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Effects due to the nonuniaxial part of the zero field splitting (ZFS) tensor on NMR relaxation 
enhancements produced by paramagnetic species in solution (the NMR PRE) has been studied 
theoretically and experimentally in the ZFS limit, i.e., in the limit where the ZFS energy is large 
compared to the Zeeman energy. In the ZFS limit, the precessional motion of the electron spin 
is quantized with respect to molecule-fixed coordinate axes. The uniaxial part of the ZFS tensor 
induces precessional motion in the transverse (x,y) components of the electron spin vector S, 
and x,y anisotropy in the ZFS tensor (i.e., a nonzero ZFS parameter E) induces precessional 
motion in the z component of S. The NMR-PRE phenomenon is particularly sensitive to the 
motion of S, and hence also to ZFS anisotropy in the xy plane. Mathematical expressions have 
been derived which describe the motion of the spin vector evolving under the influence of a 
general rhombic ZFS Hamiltonian and the influence of this motion on the NMR PRE in the 
ZFS limit. It is shown that oscillations in S, occur at the transition frequencies of the S spin 
system; the frequencies and amplitudes of the precessional components of S, can be calculated 
by diagonalizing the general ZFS Hamiltonian. These motions and their consequences with 
respect to the behavior of the NMR PRE are described in detail for the S=2 spin system. A 
parametrization of NMR-PRE data is proposed which gives a clear criterion for the conditions 
under which rhombic parts of the ZFS tensor significantly affect the relaxation enhancements 
produced by an S=2 spin system. This criterion is of considerable practical importance for the 
analysis of NMR-PRE data, since it defines conditions under which data may be analyzed 
without the need for independent experimental information concerning the magnitude of the 
ZFS tensor. 

I. INTRODUCTION 

Dissolved paramagnetic metal ions in solution fre- 
quently produce profound enhancements of the nuclear 
spin relaxation rates of solvent nuclei as well as of ligand 
species that are coordinated to the metal. This phenome- 
non is termed the NMR paramagnetic relaxation enhance- 
ment or NMR PRE. Physically, the NMR PRE arises 
from time-dependent dipolar and scalar magnetic hyperfine 
couplings between the nuclear and electron spins. The time 
dependence of these couplings is very sensitive to the mo- 
tion of the electron spin, which has both precessional and 
stochastic components (the latter associated with electron 
spin relaxation). 

Two physical limits concerning the motion of the elec- 
tron spin can be distinguished. First is the Zeeman limit, in 
which the Zeeman energy is large compared to the zero 
field splitting (ZFS) energy. In this situation, the preces- 
sional motion of the electron spin is quantized with respect 
to the external magnetic field. The stochastic time depen- 
dence associated with spin relaxation is superimposed on 
this precessional motion. In the ZFS limit, the ZFS energy 
is large compared to the Zeeman energy. In this latter 
situation, the electron spin precesses about molecule-fixed 
coordinate axes rather than about the external field axis. 

Since the NMR PILE depends critically on the motion 
of the electron spin, its properties differ substantially in 
these two limits. The traditional theory of the NMR PRE 

is appropriate to the Zeeman limit and was developed more 
than three decades ago by Solomon,’ Bloembergen,2T3 and 
Morgan3 (SBM theory). Very widely used in practical 
studies, SBM theory is a limiting theory which is often 
physically inappropriate for large ZFS ions, as well as in 
studies where the ZFS is smaller but the magnetic field 
strength low (as typically occurs in magnetic resonance 
imaging). For this reason, theory has more recently been 
developed in thisG9 and other’0-23 laboratories which in- 
corporates the effects of both ZFS and Zeeman interac- 
tions. Our approach, which is similar to that of Fukui, 
Miura, and Matsuda23 involves a density matrix formula- 
tion in which the motion of the electron spin operators is 
described in the natural coordinate system (molecule fixed 
or laboratory fixed) of the electron spin Hamiltonian. Us- 
ing this approach, simple analytical expressions have been 
derived4’5 which parallel the form of the corresponding 
expressions of SBM theory but are appropriate for the 
uniaxial ZFS limit. Theory that bridges the ZFS- and 
Zeeman-limit regimes has also been derived6s23 and has 
been implemented in the program PARELAX.~ ZFS interac- 
tions give rise to striking qualitative phenomena in the 
NMR PRE which have no analog in the Zeeman limit. 
Qualitative aspects of these phenomena have been de- 
scribed systematically for spin systems with S= 1 (Ref. 7) 
and S> 1.’ 

In recent work9*23 it has been shown that the presence 
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of (xg) anisotropy in the ZFS tensor, i.e., a nonzero E 
parameter, can in the ZFS limit have very profound effects 
on the NMR PRE which differ qualitatively in character 
from those produced by the uniaxial part of the ZFS ten- 
sor. This situation results from the fact that the E term of 
the ZFS Hamiltonian, unlike the uniaxial term (that pro- 
portional to the ZFS parameter D), induces precessional 
motion in the z component of the electron spin. The 
present study concerns the general (nonuniaxial) ZFS 
limit, for which new closed form expressions for the NMR 
PRE are derived for the magnetic-dipole-magnetic-dipole 
and scalar relaxation mechanisms. These expressions are 
cast in a mathematical form which clearly relates the phys- 
ical properties of the precessional motion of the electron 
spin to the behavior of the NMR PRE. The specific behav- 
ior of the S=2 spin system is elaborated in some detail. 
The theory of the effects of ZFS rhombicity that is pre- 
sented below differs from our earlier theory’ in that the 
latter was suitable for numerical calculations but, unlike 
the present treatment, was not cast in a form which pro- 
vided a transparent qualitative picture of the effect of the 
ZFS E term on the motion of the electron spin vector and 
on the NMR PRE. 

The present theory has been applied to NMR-PRE 
data for the methyl proton resonance of tris- 
[acetylacetonato]Mn (III) ( Mn[acac13), which contains 
high-spin Mn( III), a d4 ion with S=2. At magnetic field 
strengths below about 2 T, the Mn[acac13 spin system is 
well described by the ZFS limit. Its associated NMR PRE 
has previously been studied in detail using theory576f24125 
which accounts for the Zeeman interaction plus the uniax- 
ial part of the ZFS tensor. The analysis of these data is 
reconsidered below using the theory developed here and 
in Ref. 9 in order to better understand the role of ZFS 
rhombicity. 

laboratory coordinate frame in which the z axis is parallel 
to the external magnetic field. Spin variables and functions 
written with a superscripting caret (,!?& are expressed in 
the molecule-fixed coordinate frame which diagonalizes the 
ZFS tensor. ,$A” and S(2) +2 are spherical tensor forms of the 
spin operators, the definitions and matrix representations 
of which are given in the Appendix. XzFs is nonzero for 
electron spins S> l/2 in nonspherical site symmetry; this 
situation will be assumed in the following discussion. g is 
the electron spin g value, P is the Bohr magneton, BO is the 
laboratory magnetic induction, wD and wE are the ZFS 
parameters D and E (in cm-‘) expressed in rad s-’ (e.g., 
wg=2mD), and A is the electron-nuclear hyperfine cou- 
pling tensor. Equations (2b) and (2~) neglect quartic 
terms in zzEs, which are nonzero for S)2 although nor- 
mally small. The precessional motion of S arises from the 
static parts of Xs, while electron and nuclear spin relax- 
ation phenomena originate in the time dependent parts of 
Xs. Stochastic fluctuation of XzFs provides (for S > l/ 
2) the principal mechanism of electron spin relaxation, and 
stochastic fluctuations in Xhf give rise to the NMR PRE. 
zM is composed of additive terms due to electron-nuclear 
magnetic dipole and scalar (Fermi contact) interactions, 
which produce additive dipolar and scalar contributions to 
the paramagnetic part, R,,( = l/T,,), of the nuclear spin 
relaxation rate. 

Quantization axes of the precessional motion of the 
electron spin are determined fundamentally by the relative 
magnitudes of &“z and zzFS. The Zeeman limit corre- 
sponds to Xz>XzFs, the general (anisotropic) ZFS limit 
corresponds to z &4Yz, 

7 
and the uniaxial ZFS limit 

corresponds to ( Xzg ) Xz, %$,?!J. The behavior of the 
NMR PRE differs profoundly in these three limits in ways 
which have been described in considerable detail previ- 
ously?9’23 

II. THE ELECTRON SPIN HAMILTONIAN 

The precessional motion of the electron spin is induced 
by the static part of the electron spin Hamiltonian, Hs 
=Ws, where 

&“s=&“z+~zEs+~hf. (1) 
The terms on the right-hand side of Eq. ( 1) are the Zee- 
man, the quadratic zero field splitting, and the electron- 
nuclear hyperfine contributions to &“s, given by 

~i?=gP&% (24 

xz~=2YgJ+2?g& 

Ill. MOTION OF THE ELECTRON SPIN AND ITS 
EFFECT ON THE NMR PRE 

=o~~~-3-1s(s+l))+o~(~~-~~) (2b) 

= (~>“‘~~~“+~,(~:‘~+s’_z~,, (2c) 

%‘hf=I*A*S. (2d) 
The spin variables in Eqs. (2a)-(2c) are expressed in dif- 
ferent coordinate systems. We use the convention that spin 
variables and functions of spin variables that are written 
without a superscripting caret (e.g., S,) are expressed in a 

Physically, the NMR PRE depends on the Fourier 
components of the electron-nuclear magnetic hyperfine in- 
teraction (which is composed of dipolar and/or scalar cou- 
plings) at the transition frequencies of the coupled I-S spin 
system. For this reason, RI,,, depends critically on the mo- 
tion of the S spin. The objective of the present section is to 
describe the effect of ZFS rhombicity (i.e., the E term) on 
the motion S and to show, physically and mathematically, 
how this motion affects the nuclear spin relaxation rate. 

For this purpose, the theoretical expressions for the 
paramagnetic relaxation enhancement will be expressed in 
a form which isolates the dependence of R lm on S(t) . The 
motion of S appears in the NMR relaxation theory in the 
form of the time correlation functions G,(t) and G, (t) of 
the longitudinal and transverse components of the electron 
spin, 

G,(t) =TrCp(tW,(t)+!W)l, 

G, (t) =TrCp(W, (M’, (O)l, 
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where p is the density matrix for the S spin manifold. 
Normally the electron spin system remains at thermal 
equilibrium during NMR experiments. Assuming that this 
is true and that the S spin system is in the high temperature 
limit implies that p(t) =po= (2S+ l)-’ 1, where p. is the 
density matrix of the S spin manifold at thermal equilib- 
rium and high temperature, and 1 is the unit matrix. The 
motions of S,(t) and S,(t) contribute additively to R,,. 
For the uniaxial ZFS limit, the electron spin variables are 
most conveniently expressed in the molecular coordinate 
frame. Theory6p9 gives 

R,,=iiI~+2-‘(~l,‘)+ffl,)), (5) 

where i{z and 61;’ 
e;(t) and t&(t): 

are Fourier integrals of the functions 

A (2) R1,=b,(r,B) s 
m G=(t>exp[ (icdI-ri’)t]dt, (64 

0 

&;)=b*(r,e> 
I 

O3 G*(t)exp[ (icoI-T;‘)t]dt. (6b) 
0 

precessional motions which, when w,r,> 1, where T, is the 
correlation time of the magnetic dipole interaction, reduce 
the integral of Eq. (6b) to a small value. In contrast, Sz 
and G, do not precess in the uniaxial ZFS limit (nor do S, 
and G, in the Zeeman limit), their only time dependence 
being stochastic motion thai is associated with electron 
spin relaxation. As a result, G,(t) [or G&t)] typically per- 
sists for much longer times than does G,(t) [or G,(t)]. . . When this IS true, RI, &$&;’ . 

When ZFS rhombicity is significant in thz ZFS limit, 
this picture changes profoundly since ihen S,, like S, , 
precesses. The precessional moiion of S, is described by 
oscillatory time dependence in G,(t), and when significant 
precession occurs on the time scale of rC, this motion acts 
to depress ii:. In the following we develop an explicit 
algebraic expression for h=‘,(t) in the ZFS limit when the 
ZFS tensor contains both uniaxial ( D) and rhombic (E) 
terms. We also have the more general objective of devel- 
oping a clear physical picture of the motion of S under 
Xzrs and of the consequences of this motion on the be- 
havior of the NMR PRE. 

Likewise, Z&man-limit theory can be cast in a similar 
form, where Ri, is written as a sum of terms Rff and 
R!,f ). In both limiting theories, &I: and R pi correspond 
to the “low frequency” part of R,,,, [that proportional to 
the spectral density function j ( al)], and ii;’ and Rig) 
correspond to the “high frequency” parts of R,, [those 
proportional to j ( ws+wl) in Zeeman-limit theory or to 
j (c+ *al) in the uniaxial ZFS-limit theory]. wI and ws are 
the nuclear and electron Larmor precession frequencies, 
and the w,, are the one-quantum transition frequencies of 
the S-spin system in the ZFS limit. The functions b,(r,C3) 
and b, (r,(3) depend on the strength and geometry of the 
magnetic dipole coupling interaction, but not on the mo- 
tion of S(t) . In uniaxial ZFS-limit theory of dipole-dipole 
relaxation, 

The trace in Eq. (3) can be evaluated by writing S=(t) 
in the Heisenberg representation, 

j*,(t)=exp( -iXz&>+?z(0)exp(i&“zFst), (8) 

and evaluating the sum in the eigensystem { 1 IL), 1 Y);E~ ,E,,} 
of zzFs. We assume that the S spin system remains at 
thermal equilibrium in the high temperature limit so that 
its wave function is 

IqQ=(=+1r1’2c b-4. (9) 
P 

Using Eqs. (3), (8), and (9) and the closure relation gives 

C?=(t) = (2S+ 1)-l exp( -t/Ts) C exp[i( -Ep+e,)tl 
P?V 

b, (r&4@) =b*(r,Q) 

=; y’,g%-“( E)’ i-2-1P2(c0se)]. 

(7b) 

p2(cose)l, (74 

where ‘yI is the nuclear gyromagnetic ratio, p. is the mag- 
netic permeability of free space, r is the I-S interspin dis- 
tance, P2(x) is the second-order Legendre polynomial, and 
8 and @ are the polar angles of the I-S vector in the 
molecule-fixed coordinate frame which diagonalizes the 
ZFS tensor. In Eqs. (6), rR=rg) is a reorientational cor- 
relation time for a molecule-fixed first-rank spherical ten- 
sor. 

X(~l~~(O)I~)(~I~~(O)I~). (10) 
In Eq. ( lo), electron spin relaxation, which results from 
stochastic time dependence in Xs( t), has been described 
by a single exponer$ial factor, exp( - t/Ts). 

In evaluating G,(t), it should be noted that Sz is diag- 
onal in the eigenbasis I m) of &PC@ but not in the eigen- 

33 basis I p) of %zm,= X&g + Xzrs. To evaluate the ma- 
trix elements (p I S, I Y), the eigenvectors I p) of Xzrs are 
expanded in the eigenbasis I m) of XL%, 

Ip)= Cqw?w. (11) m 
The fact that [S=,.X$--] = 0 implies that (n I S=,I m) 
= mSmn , giving 

The most common physical situation is that 
jp,$$ 
R i,,, ) R iz ) in the Zeeman limit. In other words, it is the 4 

in the umaxial ZFS limit, and likewise that 

time dependence of the z component of S which gives rise 
to the major part of the T1 NMR PRE. This reflects the 
fact that the transverse components of S undergo rapid 

G=(t) = (2+.S+ 1)-i exp( -t/Ts) C exp[i( -ep+c,)t] 

by 

XCC” *c p,mcv,mc,,,l p,mtmm’- (12) 
m,m’ 

Inspection of Eq. ( 12) shows that there is no contribution 
to G,(t) from terms with m =0 or m’ =0, and it can also be 
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shown that terms for which ,U=Y vanish. The form of 
G,(t) can be simplified by defining the coefficients 

gA=ql,Y=&,/L= c C* 
m,m' 

p,mCv,mCv,m~ p,mfmm’9 * c (13) 

and the transition frequencies, ol= 1 E,,-Em 1 (Y>P). 
Equation (12) can then be written 

&t) = (2S+ 1)-l exp( -t/Ts) C g,Jexp(io,$) 
,I 

+exp( -ia@) 1 

=2(=3-l)-‘exp(-Urs) CgAcos(ont), (14) 
.I 

where the sum in Eq. ( 14) is-over transitions L for which 
Y > ,CL. Hence the motion of G,(t) consists of an exponen- 
tially damped sum of oscillatory components, the frequen- 
cies of which are the transition frequencies w1 of the S spin 
system, 

Inserting Eq. ( 14) in Eq. (6a) and integrating gives 
the following form for A:$ 

Thus the principal effect of ZFS rhombicity on the NMR 
PRE is that the low frequency term, &$, which is propor- 
tional to j ( wl) in the uniaxial-ZFS limit, is replaced by a 
sum of terms proportional to j ( O+ uL), where oL are 
transition frequencies of the S spin system. Since wL is 
nearly alyays much larger than wl, the precessional mo- 
tions of G,(t) act to depress i{z, strongly so when wnrC 
> 1. 

Equation ( 15) describes the intramolecular magnetic- 
dipole-dipole relaxation mechanism. The scalar contribu- 
tion to RI, can likewise be written as a sum of terms due 
to the longitudinal and transverse components of S, 

R lm,r =I?;&+ 2-‘(&b+@,9. (16) 

Following the treatment of Ref. 4, the longitudinal term 
p 

Im,se is 

&&3-‘A2 
s 

m ~~(t)exp(--/7~)--/7,,) 
0 

X [exp(io#)+exp( -iwrt)]df (17) 

=3-‘A’(ZS+l)-’ 2 &,dj(%+@r> 
A 

+i(%-%) I. (18) 
A is the scalar coupling constant in rad s-l. The scalar 
correlation time rsc in the ZFS limit is defined by 

(r~)-‘=(r~))-l+(r~)-l+(r,“)-l, (19) 

where rW, is a correlation time which describes time de- 
pendence in the scalar coupling constant A as may arise, 
for example, due to chemical exchange reactions. 

8 . . 

‘I 0.2 0.4 0.6 0.8 1.0 

E/D 

FIG. 1. Transition frequencies (in units of on) of an S=2 spin system 
that is subject to the quadratic uniaxial zero field splitting Hamiltonian of 
Eq. (2d). The transition frequencies plotted are those associated with 
nonvanishing amplitudes gi as defined by Eq. (13). 

IV. MOTION OF THE SPIN FOR 5~2 

This result is now elaborated for S= 2. The amplitudes 
gn and transition frequencies wL can be computed by diag- 
onalizing Xzm . For this purpose, Xzrs must be ex- 
pressed in matrix form in the molecular coordinate frame 
that diagonalizes the ZFS tensor. The appropriate matrix 
forms of ,!$,” and $23. are given in the Appendix. &“i!$ is 
diagonal with eigenbasis 1 m) in this coordinate frame. The 
spin operator L?fi in X&g mixes eigenstates of Xi. for 
which Am,= f 2. This is reflected in the form of the trans- 
formation matrix defined by Eq. ( 11)) which is 

11) 12) 13) 14) 1% 

c-i-2,1 0 c+2,3 o c+2,5 I +a 
0 c+1,2 0 c+1,4 0 l+l) 

co,1 0 co,3 0 co,5 IO) 

0 c-1,2 0 c-1,4 0 l-1) 

c-2,1 0 c-2,3 o c-2,5 I-2). 
The eigenvectors 1~) of XzFs occur as two groups, 
C IpI), Ip3), Ii.41 and { b2)r 1p4)). The first of these con- 
sists of linear combinations of the { I +2), I O), I -2)) 
states; the second, linear combinations of the { I + 1 ), 
I - 1)) states. Off-diagonal matrix elements between the 
two sets vanish (equivalently, only states with Am= &2 
are coupled by XiE?s). According to Eq. ( 13) there are 
four eigenfrequencies of the spin system that have nonvan- 
ishing amplitudes gn , namely, {wi = el -es, w2 = el - e3, 
w3 = e3 - es), which are transition frequencies between 
eigenstates of the first set, and {w4=e2-e4} between the 
eigenstates of the second set. 

Figures 1 and 2 illustrate the precessional behavior of 
&J t). The eigenfrequencies wk (in units of wn) and am- 
plitudes gL are shown as a function of the E/D ratio. It is 
clear from the figures that yhen E/D+ 0, the only non- 
vanishing contributions to G,(t) are those with zero fre- 
quency, gl and g4. In other words, when E=O, S,(t) is 
static (which also follows from the fact that [S,,9@& 
= 0). As E/D increases, u4, which describes spin motion 
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L 

0 0.5 1.0 

ElII 

FIG. 2. Amplitudes of the oscillating components of the time correlation 
function G,(r) as a function of the ratio of ZFS parameters E/D. The 
amplitudes are defined in Eq. ( 13). 

in the { I + 1 ), I - 1)} states, increases linearly with E/D, 
while w1 increases quadratically and much more slowly. 
Thus the w4 contribution to RI, falls off much more rap- 
idly with increasing E/D than does the contribution due to 
wl. The two eigenfrequencies, u1 and w4, that contribute to 
G,(O) account respectively for 80% and 20% of the total 
amplitude. Figure 3 shows the dependence of I?!2 on E/D, 
with the reduced dipolar correlation time wr,~= set to 15. 
kiz decreases in a biphasic manner, dropping by 20% in 
the region where E/D-CO.O2, and the remaining 80% in 
the vicinity of E/DzO. 15. Clearly: these two phases result 
from the precessional motions of G,(t) that are associated 
with eigenfrequencies w4 and ol. 

Figures 4 and 5 illustrate the time-domain behavior of 
the spin populations of an S=2 spin system under the 
influence of the general rhombic ZFS Hamiltonian. These 
plots were computed by direct numerical integration of the 
density matrix p(t), expressed in the eigenbasis of 
&“;g, using the Heisenberg representation of the opera- 
tor, 

FIG. 3. 
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Dependence of k$ [defined by Eq. (6a)] on the ratio of ZFS 
parameters E/D in the anisotropic ZFS limit. 

pi,i T 

40 80 120 160 200 
I 

Time Cpsl 

FIG. 4. Time evolution of the diagonal elements of the density matrix 
p(t) of an S=2 spin system that precesses under the influence of a static 
anisotropic ZFS Hamiltonian of the form of Eq. (2d). The spin system 
was prepared in the ( +2) state at t=O, so that P+~,+~(O) = 1 at t=O and 
all other density matrix elements pLj(0) are zero. The elements p+,,+, 
and p-i,-, remain zero at all t. The time evolution of p,,(r) was calcu- 
lated by finite numerical integration of the equation of motion of the 
density operator [Es. (16)]. The exponential propagator was written us- 
ing the matrix representation of %zm that is given in the Appendix, 
terms up to fifth order in the exponential operator being retained. Finite 
time steps of 0.2 ps were used in the calculation. The assumed ZFS 
parameters were D=3 cm-‘, WD=O.l. 

p(f>=exp( -i~~Fst)p(0)exp(i&PZFst). (20) 

Figure 4 shows the time evolution of the diagonal matrix 
elements of p( t) when the spin system is initially prepared 
in the 1 +2) state at t=O, with D=3 cm-’ and E/D=O.l. 
Under RzFs there is no mixing of the {I +2), IO), I -2) 
states with the {I + 1) and ) - 1)) states. Thus p+‘,+ r and 
p-1,-l both remain zero at all t. The low frequency (wl) 
oscillation of p(t) interchanges the ( + 2) and I - 2) pop- 
ulations. The o2 and o3 terms are small in amplitude and 
produce a high frequency admixture of the IO) state with 
the I +2) and I-2) states. Figure 5 illustrates the behav- 
ior of the same spin system prepared at c =0 in the I + 1) 
state. In this case, the spin populations oscillate between 
the I + 1) and I - 1) states with the single transition fre- 
quency w4, where w4)01. 

0 
0 

Time (ps) 

FIG. 5. Time evolution of the diagonal elements of the density matrix 
p(t) of an S=2 spin system that precesses under the influence of a static 
anisotropic ZFS Hamiltonian. All details of the calculation are the same 
as for Fig. 4, except that the spin system was initially prepared in the 
1 +l) state, so that p+,,+,(O)=l, and all other pcj(0)=O. 
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G,(t) 
Time Ips) 

, 
1bD 200 

FIG. 6. Evolution of the time correlation function G,(t) for an S=2 spin 
system which is under the influence of an anisotropic ZFS Hamiltonian 
&“xn at thermal equilibrium. G,(t) was calculated by direct numerical 
integration of the exponential form of the spin operator [Eq. (S)]. The 
calculation was similar to that described in the legend of Fig. 4, except 
that the spin system was at thermal equilibrium. 

Figure 6 shows the time evolution of the time correla- 
tion function G,(t), calculated by direct numerical integra- 
tion of Eqs. (3) and (8) for an ensemble of spins, S= 2, in 
thermal equilibrium. The plot clearly shows the two major 
oscillatory components (wi and w4) which contribute to 
G=(t) at small E/D. The higher (w4) and lower (w,) fre- 
quency terms are responsible for the two phases of the R,, 
vs E/D plot that were discussed above (see Fig. 3). 

V. THE RESONANT PART OF R,, 

It has been show? previously that the transverse part 
of RI,,, [that due to G, (t)] exhibits resonant behavior in 
which the term 4;;) becomes large at the energy level 
crossings of the 5’ spin system. Physically, this behavior 
corresponds to resonance between the precessional motions 
associated with &“-$z and Xi$s. For an S= 1 spin sys- 
tem, ki; ) shows a simple resonance at 2oE=oD, the func- 
tional dependence of which has been discussed previously.’ 

The situation for S=2 is more complex. The energy 
level diagram (energy in units of tiD vs E/D) is shown in 
Fig. 7. There are two level crossings, one of which involves 
a near degeneracy of the 1,~~) and 1~~) levels over a broad 
range of E/D ratios centered around E/D= 1, the other of 

FIG. 7. Energy level diagram of an S=2 spin system under the influence 
of a general anisotropic ZFS Hamiltonian zzm. Energy is plotted as a 
function of the E/D ratio. Labels denote the eigenstates ( &2,* 1,O) of 
R$zat E/D=O. 
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FIG. 8. Dependence of R,, ^(*) [defined by Eq. (6b)] on the ratio of ZFS 
parameters E/D in the ZFS limit. 

which involves a much more abrupt crossing of 1~~) and 
1~~). The effect of these level crossings on the behavior of 
R[,$) is shown in Fig. 8. The calculations in the figure were 
carried out using the anisotropic ZFS-limit theory of Ref. 
9. When E/DzI, RI, exhibits resonant behavior which 
originates in the k\$) term. The resonance has broad and 
narrow components, both centered at E/D= 1, which cor- 
respond to the two level crossings in Fig. 7. The ratio of 
amplitudes of the broad and narrow components of ff f; ) is 
0.8:0.2. 

VI. ANGULAR DEPENDENCE OF THE NMR PRE 

Both the resonant and nonresonant parts of RI,,, are 
functions of 0 and @, the polar angles which specify the 
position of the nuclear spin in the molecular coordinate 
system.’ The functional dependence on 0 is shown in Fig. 
9, where curves are plotted for three 0 values, 8 =0, 
0=0.9553, and 8=7r/2. The curves for 8=0 and 
0 = 7r/2 correspond to extremes in the angular variation of 
R,,. The angle 8=8e with Oo=0.9553 rad is the polar 
angle at which the second degree Legendre polynomial 
Pz (cos e ) equals zero. This curve corresponds to values of 
RI,,, that are averaged over the space of 8 (see below). 

It should be noted in Fig. 9 that the resonant and 
nonresonant parts of RI,,, have opposite 8 dependence. 
The nonresonant term RI? exerts a greater influence on 
axial nuclear positions than on equatorial nuclear posi- 
tions; the opposite 8 dependence occurs for the resonant 
term ki$ ). This difference reflects differing geometries of 
the local magnetic dipole fields that are associated with the 
resonant and nonresonant parts of R1,.9 The functional 
form of the 8 dependence is the same as that which occurs 
in the uniaxial ZFS-limit theory, namely, 

R$I+P,(cos~), 

it!;’ a 1-2-*P2(Cos 6). 
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PIG. 9. Angular dependence of the NMR PRE in the anisotropic ZFS 
limit as a function of the ratio of the ZES parameters E/D for three values 
of the polar angle 8. The calculations are normalized to the value of R,,,, 
at E/D=O, e=e,,=O.9553 rad. 

Since P,(cos 9) = P2( cos a,) = 0, the curve for a0 in Fig. 
9 corresponds to an average of R,, over the space of 8 as 
pointed out above. 

In addition to 8 dependence, the resonant term exhib- 
its Q dependence when XzFs is anisotropic. As shown 
previously,’ li ig ) can be written as a sum of terms, one of 
which is 8 dependent but Q, independent, the other of 
which transforms as p-y”. The nonresonant term l?iz is 
strictly @ independent. The calculations of Fig. 9 were 
carried out for a= r/4, where all Q, dependence in iiz ’ 
vanishes. 

VII. CRITERIA FOR NEGLECT OF RHOMBIC 
COMPONENTS IN THE ZFS TENSOR 

In the vicinity of the ZFS limit, it is frequently the 
situation that NMR-PRE phenomena are largely indepen- 
dent of the specific numerical value of the ZFS parameter 
D. This occurs because wp appears only in 2:: ), not in 
l?pA, and when tigr=> 1, Rig) is small as long as E/D< 1. 
This approximate independence of the NMR PRE on tig is 
fortunate, since independent experimental information on 
the ZFS parameters is usually unavailable for the chemical 
systems used in NMR studies. While it is approximately 
independent of tig, kE is quite sensitive to the magnitude 
to the E/D ratio. In this section we discuss criteria for 
deciding when the effects of rhombicity in the ZFS tensor 
can appropriately be neglected, and more generally, the 
conditions under which NMR-PRE data can be analyzed 
quantitatively in the absence of experimental information 
on the ZFS parameters E and D. 

From the above discussion, it is expected that ZFS 
anisotropy will be important when significant precession of 
,$z occurs over the coherence time scale that is defined by 
TV. For S=2, the precessional frequencies of S, are the 
eigenfrequencies o1 and w4, with wl, which accounts for 
80% of the magnitude of G,(O), much more important. 

LOE-27 1 I I I I I I 

l.QE-28 I I I I hWQ 
v//j 

LOE-29 --- 

LOE-30 

LOE-31 
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FIG. 10. Proposed parametrization of NMR-PRE data for S=2 in the 
anisotropic ZFS limit. Twelve calculated curves of (R,,,,&T~) vs 
x= (o,?Tce) (ODTC) -lR are shown corresponding to the combinations of 
three values of the ZFS parameter D and four values of the dipolar 
correlation time rC. Solid lines are for D=5 cm-‘, dashed lines are for 
013 cm-‘, and dotted lines are for D=l cm-‘. The four solid lines 
correspond to four values of rC, r,= 10, 25, SO, and 100 ps, the longest r, 
value having the deepest local minimum in the region x= l-4. The fam- 
ilies of four dashed lines and four dotted lines are similarly ordered in that 
the deepest minimum corresponds to the longest TV value. 

Thus, the effect of ZFS anisotropy becomes important 
when wir,> 1 and when w47,> 1 for the large and small 
terms, respectively. In order to obtain a parametrization in 
terms of the ZFS parameters D and E, we have carried out 
numerous calculations of R irn as a function of T, and of the 
ZFS parameters tig and @E, searching for the most effi- 
cient representation of the data. In these studies, RI,,, was 
expressed in a reduced form, R1,,rd= ( y&rm3pd4r) -’ 
R im, to suppress simple scaling factors. Optimal results 
were obtained for plots of (R Im,red/~c) vs the dimensionless 
parameter x s (use) (0 DTc) - “‘, as shown in Fig. 10. For 
a wide range of D, E, and rc, the large (80%) drop in 2;: 
begins when x 20.4. The same parameter x does not as 
effectively parametrize the resonant part of RI,, which is 
centered about E/D= 1, nor the small (20%) component 
of kis that is due to w4. Clearly the depth and breadth of 
the RI,,, minimum varies within the range x=0.5-10. 
However, the x parametrization does provide a useful basis 
for deciding when the effects of ZFS anisotropy can appro- 
priately be ignored. The appearance of the factor 0~~ in 
the parameter x is not surprising in view of its physical 
association with the precessional behavior of S,. Lacking 
an analytical theory for the anisotropic ZFS limit, how- 
ever, we cannot at present give a full theoretical justifica- 
tion for the functional form of x. It should also be noted 
that the criterion x 5 0.4 is appropriate for S=2, but prob- 
ably not for other spin values, for which different criteria 
and perhaps also different parametrizations may be needed. 

The parametrization shown in Fig. 10 is very effective 
for the major part of R,, (‘) for the S = 2 spin system. More 
generally, it also specifies the range of experimental condi- 
tions under which ZFS-limit NMR-PRE data can be ana- 
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lyzed quantitatively without specific experimental informa- 
tion concerning the magnitude of the ZFS interaction. 
Specifically, the condition x SO.4 specifies the experimen- 
tal ZFS-limit regime in which RI,,, is largely independent of 
both of the ZFS parameters D and E. In this regime, the 
expression 

is reasonably accurate. 

VIII. INTERPRETATION OF NMR-PRE DATA FOR 
Mn[acac], 

tris-[acetylacetonato]Mn( III) (Mn[acac]s) is a model 
S= 2 complex, the spin relaxation properties of which have 
been studied previously in considerable detai1.5V6T8t24V25 This 
complex contains high-spin Mn( III), a s( ion that is sub- 
ject to Jahn-Teller distortion. This results in tetragonal 
elongation of the oxygen coordination sphere, which, in 
Mn[acac]s, has approximate D4,, symmetry, with four 
short Mn-0 bonds E1.942, 1.931, 1.934, and 1.933 A, 
r,,(Mn-O) = 1.935 A] and two lon 
and 2.109 A, r,,(Mn-O) =2.111 1 

Mn-0 bonds [2.112 
].26 The ZFS of Mn 

[aca& is substantial [D= -3.1 cm-’ (Ref. 27)] and, 
judging from the near tetragonal symmetry of the manga- 
nese coordination sphere, approximately uniaxial. Previous 
theoretical analyses of the methyl proton resonances of 
Mn[acac], are described in Refs. 6 and 25. These analyses 
included the effects of the uniaxial ZFS and Zeeman inter- 
actions but ignored the effects of ZFS rhombicity. In this 
section we examine the role of ZFS rhombicity on the 
analysis and in particular on the uncertainties that are as- 
sociated with our lack of knowledge of the magnitude of 
the ZFS parameter E. 

To examine this question, we have calculated the de- 
pendence of RI, for the methyl proton resonance on the 
E/D ratio, employing in the calculations the same param- 
eters, 1 DI =3.1 cm-‘, rs=8 ps, 0=0.95, that were used 
in the study of Ref. 6. Using these values of rs and 1 D I, 
the criterion suggested above (x < 0.4) implies that the 
uniaxial ZFS limit theory should be reasonably accurate 
for E/D ratios up to about 0.15 or E ~0.5 cm-‘. A de- 
tailed description of the dependence of R,, on E/D is 
shown in Fig. 11, which was calculated assuming rs= 8 ps 
and 1 DI =3.1 cm-‘. This curve is qualitatively similar to 
that of Fig. 9, but exhibits quantitative differences due to 
the relatively small value of the reduced dipolar correlation 
time (OPT== 1.6). The high frequency feature due to w4 is 
shifted to higher E/D values, the midpoint now occurring 
in the vicinity of E/D=O.O4. Also, the resonant features 
near E/D= 1 are broadened, and the depression in R,, 
which occurs near E/D=O.35 is much less pronounced. 

From Fig. 11 it is clear that the ZFS rhombicity acts to 
depress RI,,, below the value that would occur if the ZFS 
tensor were uniaxial (E/D=O). The effect of this in the 
analysis is that the calculated dipolar correlation time 7, 
(which for Mn[acac]s is nearly equal to 7s) computed 
from uniaxial ZFS-limit theory is smaller than the true 

,001 .Ol .I 1 

E/D 

0 

FIG. 11. Effect of ZFS anisotropy on the NMR PRE of tris- 
(acetylacetonato) Mn( III ) in the anisotropic ZFS limit. The calculations 
assumed 1 DI = 3.1 cm-’ and rs= 8 ps, and are normalized to the value of 
RI,,, at E/D=O. 

value. Figure 11 provides a basis for estimating this error 
as a function of the E/D ratio. When E/D is very small 
(E/D < 0.02), the attendant error in rs is negligible, O%- 
2%. For moderate E/D values, 0.02 <E/D ~0.15, R,, un- 
dergoes its initial drop of 20%. The value of rs that is 
calculated by uniaxial ZFS-limit theory is thus smaller 
than the true value by a factor that increases from 2% to 
20% across this range. For E/D > 0.15, the error increases 
more rapidly. The maximum possible error in TV due to 
ZFS rhombicity is approximately a factor of 2, which oc- 
curs at the R,, minimum at E/D=O.4. 

The ZFS parameter E of Mn[acac], has not been mea- 
sured; however, the degree of chemical anisotropy in the 
transverse plane of Mn[acac13 is not large. The E/D ratio 
can be estimated crudely by considering as a ratio the vari- 
ation of Mn-0 bond lengths within the transverse plane 
relative to the difference between the axial and equatorial 
Mn-0 bond lengths. This comparison suggests that E/D is 
the order of 0.05. On this basis it is likely that rs was 
underestimated slightly, by lo%-20%, in previous studies, 
in other words, that r,=9-10 ps rather than 8 ps. 

This is a very minor difference. However, it is clear 
from Fig. 9 that in general the effect of the E term of the 
ZFS tensor can become quite large when x > 0.4, particu- 
larly when w~T,~ 1. In practical cases, the likely influence 
of ZFS rhombicity on the NMR PRE needs careful con- 
sideration in experimental studies that are conducted out- 
side the Zeeman limit. 

APPENDIX 

Matrix representations of the first- and second-rank 
spherical tensor operators for S=2 are given below: 
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000-l 0 
000 0 -2 

020 00 
0 0 61’2 0 0 

Matrix representations of the second-rank spherical tensor 
operators which appear in Eq. (2~) are 

/2 0 0 0 o\ , 
O-l 0 0 0 

‘$a= 0 - 3 
l/2 0 0 -2 0 

2 
0, 

00 0 -1 0 \ 00 0 0 21 
0 0 6”2 0 0 

0 0 3 0 

0 3 0 0 0 
0 0 61’2 0 0 

The forms of these operators follow from the relations 
S~2)=6-1’2[3(Sz)2-S(S+ l)] and S(:4=2-‘(S,)2.28 
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