THE PHYSICS OF FLUIDS

VOLUME 7,

NUMBER 1 JANUARY 1964

A Transformation for Free-Surface Flow in Porous Media

Cuia-SauN Y

The University of Michigan, Ann Arbor, Michigan
(Received 22 January 1963; revised manuscript received 29 July 1963)

Two methods for solving two-dimensional free-surface flows in porous media are presented. Both
are based on the fact that the free surface can be transformed into a straight line. The first method
utilizes the principle of images, whereas in the second method the Schwarz—Christoffel transformation
is used. The solution for free-surface flow into a sink is given to illustrate the first method. The solution
of the problem of water wedging is given to illustrate the second method.

1. INTRODUCTION

EEPAGE flow in porous media is governed by

Darcy’s law
a 4 9
(5, Er) z)d%

in which z, y, and z are Cartesian coordinates, u, v,
and w are velocity components in the directions of
increasing z, ¥, and z, k is the permeability of the
porous medium, and p is the viscosity of the fluid.
The potential ¢ is p + pgy, in which p is the pressure,
p is the density of the fluid, g is the gravitational
acceleration, and ¥ is measured in a direction op-
posite to that of g. If the fluid is incompressible,
the equation of continuity is
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If &k and p are constant throughout the field of flow,
(1) and (2) yield

Ve =0, 3
in which V?” is the Laplacian operator
62 62 02
axz + 6y2 + azz'
On a free surface p = constant, so that
é = pgy. 4

The differential equation (3), the free-surface con-
dition (4), and the other boundary conditions govern
free-surface flows of a homogeneous fluid in a homo-
geneous medium. For steady flows, not only must
(4) be satisfied on the free surface, but the velocity
must be tangent to the surface everywhere. In
two-dimensional steady flows, the free surface is a
streamline.

Since the free surface is not given, but is to be
determined, the solution of the problem is much
more difficult than one in which the boundaries are
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specified. Even for two-dimensional flows, the usual
method for dealing with potential flows with free
streamlines in classical hydrodynamics cannot be
used because the Schwarz—Christoffel transforma-
tion cannot be applied to the logarithmic hodograph
plane. However, (4) is, after all, linear, and should
not present an insurmountable difficulty for two-
dimensional flows. Already it is known that in the
hodograph plane the free surface is a circular arc.
(See Muskat, 1937,' and later development in this
paper.) But the hodograph of the boundary of the
flow is still too inconvenient for a solution. The only
solution known to the writer is the one presented
by Muskat and it is by no means a simple one.

In this paper two methods for solving two-di-
mensional free-surface seepage flows will be pre-
sented. In both, a transformation turns the free
surface into a straight line, facilitating the use of
the method of images (the first method) or of the
Schwarz—Christoffel transformation (the second
method). Flow into a two-dimensional sink is given
to illustrate the first method, and the problem of
water wedging is treated by the second.

2. FREE-SURFACE FLOW INTO A SINK

Consider the case of steady two-dimensional flow
into a sink. The fluid is supposed to extend from the
free surface downward to infinity. First, the free-
surface condition (4) will be expressed in terms of
the velocity components % and ». Since the flow is
steady, the free-surface is a streamline, so that the
speed along the free surface is

g = —(k/w)d¢/ds-
Differentiating (4) by s and multiplying the result
by — (k/u)q, one has
q* = —(kpg/u)q dy/ds. ®
1 M. Muskat, The Flow of Homogeneous Fluids through

Porous Media (McGraw-Hill Book Company, Inc., New
York, 1937).
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Since
qdy/os =v and ¢ =4+ 7,
(5) becomes
u'+ v+ aw =0, (6)
in which
a = kpg/p.

Thus, the free surface is a cireular arc in the hodo-
graph plane, as is well known.
Now define the complex variable ¢ by

¢ = Vi(=u + )] = &+ . @

Since the derivative of the complex potential w
with respect to the complex variable z(=x + y) is

dw/dz = —u + v, (8)
and is an analytic function of 2, so is {. But
¢ = (v + W)/ + %),

and (6) shows that on the free surface the real
part of { is constant (=1/a). Consequently, in the
¢ plane the free surface is the straight line

£ = t(=1/a). €)
Equation (9) has been obtained from (4) and
(10)

on the free surface, in which ¢ is the stream function
conjugate to ¢, so that

w=¢+i
is the complex potential. Although (10) has been
used once to obtain (9), (4) and (10) are not repre-
sented solely by (9). Another relationship must be

obtained so that (4) and (10) can be adequately re-
placed. Taking the differentials of (4), one has

(11)

¥ = constant

dw = pg dy,
since
dw = d¢

on the free surface. Equation (11) can be replaced by

—%dz= pg dy,
or
1dz . dy,
coF =gt (12)

on the free surface. Now, on the free surface,
d¢ = i dn; hence,

FLOW IN POROUS MEDIA 21

Im (1 45) - 0. (13)

¢ dz

This is the equation we are looking for. Equations
(9) and (13) replace (4) and (10).
For a sink situated at the origin,
7
$= s =
in which m = m/u/k, and 27m’ is the total dis-
charge (strength of the sink). Consequently,

—% (near z = 0), (14)

%%N mi¢™' near z = 0. (15)
But (13) demands that (1/¢)dz/d¢ be real on & = &,
Thus
1de _ -(1 _ 1 )
cdr = "\¢ T 2% — ¢/ (16)
or

) = 2mi(1 +7 _5"250).

2 = 2mi(; + & In -25°—‘—§), 17
25

the constant of integration being so determined

as to make # approach zero as { approaches zero.

Equation (17) gives the solution to the problem.

It can be made dimensionless by dividing by mé&,.

The result is

z = 2i[5, + In 32 — )], (18)
in which
1= §/k =& + .

On the free surface £ = &, hence ¢ = 1. Thus
(18) gives

2, = Z/mfo = + 'I:yl,

M + t'a'n-l m (19)

30 =
and
3 = 1+ In B + )Y

as parametric equations of the free surface. The cusp
point at which the free surface streamlines ¢ = 0
and ¢ = m meet is given by

dx dx/dy,
= =2 .
" dy/dn,

L'Hospitals’ rule gives 5, = 0, which gives 2, = 0
and y; = 2(1 — In 2) for the coordinates of the cusp
point.

(20)
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F1c. 1. Pattern of free-surface flow into a sink.

The other streamlines are determined in the follow-
ing way. Equation (18) can be written as

- + tan™ [’71/(2 — £)], (21)
yy =14+ {3[2 - &)+ 7. (22

Assume a fixed z,, and for this fixed 2, assume various
values of n,. Compute & from (21), then y, from (22).
Thus, one has & -+ 79, for many values of y, for
a fixed z;. Since

£+ in = —i/wi, (23)

with w! = &(dw/dz), at these values of ¥, one also
has the values of

1, —
2T =

wi = —u, + w,

with u, = uk, v, = v&. The dimensionless stream
function ¢, can then be determined from

— Y1/ = i,

by integration with respect to y,. With ¢, so de-
termined for various values of z,, the streamlines
can be drawn through points with the same value
of ¢¥,. The flow pattern is shown in Fig. 1. Note
that (24) implies

(24)

(@/m) + «(¥/m).

wy = (fo/M)w = w/m =
Hence
¢ = ¢/m, Y = ¢/m.
3. PROBLEMS OF WATER WEDGING

When oil is pumped from the ground the problem
of water coning is often encountered. If the rate of
pumping is too great, water as well as oil will be
pumped out. At low rates of pumping presumably a
stagnant “cone” of water can exist beneath the
flowing oil. The main problem of water coning is
therefore to determine the maximum rate of pump-
ing under given conditions, above which water will
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be pumped out. The axisymmetric problem can at
present only be solved by the relaxation method.
But an analytical solution for the two-dimensional
problem, or the problem of water wedging, is pos-
sible. This solution will be presented in this section.

With reference to Fig. 2(a), the density of the
flowing fluid (oil) is denoted by p;, the density of the
stagnant fluid (water) is denoted by p,, and the
difference (o, — p,) is denoted by Ap. By a develop-
ment similar to that employed in Sec. 2, it can be
shown that on the free surface BC the velocity
components satisfy the condition

w4’ — =0,

(25)

in which & = kApg/u. This equation differs from (6)
only in the sign preceding «, because the flowing
fluid is now above the stagnant fluid. At the point
B, v = 0. Hence v = 0 according to (25), and B is
a stagnation point. At the point C the velocity, if
not zero, is in the direction of the vertical. We shall
assume first that the velocity at C is not zero, but
will later deal with the case in which C is a stagnation
point. It appears that the first case is the critical
case, in the sense that any increase in discharge (m)
will result in the appearance of water in the fluid
pumped out. A more detailed discussion will be
given after the solutions are obtained. Note that a
rigid horizontal boundary at the level of AB is
tacitly assumed.

Case 1. Critical case

With ¢ defined as before, the boundary of the
flow region (or one-half of it) is shown in Fig. 2(b)
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Fig. 2. Planes showing conformal mapping for the problem
of water wedging. Case 1: critical case.
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in the { plane, and in Fig. 2(d) in the w plane.
With the coordinates B, C, and D in the { plane as
shown in Fig. 2(c), the transformation of Schwarz
and Christoffel gives

¢ = (¢/ar) cosh™ ¢ (26)

and
—(m/2n)[In (t — ¢,) — In (¢t — 1], @7

in which the constants of integration and the
constant factors on the right-hand sides have been
determined from the coordinates given in the ¢
plane and w plane. The letter m represents the dis-
charge into the sink.

w =

Since
= —q(dz/dw),
it follows that
dz = iy dw = T cosh™ t( L —1——) di. (28)
207 t—ta t—1

Since ¢ is negative between B and C, and since the
imaginary part of cosh™ ¢ is then ¢ for negative t,
integration of the imaginary part of (28) yields

m tA—t

y=§;n~_ln1_t, (29)
and
o bt 1
Yo = 2am In 2 (30)

In (29), the constant of integration is zero because
ys is zero by choice. The constant ¢, is determined
from the fact that v = m/2d at A, so that ¢, =
(2d/m)i. Equation (26) then determines {, to be
cosh (2dawr/m). Thus,

m 2dom
Ye = 50r I:ln (cosh + 1) — In 2:]

m

=2 cosh@- (31)

am m

The shape of the free streamline is given para-
metrically by (28). The expression for y is given
by (29). The expression for z can be determined
numerically at least. It is interesting to see whether
it is horizontal at B, or intersects AB at an angle.
Since at B

dy _
dr
the free streamline is tangent to AB at B. This is

rather strange at first sight, since B is a stagnation
point. But the transformations are consistent with

™
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Fic. 3. Planes showing conformal mapping for the problem
of water wedging. Case 2: subcritical case.

stagnancy and tangency at B. Evidently the velocity
at a smooth corner can be reduced to zero.

Case 2. Subcritical case

The graphs of the boundary in the four planes
are shown in Fig. 3. The point D is now assumed to
be a stagnation point. Between B and D there is a
point at which the speed is highest. This point is
designated by C. The transformation between ¢
and ¢ is

1 — i
§'=Mfmdt+N

2M[(¢t + 1! + ¢, tanh™ (¢ 4 1)}] + N.

(32)

The constant N is zero because {x = Oand tz = —1.
The determination of M depends on the fact that
the imaginary part of tanh™ (¢ + 1)* for any positive
{ is 2w, As ¢ crosses B it changes from negative to
positive. Hence the change in { is

Mtxt.

On the other hand, this change is exactly —1/a.
Hence,

M = ifatx. (33)

The quantity ¢, is determined from the equation

2 (¢, + D

o t,

—i + Bi = + tanh™ [(#, + D}. (34)
The real part of this equation is automatically satis-
fied because M has been determined to give the real
part of ¢, (or of { for ¢ = 40) the value —1/c.
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The imaginary part of (34) determines ¢, in terms
of the parameter §:

%
anr

0 (35)

+ coth™ [(t. + 1)*1},

in which, as is well known,
coth™ [(t. + 1)} = tanh™* [(t, + D} — %

Thus, we have
.dz
g.(— — d'w)
u {(‘ + DY b [ + 1Y } (36)

whereas w is still given by (27). Thus the free stream-
line is given parametrically by

;
—7—:—2{@2—1—)— + coth™ [ + DY

RV 1}
+2’”}{t,—t,§ YA

The imaginary part of this equation can be inte-
grated to yield

dz = it dw =

(37)

m t— s
=5 [1 T 1 —In (—tA)] (38)
the constant of integration being determined by the
condition ¥z = 0. In particular

m 1
yo =5 - In <—tA)’ (39)
in which £, is determined from
_'I:_z__d 2’L (t»& + 1) - 3
poalie y 4 tanh™ [(ta + DY (40)

Again at B, dy/dx of the free streamline is zero.
Furthermore, at D the same is true. This is con-
sistent with the fact that D is a stagnation point.

Now if the discharge is m, the solution for Case 1
gives a volume of water underneath the oil. If m

C.-8.
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is increased above m, to m,, say, some water will
flow out until its volume beneath the oil is that con-
sistent with the solution for m = m,. [In this con-
nection it may be remarked that y, for Case 1 is
zero for m = o and is 1 for m = 0. It can be
assumed that y. increases monotonically as m de-
creases. This can perhaps be proved from (31).
But the proof turns out to be much more difficult
than expected.] If the discharge increases further,
the volume decreases further. However, if the dis-
charge is now decreased to m, again, say, the flow
cannot return to that for Case 1, for m = m,, be-
cause the water, once lost, cannot be regained, unless
it is added artificially. The flow will then be given
by a solution for Case 2, with the volume of water
equal to that which is now available, but with
m = m,. If the discharge is further reduced, the
solution for Case 2 continues to govern the flow,
with the free surface presumably becoming flatter
and flatter and yp smaller and smaller. It should
be noted that given an m and a water volume, there
is one value of 3, and hence, from (35) one value of
t.. Then (40) gives the value of £, and (39) the value
of yp. The situation is too complicated to enable
one to see that, with the water volume fixed, yp
decreases with m. The writer believes this to be the
case. The verification can only be furnished by
numerical computations. The foregoing discussion
justifies the use of the terms “critical case’” and
“suberitical case,” because for a prescribed water
volume, if the discharge is higher than that on which
the solution for Case 1 is based, water will be pumped
out.

The case in which the sink is located below the
upper boundary can be treated similarly.
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