OBSERVATIONS OF NEEDLE CRYSTALS

the FEM patterns of exact twofold symmetry but also
the patterns of nearly fourfold and threefold symmetry,
respectively, like the W emitter tips.

Though the present FEM observations were not car-
ried out in ultrahigh vacuum but in conventional high
vacuum, the experimental facts discussed here may
offer some information about the oxidation on tungsten
surfaces.
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An analysis is presented of the forced oscillations of a gas-filled bubble at rest in a large body of a linear
viscoelastic fluid. Two types of forcing are considered. In the first, oscillations are induced by a pressure
surge on the system. For the three-parameter fluid model employed, numerical computations show that
for a given ratio of the fluid’s elastic modulus to the pressure surge, the damping of the bubble motion
exhibits a maximum as a function of the fluid relaxation time at a value of this parameter equal approxi-
mately to one-fifth the natural period of oscillation. At very high or very low relaxation times, the damping
becomes insignificant. As the second type of forced oscillation, we consider the motion induced by the
application of ultrasonic waves to the system. Here, damping is found to depend strongly on the product

of impressed frequency and fluid relaxation time.

I. INTRODUCTION

Previous studies on bubble oscillation and collapse
in liquids have primarily dealt with bubble motion in
Newtonian fluids.!~® Although there have been studies
carried out on bubble oscillation in ““non-Newtonian”
liquids,*® these analyses have been limited to fluids
belonging to the Stokesian, i.e., viscous, group in the
rheological classification of materials. It is of both
practical and theoretical interest to consider the possible
reduction or suppression of acoustical or flow-induced
cavitation by the presence of viscoelasticity in the
ambient liquid.

The motion of bubbles in fluids for which the stress—
strain functionality involves memory effects or de-
pendence on the history of the fluid motion has only
been treated in a few limiting cases. Fogler and Goddard’
have presented an analysis of the collapse of spherical
voids in viscoelastic fluids under the action of a “step-
function” pressure surge. For the case of a particular
linear viscoelastic fluid model it was shown, among
other things, that the presence of shear elasticity
could significantly retard the collapse of voids in
liquids having relaxation times comparable to the
classical Rayleigh collapse time. Also, some speculations

were made concerning the effects that liquid-phase
elasticity might have on the motion of gas-filled
bubbles and, in a later work, Tanasawa and Yang,}?
have addressed themselves to this problem. However,
their analysis® relating to bubble collapse, induced by
a sudden pressure surge, fails to reveal some important
aspects of the collapse phenomenon, which appears
to result from the inappropriate mechanical analogue
they propose.

Apart from a somewhat more careful analysis of
this type of oscillation, the present work will treat
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effects in a gas-filled, oscillating
bubble. The mass represents the
effect of fluid inertia. A ® ¢
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Fi1c. 2. Dimensionless radius-time curves for various values of the ratio of elastic modulus to the amplitude of the pressure surge.

another type as well. In this latter type, we shall
again consider a gas bubble initially at rest in a large
body of viscoelastic liquid; however, the bubble motion
will now be induced by the application of acoustic
pressure variations to the system.

II. PROBLEM FORMULATION

Consider a spherical gas-filled bubble in a large body
of an incompressible liquid which initially, for all
time <0, is at rest with a radius Ry, a uniform pressure
on the liquid system, P,= Pq., and with a gas pressure
inside the bubble P,y; the latter is determined from
the relation

P = Py+20/R,, (1)

where o represents the surface tension. We wish to
analyze motions which have been induced by two
different methods. In the first, the motion is induced
by a sudden surge of pressure on the system, i.e.,

at (<0, Po=P,

1>0, P,=P,. (2)
Whereas in the second, it results from the application
of acoustic waves to the system. In this case, the
pressure at a large distance from the bubble, for any
time >0, will be given by

Py= Py— P, sinwt, (3)

where P, is the ‘““acoustic pressure’ and v is the angular
frequency of oscillation,

In either case, the general equation describing the
spherically symmetric motion of a bubble containing
a uniform gas phase, in which there is no condensation

or evaporation of fluid, has been shown’ to reduce to

R.R’+§R2=P_”—_l_)°_°_£’_§jwr"d’
2 p PR

, (4)
R r

where 7,, is the radial component of deviatoric com-
pressive stress in the liquid phase. As a rheological
constitutive equation, relating stress 7,.(¢), at a fluid
particle to the past history of the deformation rate
e ('), 0<'<i, we adopt the linear viscoelastic model
used in our previous work:

r(t) = —2 / N(=t)en(t)dt, (5)
0

with
N(t) =ps(t) +Goexp(—t/)), (6)

where, as constant parameters, u is a viscosity, Go
an elastic modulus, and A\ a relaxation time for the
fluid, and where 3(¢) denotes the delta function.

We note, incidentally, that this fluid model is
identical® with the “linear Oldroyd model”

T M(Dryr/ D) = — 2no[ ere+22(Den/D) ] (7)

of the form employed by Tanawasa and Yang (which
follows directly by an elementary integration of (7)
together with the transformation of the three
parameters:
)\1=)\,

no=p+AGo, Ae=Mu/70.

From a consideration of the liquid-phase velocity
field for spherically symmetric motion, it can be
shown’ that Egs. (4)—(6) combine to give the complete
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F16. 3. Effect of the Deborah number (fluid relaxation time/Rayleigh collapse time) on bubble motion.

dynamical equation for the bubble motion:

¥-+32=(P,/Po) — (4)/Rey) — (12 El/Re)

/" [ ( (t*—h) )] Yaya? In(ya/¥)
X dy
De v—y?
~2/Wey—P,/Py (8)
with
Py=Py-y3, ¢(0)=1 and ‘[’(0)=0a
where
De=X\/t, (a Deborah number),
Re=pR¢*/ut. (a Reynolds number),
El=Gy./u (an elastic number),
We=pR*/t,0 (a Weber number), (10)
and Yy=R/R,, t*=t/t,, and ¥1=y(#). Also, f,=

Ro(p/ Po)!'? is a characteristic (“Rayleigh”) collapse
time, with P, being the initial pressure.

To provide an intuitive appreciation of the system,
a mechanical analogue representing the effect of the
first three terms on the right-hand side of Eq. (8)
is shown in Fig. 1. These terms, representing the
effects of gas compressibility, liquid viscosity, and
liquid viscoelasticity correspond to the elements,
A, B, and C, respectively, in a spring-dashpot as-
semblage. One can also note that the conceptual
model in Fig. 1 differs from that proposed in Ref. 8,
in that the element representing the effect of gas
pressure has been placed in parallel here with the
other elements rather than in series. The latter arrange-
ment would suggest that the bubble could collapse

to zero radius as the fluid viscosity and relaxation
time both approach zero, which of course is not possible
as long as there is a noncondensable gas inside the
bubble.

As discussed in our previous work, the rather large
number of parameters, even in this relatively simple
fluid model, requires one practically to consider some
special limiting cases. In all the calculations made in
the present work, we have adopted fixed values,
u=1cp, p=1g/cm? and 6=72 dyn/cm (corresponding
to the equivalent values for water). These values cor-
respond generally to large values of the Reynolds and
Weber numbers, défined above, and imply that the

‘“‘purely viscous” and surface tension effects, as repre-
sented by the second and fourth terms on the right-
hand side of (8), are small. This is not a severe re-
striction since it turns out that the parameters u and o
could easily be changed by a factor of ten to a hundred
without rendering these effects important.

ITI. OSCILLATION INDUCED BY A SUDDEN
PRESSURE SURGE

With the initial conditions expressed mathematically
in Eq. (9) and the pressure surge given by Eq. (2),
Eq. (8) was solved numerically for Y(¢*) by a slightly
improved version of our previous integration technique.’
Figure 2 portrays the resulting oscillations, for various
values of the ratio of the elastic modulus to incremental
pressure surge, AP=(Py— P,). The radius-time
curves in this figure correspond to fluids in which the
relaxation time is much greater than either the “natural”
period of oscillation or the Rayleigh collapse time for
an ideal fluid. For this condition, i.e., large “Deborah
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F1c. 4. Maximum value of the first rebound radius as a function
of the Deborah number for various values of Go/AP.

numbers”, the amplitude of oscillation decreases
with increasing elastic modulus Go. In addition, it is
noted that as time proceeds, a phase shift develops
between the viscoelastic oscillation, Go>0, and the
“purely viscous” oscillation, for which Gy=0.

The bubble motion is shown in Fig. 3 for various
Deborah numbers and for the fixed value 0.46 of
Go/AP. One observes in this figure that the amplitude
of oscillations for a Deborah number of 0.4 is less
than that for a Deborah number of either 0.01 or 2.0.
In other words, for a given Go/AP, there appears to
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F1G. 5. Effect of elastic modulus on bubble motion induced by
acoustic pressure waves.
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be a minimum amplitude of oscillation as the Deborah
number is increased from zero.

One possible parameter for characterizing the degree
of damping for this type of oscillation is the maximum
radius reached after initial rebound of the bubble,
Rj max- There are of course other, more standard,
methods of specifying the damping in oscillating
systems; however, they usually involve several cycles
of bubble collapse and rebound. For the system
discussed here, the calculation of numerous cycles
would require excessive computational time with
perhaps little, if any, additional information gained.
Hence, we shall use the first maximum rebound radius
as a measure of damping, and this quantity is shown
as a function of the Deborah number in Fig. 4. On this
basis, one concludes, by a rough extrapolation, that
damping of the bubble motion at high Reynolds num-
bers would be small at Deborah numbers greater than
3 or less than 0.01.
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F1c. 6. Effect of Deborah number on bubble motion induced by
acoustic pressure waves.

In terms of the conceptual analogue above, one
sees that a high Deborah number corresponds effectively
to an immobile dashpot in element C, while a very low
Deborah number corresponds to a “frictionless”
dashpot in C. In the former case, we are left with two
springs in parallel with a ‘““weak” dashpot B (for high
Re), while the latter case results in one spring in
parallel with the same dashpot, B. In this manner,
it is easy to understand the occurrence of a minimum
in damping as we vary fluid relaxation time. As a
final remark on these calculations, we note that for
all the curves in Fig. 4, the minimum value of Rj max
occurs at a value of the Deborah number corresponding
roughly to a relaxation time equal to one-fifth the
natural period of oscillation. One also observes from
this plot that the minimum value of R; m.x decreases
with increasing elastic modulus.
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While the elementary fluid model used here would
probably not provide an exact description of real
viscoelastic liquids, it may not be too implausible to
expect that they might exhibit a qualitative relation
between damping and relaxation effects of the type
presented here.

IV. OSCILLATIONS INDUCED BY
ACOUSTIC WAVES

The application of ultrasonic waves to liquids has
been observed experimentally to produce a number
of unusual and interesting phenomena: (1) sono-
luminescénce, (2) erosion, (3) rectified diffusion, and
(4) increased chemical reaction rates.! These phe-
nomena are usually attributed to acoustically induced
cavitation. Hence, it is of interest to consider the
effect which fluid viscoelasticity might have on these
phenomena, through its specific effect on bubble
motion. In the present model for oscillation, induced
by this method, the ambient pressure is given by Eq.
(3). Again, a numerical solution to the integro-
differential equation of (8) is required. As in the
previous case, an extended calculation of bubble
motion would require prodigious amounts of com-
putation time. Consequently, we have limited our
calculation to the first few cycles of oscillation.

A number of radius-time curves for bubble motion
in Newtonian fluids have already been presented by
Flynn.! For purposes of comparison, one of Flynn’s
curves (Go=0) was recalculated by our numerical
procedure and is presented in Fig. 5, along with the
radius-time curves of the present work. For large
Deborah numbers one observes from this figure that
the damping of bubble motion increases systematically
with increasing elastic modulus. In Fig. 6, the radius-
time curves show that the damping of the motion
also increases with increasing Deborah number. One
can note that elasticity in a fluid may or may not
have significant effects on the motion. Indeed, it appears
that, for the relatively large amplitude acoustic waves
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considered here (P,/Py>1/3), the bubble oscillation
can be significantly damped by “elastic’ response at
the higher frequencies, where \w is order unity or
greater. However, the same fluid subjected to ultra-
sonic waves of much lower frequency (Aw<l) may
show insignificant elastic damping.

V. SUMMARY

We have considered briefly here the oscillations of
gas-filled bubbles in idealized viscoelastic liquids
induced by two different methods: (1) single pressure
surge, and (2) acoustic pressure waves. In the first
case, it is observed that for a given ratio of the elastic
modulus to the amplitude of the pressure surge,
the damping effect on the bubble motion exhibits a
maximum, as a function of the Deborah number. In
the second case, it is observed that the extent of
damping depends strongly on the product of applied
frequency and relaxation time for the fluid.

In conclusion, we have attempted to show in our
calculations the importance of the parametric regime
to the occurrence of significant elastic effects. It can
be reasonably expected that similar care would have
to be exercised in any further calculations, based on
other viscoelastic fluid models, or in any experimental
explorations of such effects in real fluids.
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