vp.+ Vv + §V(V W),
subject to boundary conditions,
v.(1, 8 = ({1, 6 =0, 45)
and matching conditions for r — o,
volr, ) >0, por, 0) >0, t,(r, 0) —0.  (46)

The solutions are
b _ [1_01 45 i]
(v -1 Pr [80r 2r 27 16r 40
1 3
+ [21' 16t 2r T 16 6]2(3 cos’ 0~ 1),
1 3 1
% T T + Zz]

Y
11 o7
+ [‘wﬁ T &7

1
16r4 + —z] Y (3 cos* 0~ 1),

21'2 T 16r 161-4 T ]sm 8 cos 9,

L _1 5 _1ixy
p:—'YLA r6]+|: 87‘3+ 3 T:lz

(3 cos® § — 1). 47

The results of the preceding analysis are summa-
rized in the following inner expansions:
p(r, 0) = 1 4 Re (r/Re)p, + (M=/Re)p,
+ Re® (r/Re)ps + O(as),
v(r, §) = v, + Re v, + (M%/Re)v, + 0(8s),
p(r, 0) = po + Rep, + (M>%/Re)p: + 0(3s),
T(r, ) = 1 + Re (r/Re)t; + Re® (r/Re)t,
+ Mit, + Ofe),
u(r, 6) = N\r, 6) = T(r, 0). (48)
In general, the expansions have been calculated
out to the first Mach number term. The results

of Proudman and Pearson® and Acrivos and Taylor®
imply that the logarithm of Reynolds number should
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appear in terms ordered by B, 8, and e. From
the equation of state, it follows that o, = O 2),
and oy will be logarithmic in Re. While no attempt
has been made to find these terms, which arise
from nonhomogeneous terms in the higher-order
energy and momentum equations, it appears that
they will differ from the logarithmic terms calculated
previously, due to the inclusion of the additional
temperature effects.

It is of interest to compare the present expansions
for temperature and velocity with those of Acrivos
and Taylor’ and Proudman and Pearson® in order
to indicate the conditions under which the latter
are valid representations,

In the temperature expansions, h, and h, are
solutions given in Ref. 9, f, is the r/Re term in
Eq. (41), and t; is given by Eq. (47). In the velocity
expansions; v; has been split into incompressible
(v10) and compressible (v,) parts.

Present solution:
T*l—l—ReRho—l-Re——[Ph—i— ]

4+ Mit, + O(Re’ In Re),  (49)

V=19, + Re [Vm + _RLevll]

n ]YL =, + O(Re’ In Re);

Acrivos and Taylor Solution:
= 1 4+ Re (r/Re)h, + Re® (r/Re) Pr i,
+ O(Re® In Re);
Proudman and Pearson Solution:
v =1v, + Rev,, + O(Re’ In Re).  (51)

It is clear that the present solutions reduce to
those found previously if r/Re, M2, and MZ/Re
are made sufficiently small.

The -drag coefficient and Nusselt number are
calculated by evaluating the stress and heat transfer
at the particle surface. These quantities are found
from the inner velocity, pressure, and temperature
expansions,

If Fy is the drag force, the drag coefficient is
defined as follows:

Fy __4(;[[ p(l, 6) sin 6 cos 8 6
0

i .2 3™
%Pwumﬂ'a R

+ f u(l, 0[ 2 (~>+ %‘;”;Llsmwdo] (52)

If the integrals are evaluated, the result is

(50)

Cd=
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12 13 _,._)
€= Re [1+R ( T 24 Re
+ O(Re® In Re). (53)
The Nusselt number is defined by
=1 r"|aT .
= fu [61" l=1 sin 8 d@, (54)

and upon evaluation of the integral, one can derive
the following:

Nu=2+RePr[1—

=)
Re Pr

- ]‘—fﬁ Priy — 1) 189 + ORI Re).  (55)

VI. SOLUTIONS FOR THE CASE = = 0(1)

Physical considerations (i.e., see Table I) indicate
that the zeroth-order inner variables are affected
by the impressed temperature difference when
O(1). In essence, the problem is that of a
compressible Stokes flow. The analysis in this
section is devoted primarily to the solution of the
zeroth - order equation, although the first - order
temperature effect is also calculated.

Just as in previous solutions, it is clear that the
zeroth-order outer solutions describe the free stream.
Thus

T =

Vo = i, cos 6 — i,sin 6,
P():O, R0=1, Tozl.

Since a linear thermal conductivity-temperature
relation has been assumed, the inner energy equation
may be written as follows:

(56)

Vi =0, (b7
with the boundary condition
(1, 6) =1+ 7. (58a)

The matching condition for f{, requires that, for
r— oo,

b+ oo ~1 4 - (58b)
The solution of these equations is
t(r, 6) = [1 + K/}, (59)

where K = 7(r + 2). The zeroth-order inner density
may be found from the equation of state. Thus,

po = (1/t) = [1 + (K/r] . (60)

The zeroth-order inner pressure and velocity
components are found from the approximate con-
tinuity and momentum equations, which are as
follows:

V'Povo = 0;
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= —Vpo + 3ue V(IV-v) + 5,V
+ [~3(V V) Vo + V(vor Vo)
~ (vo: V)V o + (Vo V¥
The boundary condition at r = 1 and the matching

conditions for r — « are, as for the incompressible
case,

v0(176)=03 v0+"'NV(}+"',
po -+ oo~ Re(Py + -4).

The differential equations (61) are linear with
variable coefficients depending on r. A dependence
on 0 enters only in the matching -condition, in
an especially simple way because of the form of V,.
Solutions satisfying (61) and (62) can therefore be
found by assuming v,, and »,, to have the same
dependence on 6 as the components of V,. Thus

po = p(r) cos 6,

(63)

where the form chosen for p, is consistent with (61).

The solution to Egs. (61) and (62) is most easily

obtained in terms of a Stokes stream function,
¥(r, §), where
1

7 *sin 9

(61)

(62)

vo. = w(T) cos 0, v, = v{r)sin b,

poller = ¥, Polps = ¥, (64)

rsin 8
80 that the first of Egs. (61) is satisfied identically.
Next, in view of the relationships given'in Egs. (63),
¥(r, 6) may be written in terms of a modified stream
function, @(r)

Ylr, ) = a@) sin® 6. (65)
Substitution of Egs. (63)-(65) into the second of
Eq. (81) results in a fourth-order differential equation
for a{r) (Ref. 11). The boundary conditions on @
are found by transforming Eqgs. (62). However,
the solution is obtained more easily if the following
transformation is employed:

w = K/2r, a(w) = a(r).
Then the resulting equation for a(w) is,
1+ 2we'a’’ + (12 4+ 20w)’a’” + (32 + 104w)e’a’’

(66)

+ (8 + 68wwe’ — (8 + 32w)a = 0, 67
and a{w) is subject to the boundary conditions
lim w’alw) = —3K*, a(3K) = o’/GK) = 0. (68)
w—0
A solution of equation (67) is
a = (C,/o"  C, = const. (69)

Hence, the governing equation for a(w) can be
reduced to a third-order equation,
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(1 + 20’y + (7 + 190)u’y’"’
+ 4 + 28wy’ — (4 + 16w)y =0,  (70)
where
1 [ s
aw) = — f oy(o) do + % (71)

Finally, the first of the boundary conditions given
in (68) becomes

lim w*y(w) = 0.

w@—0

(72)

Equation (70) has three regular singularities, at
the points w = —3%, 0, ». A power series solution
about w = 0 has been obtained (see Ref. 11 for
details), using a procedure outlined by Rainville.**
In terms of a(w), this solution is

a(w) = -—% + () — Ca™(w)
_ ___K_____z © Anmru—l 2 9
- 8w2+02{_,.>;0(n+3>1n‘°+;“5
- 1 1 n+1
+ §<n+3) n+3mkn+2)Anw }
3 An 1
-0 Xy (13)
where
AO = “5‘2‘)
__(2n' + 130’ + 13n + 16)
A = wn + Dm+ 5 Aen n21,
ky = %g_(l)’
- 6n® + 26n + 13
2T op® 4 130° + 13n + 16
“Mu_xgww n> 1.

nn + 2)(n + 5)

Due to the singularity at w = ~1%, the above series
solution is valid only when 0 < o < 1. Hence,
since 1 < r < o, the constants €, and C, can be
evaluated from the boundary conditions on a{w)
only for values of K in the range 0 < K < 1, which
correspond to values of 7 in the range 0 < + < 0.414.

Series solutions could be obtained for larger
values of K(r) by developing expansions about
some ordinary point beyond w = % However,
for the purposes of obtaining numerical results,
it is more convenient to resort to a numerical
solution of Eqs. (67) and (68). The calculations
were made by using a fifth-order Runge-Kutta

1 K. Rainville, Iniermediate Differential Equations (The
Macmillan Company, New York, 1964), 2ud ed.
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TasLE II. Summary of numerical results,

T G, C, w aW(w) a(w)
0.095 0.404275 0.419474 X 107! 0.1 0.458360 0.163372 X 10?
0.183 0.123662 0.925079 X 107 0.2 0.880913 0.658253 X 10t
0.265 0.266352 X 102 0.151344 0.3 0.127581 X 10! 0.332619 X 10!
0.342 —0.846962 X 10! 0.218198 0.4 0.164856 X 10! 0.165159 X 10t
0.414 —0.162767 0.292868 0.5 0.200308 X 10t 0.594004
0.483 —0.239360 0.375190 0.6 0.234223 X 10! ~0.161614
0.549 —0.317672 0.465022 0.7 0.266825 X 101 —0.747554
0.612 —0.399226 0.562255 0.8 0.298286 X 10! ~0.122869 X 10*
0.673 —0.484813 0.666783 0.9 0.328745 X 10! ~0.164041 X 10!
0.732 —0.574868 0.778508 1.0 0.358312 X 101 —0.200361 X 10
0.789 —0.669638 0.897344 1.1 0.387082 X 10t —0.233138 X 10*
0.844 —0.769304 0.102325 X 104 1.2 0.415127 X 101 —0.260331 X 10!
0.897 ~0.873956 0.115615 X 10! 1.3 0.442514 X 10! —0.291257 X 10*
0.949 —0.983663 0.129603 X 10! 1.4 0.469302 X 101 —0.317611 X 10t
1.000 ~0.109845 X 10! 0.144283 X 10* 1.5 0.495540 X 10! —0.342610 X 10t
1.049 —0.121833 X 10! 0.159648 X 10! 1.6 0.521270 X 10* —0.366481 X 10t
1.098 —0.134332 X 10! 0.175696 X 10 1.7 0.546528 X 10! —0.389401 X 10!
1.145 —0.147335 X 10! 0.192416 X 10! 1.8 0.571349 X 10! —0.411502 X 10!
1.19 —0.160840 X 10! 0.209802 X 10! 1.9 0.595759 X 101 —0.432894 X 10!
1.236 —0.174847 X 10t 0.227850 X 10! 2.0 0.619786 X 10! —0.453665 X 10!

scheme on an IBM 7090 computer. In order to
start the solution, the linearly independent solutions
in Eq. (73) were evaluated at an initial point
w = 0.1. Then, values of ¢ and a*® were generated
for @ < 2. Finally, the constants C, and C, were
evaluated, using Eqgs. (68), for 0.2 < K < 4, which
corresponds to 0.095 < r < 1.236.

The results of the numerical calculation are
presented in Table II, where C, and C, are given
for various values of r and a'”’(w) and a® (w) are
given for various values of w. These results have
been used in Fig. 1, where the velocity component
u(r), for K = 4, is compared with the Stokes'
profile, which corresponds to K = 0. For inter-
mediate values of K, the result will fall between
the two curves. Chang’s'® velocity profile would
be very close to the Stokes curve because his calcu-~
lation was carried out for a small value of 7.

The equation for the first-order outer temperature,
obtained from the outer energy equation, is

2
PI‘ VO'VTl = v Tl' (74)
5 7
T ;
£
/
4 4
P t ”
F;:;sz “‘~"/I //,
T /A
,
r3— i i
P Stokes
P Profile
’/
-
2 ’//,
==
'O o 02 03 04 05 06 [oX4

u{r)

Fre. 1. Zeroth-order radial velocity profile, u(r), for r = O(1).

The boundary condition for s — « and the matching
condition as s — 0 are

Tl(w,0)=0’ to+"~1+elT1+"'.

The solution of the above equations is found in
a manner similar to that employed in the analogous
r = O(Re) case and is given by

T, = (K/2Prs)d* Tr P ¢ = RePr. (76)

Thus, the order of magnitude of the first~order
outer temperature perturbation is larger than that
for the corresponding » = O(Re) case.

Substitution of the expansions in the inner energy
equation indicates that ¢, = Re. Thus, the equation
for ¢, is

Vihty = Pr pvo: Vi, = 1 Pr KG(r) cos 6,

where

(75)

an

G(r) = —uln/r(r + K),

and t, is subject to the following boundary condition
and matching condition (as r — »):

t1(1>0)=01 to+Retl+--'
~14+ RePrT, + --- (78)

Now, the function G(r) cannot be written in closed
form since there is no analytical expression for u(r).
However, the solution for #, can be written in
terms  of integrals of ((r). This formulation is
useful for matching since an asymptotic form of
u(r) for large r can be found from Egs. (63)-(65),
(68), and (73). Thus, in terms of these integrals,
the solution is,
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16 /‘/
v

e

0.2 04 06 [o2:] 10 1.2 14
T

F1c. 2. Zeroth-order drag coefficient for r = O(1).

tot,_%ﬁ(;—ﬂ PrK[ f G(o) do

+5 ( fl " 60)e® do — fl (o) da):l cos 0. (79)

While the integral terms could be calculated numeri-
cally, using the results of the previous numerical
calculation for a(w), such an evaluation is un-
necessary for this analysis, since the terms multiplied
by cos 6 in Eq. (79) do not contribute to the average
Nusselt number.

The zeroth-order drag force is calculated by
means of a momentum balance far from the body,
as was done by Chang. Since the zeroth-order
flow field is symmetric with respect to the equatorial
plane, convective terms do not contribute to the
momentum balance. Hence, the drag coefficient
can be defined as

Cy —llm—f [—(rr + 7o, + D) cOs 0

+ (7o + 700) 8in 1* sin 6 d6,  (80)

where 7,,, 75, and 74 are the shear stresses (e.g.
see Ref. 11). The shear stress components and
the pressure can be evaluated for large r by using
an asymptotic form of a(w) [Eq. (73)]. The pressure
is calculated from the § component of the momentum
equation [Eq. (61)]. In calculating the asymptotic
forms, it is assumed that v — 0 (e, r — =),
for arbitrary K. The resulting shear stress com-
ponents and pressure are as follows:

0[(161?2 - %) + 0( )] cos 4,
(rode = =] st 0(2) Jsin o,
(ro0)0 = Mo[%crg (T—ls)] cos 4,

[ o) e

(Trr)o = T

8D
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Finally, then, the drag coefficient may be calculated:

C=___|:16(I’2_K:|
¢ RelL3K 3]’

(82)

where, again, K = 7(r 4+ 2) and the values of
C,(K) are found in Table II. In Fig. (2), Eq. (82)
is used to plot Cy vs 7.

The Nusselt number is caleulated by substituting
Egs. (59) and (79) in Eq. (54). The result is

Nu = [(r + 2)/2(r + 1)]

-[2 + Re Pr + O(Re%)]. (83)
VII. DISCUSSION OF RESULTS
It is seen from Eq. (53) that when r = O(Re)

the drag coefficient differs from its incompressible
counterpart by a term of order 7. This increase in
drag coefficient (for = > 0) may be traced directly
to the inclusion of variable density and viscosity
in the analysis. The Mach number effect does not
contribute to the drag, to the order calculated,
because it produces a symmetric change in the
stress and pressure field.

The Nusselt number for the case + = O(Re)
[Eq. (55)] is smaller than the previously calculated
values, by a term of order =. This reduction arises
solely from the inclusion of variable thermal con-
ductivity. A term involving the Mach number also
appears, due to the effects of viscous dissipation.

The drag coefficient and Nusselt number for
the case + = O(1) are seen to be greatly affected
by this large impressed temperature difference. The
zeroth-order density and viscosity both vary in
this case, causing pressure and viscous stress distri-
butions in the flow field which are altered con-
siderably from the corresponding incompressible
values. As a result, the drag coefficient increases
almost linearly with r; its magnitude when 7 is
near unity is substantially greater than the classical
Stokes value. The zeroth-order Nusselt number also
varies significantly with 7. As 7 increases, Nu
decreases, tending toward one-half the incom-
pressible value when 7 becomes large.
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